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Abstract

During the last few years, BDD-based SMT solvers proved to be competitive in
deciding satisfiability of quantified bit-vector formulas. However, these solvers
usually do not perform well on input formulas with complicated arithmetic.
Hitherto, this problem has been alleviated by approximations reducing effec-
tive bit-widths of bit-vector variables. In this paper, we propose an orthogonal
abstraction technique that works on the level of the individual instances of bit-
vector operations. In particular, we compute only several bits of the operation
result, which may be sufficient to decide the satisfiability of the formula. Exper-
imental results show that our BDD-based SMT solver Q3B extended with these
abstractions can solve more quantified bit-vector formulas from the smt-lib
repository than SMT solvers Boolector, CVC4, and Z3.
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1. Introduction

Complexity of computer systems as well as their importance for human so-
ciety grow unceasingly. A possible way to improve reliability of these systems is
by application of formal verification. Several approaches to formal verification,
such as symbolic execution or bounded model checking, rely on the ability to
decide whether a given formula over some logical theory is satisfiable. To this
end, many verifiers use Satisfiability Modulo Theories (SMT) solvers, which can
solve precisely the task of checking satisfiability of a first-order formula in a
given logical theory. For describing software, the natural choice of the logical
theory is the theory of fixed-size bit-vectors in which the objects are vectors
of bits and the operations on them precisely reflect operations performed by
computers. Moreover, in applications such as synthesis of invariants, ranking
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functions, or loop summaries, the arising formulas also naturally contain quan-
tifiers [9, 21, 7, 15, 16].

The development of SMT solvers for quantified formulas in the theory of fixed-
size bit-vectors has seen several advances in the recent years. In particular, the
support for arbitrarily quantified bit-vector formulas has been implemented to
existing solvers Z3 [22], Boolector [19], and CVC4 [18]. Moreover, new tools that
aim for precisely this theory, such as the solver Q3B [12, 13], were developed.
Approaches of these tools fall into two categories. Solvers Z3, Boolector, and
CVC4 apply variants of quantifier instantiation [22, 19, 18] that iteratively pro-
duces quantifier-free formulas that can be solved by a solver for quantifier-free
bit-vector formulas. The solver Q3B uses Binary Decision Diagrams (BDDs) [5]
to decide satisfiability of quantified bit-vector formulas.

In principle, the BDD-based approach builds a BDD that represents all models
of the given bit-vector formula. The BDD is constructed in a bottom-up manner,
i.e., the BDD for the formula is computed from BDDs for its subformulas. Recall
that a model of a bit-vector formula is an assignment of bit-vectors to free bit-
vector variables that makes the formula valid. As BDDs work with Boolean
variables, each bit-vector variable x of bit-width k is identified with a sequence
xk−1xk−2 . . . x1x0 of k Boolean variables corresponding to individual bits of x,
where x0 corresponds to the least-significant bit. The approach that constructs
a BDD for all models suffers from the well-known issues of BDDs: the size of
a BDD can heavily depend on the chosen ordering of Boolean variables and
there exist formulas for which all corresponding BDDs are prohibitively big,
regardless the variable ordering. For example, consider the formula x · y = z
with multiplication and free bit-vector variables x, y, z of bit-width k. Any BDD

that represents all models of this formula is guaranteed to have exponentially
many nodes in k regardless of the chosen order of Boolean variables [6]. In
practice, if a formula contains complicated arithmetic, the constructed BDDs
tend to grow in size very quickly.

The solver Q3B tries to reduce sizes of constructed BDDs in several ways [10].
One of them is the computation of a suitable ordering of Boolean variables from
the formula structure (see the original paper [10] for details). Another way is to
restrict the domains of some bit-vector variables in order to use fewer Boolean
variables. We say that we reduce the effective bit-width of these variables. For
example, consider the mentioned formula x · y = z where all variables have bit-
width 32. We can reduce the effective bit-width of each variable to 2 by fixing
the 30 most-significant bits to 0. We obtain the formula

