]> www.fi.muni.cz Git - bike-lights.git/blob - firmware/adc.c
Revert "adc.c: make the ADC handlers non-atomic"
[bike-lights.git] / firmware / adc.c
1 #include <avr/io.h>
2 #include <avr/interrupt.h>
3
4 #include "lights.h"
5
6 #define AMBIENT_ADC N_PWMLEDS
7 #define BATTERY_ADC (N_PWMLEDS + 1)
8 #define ADC1_GAIN20 (N_PWMLEDS + 2)
9
10 #define NUM_ADCS 6
11 volatile static unsigned char current_adc;
12 static uint16_t adc_sum;
13 static unsigned char sum_shift;
14 static unsigned char adc_vals;
15 #define ADC1_GAIN20_OFFSET_SHIFT        6
16 static uint16_t adc1_gain20_offset;
17
18 static void inline setup_mux(unsigned char n)
19 {
20         /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
21         switch (n) {
22         case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
23                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
24                 sum_shift = PWMLED_ADC_SHIFT;
25                 break;
26         case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
27                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
28                 sum_shift = PWMLED_ADC_SHIFT;
29                 break;
30         case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
31                 ADMUX = _BV(REFS1) | _BV(MUX2);
32                 sum_shift = PWMLED_ADC_SHIFT;
33                 break;
34         case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
35                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
36                 sum_shift = 3; // 3 measurements
37                 break;
38         case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
39                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
40                 sum_shift = 0; // 1 measurement
41                 break;
42         case 5: // gain stage offset: 1.1V, ADC1,1, gain 20
43                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
44                 sum_shift = 0; // 1 measurement
45                 break;
46         }
47
48         adc_sum = 0;
49         adc_vals = 1 << sum_shift;
50 }
51
52 static void start_next_adc()
53 {
54         if (current_adc > 0)
55                 current_adc--;
56         else
57                 // TODO: kick the watchdog here.
58                 current_adc = NUM_ADCS-1;
59
60         // set up mux, start one-shot conversion
61         setup_mux(current_adc);
62         ADCSRA |= _BV(ADSC);
63 }
64
65 /*
66  * Single synchronous ADC conversion.
67  * Has to be called with IRQs disabled (or with the ADC IRQ disabled).
68  */
69 static uint16_t read_adc_sync()
70 {
71         uint16_t rv;
72
73         ADCSRA |= _BV(ADSC); // start the conversion
74
75         // wait for the conversion to finish
76         while((ADCSRA & _BV(ADIF)) == 0)
77                 ;
78
79         rv = ADCW;
80         ADCSRA |= _BV(ADIF); // clear the IRQ flag
81
82         return rv;
83 }
84
85 void init_adc()
86 {
87         unsigned char i;
88         current_adc = NUM_ADCS;
89
90         ADCSRA = _BV(ADEN)                      // enable
91                 | _BV(ADPS1) | _BV(ADPS0)       // CLK/8 = 125 kHz
92                 // | _BV(ADPS2)                 // CLK/16 = 62.5 kHz
93                 ;
94         // ADCSRB |= _BV(GSEL); // gain 8 or 32
95
96         // Disable digital input on all bits used by ADC
97         DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D)
98                 | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D);
99
100         // 1.1V, ADC1,1, gain 20
101         ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
102
103         /* Do first conversion and drop the result */
104         read_adc_sync();
105
106         adc1_gain20_offset = 0;
107
108         for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) {
109                 adc1_gain20_offset += read_adc_sync()
110                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
111         }
112
113         ADCSRA |= _BV(ADIE); // enable IRQ
114
115         start_next_adc();
116 }
117
118 void susp_adc()
119 {
120         ADCSRA = 0;
121         DIDR0 = 0;
122 }
123
124 ISR(ADC_vect) { // IRQ handler
125         uint16_t adcval = ADCW;
126
127         if (adc_vals)
128                 // start the next conversion immediately
129                 ADCSRA |= _BV(ADSC);
130
131         if (adc_vals < (1 << sum_shift))
132                  // drop the first conversion, use all others
133                  adc_sum += adcval;
134
135         if (adc_vals) {
136                 adc_vals--;
137                 return;
138         }
139
140         // Now handle the (1 << sum_shift) measurements
141
142         adcval = adc_sum >> sum_shift;
143
144         if (current_adc == ADC1_GAIN20) {
145                 // running average
146                 adc1_gain20_offset += adcval
147                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
148         } else if (current_adc == 0 || current_adc == 1) {
149                 uint16_t offset = adc1_gain20_offset
150                         >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift);
151                 if (adc_sum > offset)
152                         adc_sum -= offset;
153                 else
154                         adc_sum = 0;
155         }
156
157         if (current_adc < N_PWMLEDS)
158                 pwmled_adc(current_adc, adc_sum);
159         if (current_adc == AMBIENT_ADC)
160                 ambient_adc(adcval);
161         if (current_adc == BATTERY_ADC)
162                 battery_adc(adcval);
163         
164         start_next_adc();
165 }
166