Fully Automated Attractor Analysis of Cyanobacteria Models

Nikola Beneš, Luboš Brim, Jan Červený, Samuel Pastva, David Šafránek, Jakub Šalagovič, Matej Troják

Faculty of Informatics, Masaryk University, Brno, Czech Republic
Motivation: Cyanobacteria control

Control of cyanobacteria in a photo-bioreactor
Motivation: Cyanobacteria control

Control of cyanobacteria in a photo-bioreactor
Motivation: Cyanobacteria control

Control of cyanobacteria in a photo-bioreactor

Model-based control ⇒ e-cyanobacterium.org
Problem: Attractor localisation with parameters

- Non-linear complex biological ODE models
- Parameter tuning controls attractors
Problem: Attractor localisation with parameters

- Non-linear complex biological ODE models
- Parameter tuning controls attractors

\[p = 0.4 \quad \text{and} \quad p = 1.0 \]
Problem: Attractor localisation with parameters

State of the art:

• Simulation, sampling, continuation
• Bifurcation theory and other analytical methods
• Depend on the type of the system
• Requires a skilled model analyst
• Computationally intensive, but hard to parallelise
Problem: Attractor localisation with parameters

State of the art:

- Simulation, sampling, continuation

Depends on the type of the system

Requires a skilled model analyst

Computationally intensive, but hard to parallelise
Problem: Attractor localisation with parameters

State of the art:

- Simulation, sampling, continuation
- Bifurcation theory and other analytical methods
State of the art:

- Simulation, sampling, continuation
- Bifurcation theory and other analytical methods

😊:
Problem: Attractor localisation with parameters

State of the art:

- Simulation, sampling, continuation
- Bifurcation theory and other analytical methods

😊:

- Depend on the type of the system
Problem: Attractor localisation with parameters

State of the art:

- Simulation, sampling, continuation
- Bifurcation theory and other analytical methods

😢:

- Depend on the type of the system
- Requires a skilled model analyst
Problem: Attractor localisation with parameters

State of the art:

- Simulation, sampling, continuation
- Bifurcation theory and other analytical methods

😊:

- Depend on the type of the system
- Requires a skilled model analyst
- Computationally intensive, but hard to parallelise
Method: Terminal strongly connected components

\[
\frac{dx_1}{dt} = f_1(x_1, \ldots, x_n) \\
\frac{dx_2}{dt} = f_2(x_1, \ldots, x_n) \\
\vdots \\
\frac{dx_n}{dt} = f_n(x_1, \ldots, x_n)
\]
Method: Terminal strongly connected components

\[
\frac{dx_1}{dt} = f_1(x_1, \ldots, x_n) \\
\frac{dx_2}{dt} = f_2(x_1, \ldots, x_n) \\
\vdots \\
\frac{dx_n}{dt} = f_n(x_1, \ldots, x_n)
\]
Method: Terminal strongly connected components
1. Continuous system \Rightarrow discrete transition system
Method: Terminal strongly connected components

1. Continuous system \Rightarrow discrete transition system
2. Parameter uncertainty is captured by parametrised edges
Method: Terminal strongly connected components

1. Continuous system \Rightarrow discrete transition system
2. Parameter uncertainty is captured by parametrised edges
3. Parallel parametrised divide and conquer algorithm for component detection
1. Continuous system \Rightarrow discrete transition system
2. Parameter uncertainty is captured by parametrised edges
3. Parallel parametrised divide and conquer algorithm for component detection
4. Each terminal component over-approximates an attractor
Clark et al. 2014
- Fluxes of inorganic carbon from cytosol to carboxysome
- Fixation using carbonic anhydrase and RuBisCO enzyme

Grimaud et al. 2014
- Time-dependent dynamics of nitrogen fixation
- Respecting the obligate nitrogen fixation and light limitation

Müller et al. (in devel.)
- Carbon fluxes in a laboratory scale photobioreactor
- Intercellular exchange, carbonate chemistry, and gas-to-liquid \(CO_2 \) transfer

Plyusnina et al. (in devel.)
- Electron transport on thylakoid membrane (photosynthesis)
Clark et al. 2014

- Fluxes and fixation of inorganic carbon
- Carbon dioxide concentrating mechanism (CCM)
- Model shows that CCM is not necessary for growth in media in equilibrium with concentration of 10% CO_2
- Activity of carbon-fixing enzyme $RuBisCO$
- Parameter *fast* affects rate of carbon fixation reaction

1 Ryan L. Clark et al., Insights into the industrial growth of cyanobacteria from a model of the carbon-concentrating mechanism, AIChE Journal, 2014, https://doi.org/10.1002/aic.14310
Parameter $fast = 100$
Clark et al. – results

A single attractor across whole parameter range

CO_2 increases rapidly with fast, HCO_3 decreases for higher values
Other results

- Clark: Strong dependence on parameter \textit{fast}, 4 dimensions
- Grimaud: Independent on parameters r_2 and r_4, 4 dimensions
- Müller: Independent on parameter $kL_{A\text{-}CO_2\text{-}eff}$, 7 dimensions
- Plyusnina: 8 dimensions, strange non-trivial attractor
Software support: Pithya

http://pithya.ics.muni.cz/app/pithya
Software support: Pithya

http://pithya.ics.muni.cz/app/pithya
Conclusions

- Dependence of attractors on parameters
Conclusions

- Dependence of attractors on parameters
- Detection of terminal strongly connected components

Thank you for your attention!

Samuel Pastva
• Dependence of attractors on parameters
• Detection of terminal strongly connected components
• Fully automated and parallel
Conclusions

• Dependence of attractors on parameters
• Detection of terminal strongly connected components
• Fully automated and parallel
• Provides useful results for real world models of cyanobacteria
Conclusions

- Dependence of attractors on parameters
- Detection of terminal strongly connected components
- Fully automated and parallel
- Provides useful results for real world models of cyanobacteria
- Huge models (> 10 dimensions) still pose a challenge
Conclusions

- Dependence of attractors on parameters
- Detection of terminal strongly connected components
- Fully automated and parallel
- Provides useful results for real world models of cyanobacteria
- Huge models (> 10 dimensions) still pose a challenge

Thank you for your attention!