0 . . . 0x1x0 · 0 . . . 0y1y0 = 0 . . . 0z1z0

with only 6 Boolean variables. Note that the computation of a BDD representing
all models of this formula is instantaneous, while it is infeasible for the original
formula. As an alternative to fixing k most significant bits to 0, Q3B can also
restrict a variable domain by the assumption that k most significant bits have
the same value. For example, application of this restriction to all variables in
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the considered formula for k = 31 yields the formula

x1 . . . x1x0 · y1 . . . y1y0 = z1 . . . z1z0

also with 6 Boolean variables. Again, a BDD representing all models of this
formula can be computed immediately. Both modified formulas can be seen
as underapproximations of the original formula as every model of the modified
formulas directly translates to a model of the original formula. As both un-
derapproximations are satisfiable, any of them can be used to conclude that
the original formula is also satisfiable. Note that we can restrict the domain
of each bit-vector variable separately. Given a bit-vector formula in negation
normal form, Q3B computes underapproximations by restricting the domains
of all free and existentially quantified variables. If an underapproximation is
satisfiable, so is the original formula. Analogously, Q3B also computes overap-
proximations by restricting the domains of all universally quantified variables.
If an overapproximation is unsatisfiable, so is the original formula.

Although the approximations made Q3B competitive with state-of-the-art
SMT solvers, the approach has several drawbacks. For example, the original
version of Q3B cannot solve satisfiability of simple formulas such as

∃x, y ((x · y = 0) ∧ (x < 2) ∧ (x > 4)) ,

∃x, y ((x≪ 1) · y = 1) ,

∃x, y (x > 0 ∧ x ≤ 4 ∧ y > 0 ∧ y ≤ 4 ∧ x · y = 0) ,

where all variables and constants have bit-width 32 and ≪ denotes bit-wise shift
left. All these three formulas are unsatisfiable, but cannot be decided without
approximations, because they contain non-linear multiplication. Unfortunately,
the mentioned approximations do not help as the formulas are unsatisfiable and
contain no universally quantified variables that could be used to overapproxi-
mate the formula in order to prove its unsatisfiability.

However, the three above-mentioned formulas have something in common:
only a few of the bits of the multiplication results are sufficient to decide satis-
fiability of the formulas. The first formula can be decided unsatisfiable without
computing any bits of x ·y whatsoever since (x < 2)∧ (x > 4) alone in unsatisfi-
able. The second formula can be decided by computing only the least-significant
bit of (x ≪ 1) · y because it must always be zero while the right side of the
equality states that it is one. The third formula can be decided by computing
5 least-significant bits of x · y, because they are enough to rule out all values of
x and y between 1 and 4 as models.

With this in mind, we propose an improvement of BDD-based SMT solvers
such as Q3B by reasoning about partial results of selected operations includ-
ing non-linear multiplications. In these partial results, some bits are set to a
distinguished do-not-know value. Formally, the paper defines abstract domains
in which the operations can handle and produce do-not-know values and shows
that these abstract domains can be used to decide satisfiability of an input
formula.
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Abstract domains with do-not-know values have the same goal as the ap-
proximation techniques based on effective bit-width reductions: to decide satis-
fiability of the given quantified bit-vector formula without construction of large
BDDs. While the effective bit-width reduction lower the number of Boolean
variables that can appear in these BDDs, the do-not-know values are used when
BDDs representing some term exceed a given number of BDD nodes. The two
approaches are in fact complementary and we also show how to combine them.

The paper is structured as follows. Section 2 provides necessary background
and notations for SMT, bit-vector theory, and binary decision diagrams. Sec-
tion 3 presents a general definition of abstract domains for terms and formulas
and shows how they can help decide satisfiability of a formula. Section 4 intro-
duces truncating term and formula abstract domains that compute only several
bits from results of arithmetic bit-vector operations. Section 5 describes our im-
plementation of these abstract domains and their deployment in the SMT solver
Q3B. The section also explains some heuristics that further improve the perfor-
mance of Q3B, especially in combination with the truncating abstract domains.
Finally, Section 6 provides a comparison of Q3B extended with the truncating
abstract domains against the original Q3B and other SMT solvers for quantified
bit-vector formulas.

A preliminary version of this paper has been presented at ICTAC 2018 [12].
The current version is extended in several directions. We consider a richer
version of bit-vector logic that includes also if-then-else construct. Further,
we provide more details about the technique including the proofs omitted in
the preliminary version and algorithms computing bit-vector multiplication and
unsigned inequality in truncating abstract domains. Moreover, we have added
some heuristics further improving performance of our tool. These heuristics are
explained in the section devoted to implementation and deployment of trun-
cating abstract domains, namely in Subsections 5.1 and 5.2. The experimental
evaluation has been done again with the latest versions of relevant SMT solvers
and with the latest version of benchmarks from the smt-lib repository1. The
evaluation now considers two additional Q3B configurations to show the con-
tribution of truncating abstract domains and other introduced heuristics to the
overall performance improvements. The comparison of Q3B extended with the
truncating abstract domains and other heuristics against the original Q3B is
shown in more details.

