]> www.fi.muni.cz Git - bike-lights.git/blob - firmware/adc.c
b82bc097136d3c70a63defb3290829ecaf3678d3
[bike-lights.git] / firmware / adc.c
1 #include <avr/io.h>
2 #include <avr/interrupt.h>
3
4 #include "lights.h"
5
6 #define AMBIENT_ADC N_PWMLEDS
7 #define BATTERY_ADC (N_PWMLEDS + 1)
8 #define ADC1_GAIN20 (N_PWMLEDS + 2)
9 #define BUTTON_ADC  (N_PWMLEDS + 2)
10
11 #define NUM_ADCS 7
12 volatile static unsigned char current_adc;
13 static uint16_t adc_sum;
14 static unsigned char sum_shift;
15 static unsigned char adc_vals;
16 #define ADC1_GAIN20_OFFSET_SHIFT        6
17 static uint16_t adc1_gain20_offset;
18
19 static void inline setup_mux(unsigned char n)
20 {
21         /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
22         switch (n) {
23         case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
24                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
25                 sum_shift = PWMLED_ADC_SHIFT;
26                 break;
27         case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
28                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
29                 sum_shift = PWMLED_ADC_SHIFT;
30                 break;
31         case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
32                 ADMUX = _BV(REFS1) | _BV(MUX2);
33                 sum_shift = PWMLED_ADC_SHIFT;
34                 break;
35         case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
36                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
37                 sum_shift = 3; // 3 measurements
38                 break;
39         case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
40                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
41                 sum_shift = 0; // 1 measurement
42                 break;
43         case 5: // gain stage offset: 1.1V, ADC1,1, gain 20
44                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
45                 sum_shift = 0; // 1 measurement
46         case 6: // buttons: 1.1V, ADC3, single-ended
47                 PORTA |= _BV(PA3); // +5V to the voltage splitter
48                 ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0);
49                 sum_shift = 0;
50                 break;
51         }
52
53         adc_sum = 0;
54         adc_vals = 1 << sum_shift;
55 }
56
57 static void start_next_adc()
58 {
59         if (current_adc > 0)
60                 current_adc--;
61         else
62                 // TODO: kick the watchdog here.
63                 current_adc = NUM_ADCS-1;
64
65         // set up mux, start one-shot conversion
66         setup_mux(current_adc);
67         ADCSRA |= _BV(ADSC);
68 }
69
70 /*
71  * Single synchronous ADC conversion.
72  * Has to be called with IRQs disabled (or with the ADC IRQ disabled).
73  */
74 static uint16_t read_adc_sync()
75 {
76         uint16_t rv;
77
78         ADCSRA |= _BV(ADSC); // start the conversion
79
80         // wait for the conversion to finish
81         while((ADCSRA & _BV(ADIF)) == 0)
82                 ;
83
84         rv = ADCW;
85         ADCSRA |= _BV(ADIF); // clear the IRQ flag
86
87         return rv;
88 }
89
90 void init_adc()
91 {
92         unsigned char i;
93         current_adc = NUM_ADCS;
94
95         ADCSRA = _BV(ADEN)                      // enable
96                 | _BV(ADPS1) | _BV(ADPS0)       // CLK/8 = 125 kHz
97                 // | _BV(ADPS2)                 // CLK/16 = 62.5 kHz
98                 ;
99         // ADCSRB |= _BV(GSEL); // gain 8 or 32
100
101         // Disable digital input on all bits used by ADC
102         DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D) | _BV(ADC3D)
103                 | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D);
104
105         // 1.1V, ADC1,1, gain 20
106         ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
107
108         /* Do first conversion and drop the result */
109         read_adc_sync();
110
111         adc1_gain20_offset = 0;
112
113         for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) {
114                 adc1_gain20_offset += read_adc_sync()
115                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
116         }
117
118         ADCSRA |= _BV(ADIE); // enable IRQ
119
120         start_next_adc();
121 }
122
123 void susp_adc()
124 {
125         ADCSRA = 0;
126         DIDR0 = 0;
127 }
128
129 ISR(ADC_vect) { // IRQ handler
130         uint16_t adcval = ADCW;
131
132         if (adc_vals)
133                 // start the next conversion immediately
134                 ADCSRA |= _BV(ADSC);
135
136         if (adc_vals < (1 << sum_shift))
137                  // drop the first conversion, use all others
138                  adc_sum += adcval;
139
140         if (adc_vals) {
141                 adc_vals--;
142                 return;
143         }
144
145         // Now handle the (1 << sum_shift) measurements
146
147         adcval = adc_sum >> sum_shift;
148
149         if (current_adc == ADC1_GAIN20) {
150                 // running average
151                 adc1_gain20_offset += adcval
152                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
153         } else if (current_adc == 0 || current_adc == 1) {
154                 uint16_t offset = adc1_gain20_offset
155                         >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift);
156                 if (adc_sum > offset)
157                         adc_sum -= offset;
158                 else
159                         adc_sum = 0;
160         }
161
162         if (current_adc < N_PWMLEDS)
163                 pwmled_adc(current_adc, adc_sum);
164         if (current_adc == AMBIENT_ADC)
165                 ambient_adc(adc_sum);
166         if (current_adc == BATTERY_ADC)
167                 battery_adc(adcval);
168         if (current_adc == BUTTON_ADC)
169                 button_adc(adcval);
170         
171         start_next_adc();
172 }
173