]> www.fi.muni.cz Git - bike-lights.git/blob - firmware/adc.c
ADC measurements in mA
[bike-lights.git] / firmware / adc.c
1 #include <avr/io.h>
2 #include <avr/interrupt.h>
3
4 #include "lights.h"
5
6 #define AMBIENT_ADC N_PWMLEDS
7 #define BATTERY_ADC (N_PWMLEDS + 1)
8 #define ADC1_GAIN20 (N_PWMLEDS + 2)
9
10 #define NUM_ADCS 6
11 volatile static unsigned char current_adc;
12 static uint16_t adc_sum;
13 static unsigned char sum_shift;
14 static unsigned char adc_vals;
15 #define ADC1_GAIN20_OFFSET_SHIFT        6
16 static uint16_t adc1_gain20_offset;
17
18 static void inline setup_mux(unsigned char n)
19 {
20         /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
21         switch (n) {
22         case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
23                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
24                 sum_shift = PWMLED_ADC_SHIFT;
25                 break;
26         case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
27                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
28                 sum_shift = PWMLED_ADC_SHIFT;
29                 break;
30         case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
31                 ADMUX = _BV(REFS1) | _BV(MUX2);
32                 sum_shift = PWMLED_ADC_SHIFT;
33                 break;
34         case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
35                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
36                 sum_shift = 0; // 1 measurement
37                 break;
38         case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
39                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
40                 sum_shift = 0; // 1 measurement
41                 break;
42         case 5: // gain stage offset: 1.1V, ADC1,1, gain 20
43                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
44                 sum_shift = 0; // 1 measurement
45                 break;
46         }
47
48         adc_sum = 0;
49         adc_vals = 1 << sum_shift;
50 }
51
52 static void start_next_adc()
53 {
54         if (current_adc > 0)
55                 current_adc--;
56         else
57                 // TODO: kick the watchdog here.
58                 current_adc = NUM_ADCS-1;
59
60         // set up mux, start one-shot conversion
61         setup_mux(current_adc);
62         ADCSRA |= _BV(ADSC);
63 }
64
65 void init_adc()
66 {
67         unsigned char i;
68         current_adc = NUM_ADCS;
69
70         ADCSRA = _BV(ADEN)                      // enable
71                 | _BV(ADPS1) | _BV(ADPS0)       // CLK/8 = 125 kHz
72                 // | _BV(ADPS2)                 // CLK/16 = 62.5 kHz
73                 ;
74         // ADCSRB |= _BV(GSEL); // gain 8 or 32
75
76         // Disable digital input on all bits used by ADC
77         DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D)
78                 | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D);
79
80         // 1.1V, ADC1,1, gain 20
81         ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
82         ADCSRA |= _BV(ADSC);
83
84         /* Do first conversion and drop the result */
85         while ((ADCSRA & _BV(ADIF)) == 0)
86                 ;
87         ADCSRA |= _BV(ADIF); // clear the IRQ flag
88
89         adc1_gain20_offset = 0;
90
91         for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) {
92                 ADCSRA |= _BV(ADSC);
93
94                 while ((ADCSRA & _BV(ADIF)) == 0)
95                         ;
96                 adc1_gain20_offset += ADCW
97                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
98
99                 ADCSRA |= _BV(ADIF); // clear the IRQ flag
100         }
101
102         ADCSRA |= _BV(ADIE); // enable IRQ
103
104         start_next_adc();
105 }
106
107 void susp_adc()
108 {
109         ADCSRA = 0;
110         DIDR0 = 0;
111 }
112
113 ISR(ADC_vect) { // IRQ handler
114         uint16_t adcval = ADCW;
115
116         if (adc_vals)
117                 // start the next conversion immediately
118                 ADCSRA |= _BV(ADSC);
119
120         if (adc_vals < (1 << sum_shift))
121                  // drop the first conversion, use all others
122                  adc_sum += adcval;
123
124         if (adc_vals) {
125                 adc_vals--;
126                 return;
127         }
128
129         // Now handle the (1 << sum_shift) measurements
130
131         adcval = adc_sum >> sum_shift;
132
133         if (current_adc == ADC1_GAIN20) {
134                 // running average
135                 adc1_gain20_offset += adcval
136                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
137         } else if (current_adc == 0 || current_adc == 1) {
138                 uint16_t offset = adc1_gain20_offset
139                         >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift);
140                 if (adc_sum > offset)
141                         adc_sum -= offset;
142                 else
143                         adc_sum = 0;
144         }
145
146         if (current_adc < N_PWMLEDS)
147                 pwmled_adc(current_adc, adc_sum);
148         if (current_adc == AMBIENT_ADC)
149                 ambient_adc(adcval);
150         if (current_adc == BATTERY_ADC)
151                 battery_adc(adcval);
152         
153         start_next_adc();
154 }
155