2. Preliminaries

First of all, we recall the basics of bit-vector theory and binary decision
diagrams. Then we remind some algorithms for BDD operations and explain
how they can be used to decide satisfiability of bit-vector formulas.

1We used the current versions of the solvers and benchmarks that were available at the
time of the major revision of this paper, i.e., December 2020.
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2.1. Bit-Vector Theory

This section briefly recalls the theory of fixed sized bit-vectors (BV or bit-
vector theory for short). In the description, we assume familiarity with standard
definitions of terms, atomic formulas, and formulas of a many-sorted logic. If
the reader is interested, these definitions can be found for example in Barrett
and Tinelli [3].

The bit-vector theory is a many-sorted first-order theory with infinitely many
sorts corresponding to bit-vectors of various lengths. The length of a bit-vector
is traditionally called its bit-width. The BV theory uses only three predicates,
namely equality (=), unsigned inequality of bit-vectors interpreted as binary-
encoded natural numbers (≤u), and signed inequality of bit-vectors interpreted
as integers in two’s complement representation (≤s). The theory contains vari-
ous binary functions including addition (+), multiplication (·), unsigned division
(÷), unsigned remainder (%), bit-wise and (bvand), bit-wise or (bvor), bit-wise
exclusive or (bvxor), left-shift (≪), right-shift (≫), and concatenation (concat).
All predicates and binary functions except concatenation are applied to two
terms of the same bit-width. The theory also includes several unary functions
including extraction of n bits starting from position p (extractnp ), extension with
n zeroes as the most-significant bits (zeroExtendn), and extension with n copies
of the most-significant bit (signExtendn). Further, the signature of BV theory
contains constants c[n] for each bit-width n > 0 and a number 0 ≤ c ≤ 2n − 1.
Finally, the theory also uses the if-then-else construct ite(φ, t1, t2) that evalu-
ates as term t1 if φ holds and as t2 otherwise. We denote the set of all bit-vectors
as BV, the set of all bit-vector variables as Vars, the set of all terms as T , and
the set of all formulas as F .

For an assignment µ that assigns to each variable from Vars a value in its
domain, J Kµ denotes the evaluation function which assigns to each term or
formula the value obtained by substituting all free variables x by their values
µ(x) and evaluating all functions, predicates, logic operators etc. A formula φ
is satisfiable if JφKµ = 1 for some assignment µ; it is unsatisfiable otherwise.

If φ is a formula and t, s are terms, φ[t 7→ s] denotes the formula φ with all
occurrences of the term t simultaneously substituted by the term s. If µ is an
assignment, x a variable, and v a value in the domain of v, µ[x 7→ v] denotes
the assignment identical to µ for all variables except x, to which it assigns v.

The precise description of bit-vector theory and its operations can be found
for example in the paper describing complexity of quantified bit-vector theory
by Kovásznai et al. [14].

2.2. Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that can succinctly
represent Boolean functions. Formally, it is a rooted directed acyclic graph
that has at most two leaves (i.e., nodes without any outgoing edge), which are
labelled by 0 and 1. Each inner node is labelled by a Boolean variable and it
has two outgoing edges called high and low, which are related to the potential
values 1 and 0 of the corresponding variable, respectively. A BDD maps each
assignment µ of Boolean variables either to 0 or to 1 by the following process:
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Figure 1: A BDD for x ⇐⇒ y.

1. Start in the root node.

2. Repeat this step until a leaf is reached: Let x be the variable labelling
the current node. If µ(x) = 1 then follow the high edge. If µ(x) = 0 then
follow the low edge.

3. Return the value 0 or 1 labelling the reached leaf.

The value to which a BDD b maps an assignment µ is denoted by JbKµ.
An example of a BDD is provided in Figure 1. According to the traditional

notation, high edges are drawn by solid lines and low edges are drawn by dotted
lines. The BDD on the figure maps to 1 precisely the assignments where the
values of x and y are the same. Hence, it represents the Boolean function
x ⇐⇒ y. The trivial BDDs 0 and 1 represent constant Boolean functions
false (0) and true (1), respectively.

In this paper, we suppose that all binary decision diagrams are reduced and
ordered. A BDD is ordered if, for all pairs of paths in the BDD, the order of
the variables that occur on both of the paths is the same. A BDD is reduced
if there is no inner node with high and low edges leading to the same node.
It has been shown that reduced and ordered BDDs are canonical, i.e., given a
variable ordering, there is exactly one reduced and ordered BDD for each given
function [5].

Binary decision diagrams can be also used to represent an arbitrary bit-
vector function, i.e., a function that assigns a bit-vector value to each assign-
ment of Boolean variables. Such a function of a bit-width k (i.e., the pro-
duced bit-vector has the bit-width k) can be represented by a vector of k BDDs
b = (bk−1, . . . , b1, b0) = (bi)0≤i<k, where b0 represents the least-significant bit
of the function result. The result for an assignment µ is then the bit-vector
JbKµ = (JbiKµ)0≤i<k. For example, Figure 2 shows a vector of BDDs representing
addition x2x1x0 + y2y1y0 of two bit-vectors of size 3. In the following text, we
denote the set of all BDDs as BDD and the set of all vectors of BDDs as BDD. We
use the overlined symbols for vectors of BDDs.

2.3. Operations on Binary Decision Diagrams

It has been shown by Bryant [5] that, given a pair of BDDs for Boolean
functions f and g, one can compute a BDD for function f ∧ g and a BDD for
function f ∨g in polynomial time. We denote the BDD operations corresponding
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Figure 2: Vector of BDDs representing the addition x2x1x0 + y2y1y0 of two bit-vectors of
bit-width 3.

to conjunction and disjunction by the infix operators & and |, respectively. A
BDD for the negation of f can be obtained from a BDD for f simply by swapping
the labels 0 and 1 of leaves. We use the operator ! to denote this BDD operation.

Using these basic BDD operations, we can easily define more operations. In
the following, we employ the operations

• equivalence denoted as a↔ b, which abbreviates (a & b) | (!a & !b),

• exclusive or denoted as a xor b, which abbreviates (a & !b) | (!a & b), and

• if-then-else denoted as (a ? b : c), which abbreviates (a & b) | (!a & c).

Bryant [5] has also described an operation that modifies a given BDD b by
setting a selected Boolean variable y to a given value v ∈ {0, 1}. Let by 7→v denote
the result of this operation. With this operation, we can define two operations
corresponding to existential and universal quantification. For quantification of
a Boolean variable y in a BDD b, we set

• bdd∀(y, b) to be an abbreviation for by 7→0 & by 7→1 and

• bdd∃(y, b) to be an abbreviation for by 7→0 | by 7→1.

Then we extend these two operations to handle a bit-vector variable x =
xk−1xk−2 . . . x0 as their first argument. Formally,

• bdd∀(x, b) stands for bdd∀(xk−1, bdd∀(xk−2, . . . , bdd∀(x0, b) . . .)) and

• bdd∃(x, b) stands for bdd∃(xk−1, bdd∃(xk−2, . . . , bdd∃(x0, b) . . .)).

Note that the operations above are not computed by the compositions of the
basic operations in practice, but are usually implemented by dedicated algo-
rithms.
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Figure 3: Vectors of BDDs representing variable x2x1x0 of bit-width 3 (left) and constant
5[3] = 101 (right).

With the mentioned BDD operations, we can implement a function fo2BDD :
F → BDD that translates a given bit-vector formula φ into a BDD fo2BDD(φ)
that represents exactly all models of the formula, i.e., for each assignment µ
it holds that JφKµ = Jfo2BDD(φ)Kµ. This function provides a straightforward
satisfiability check: a formula φ is satisfiable if and only if the BDD fo2BDD(φ)
maps at least one assignment to 1. For ordered and reduced BDDs, this is always
the case unless the BDD is 0 . In the rest of this section, we intuitively describe
the algorithm computing fo2BDD.

A given bit-vector formula is translated to a corresponding BDD in a bottom-
up manner. The translation of terms is performed by an auxiliary function
te2BDD : T → BDD which translates a given term t to a vector of BDDs that
represents the bit-vector function corresponding to t. Translation of variables
and constants is straightforward, as illustrated on Figure 3. Let t1 and t2 be
two terms of the same bit-width, which are already translated to vectors of
BDDs a, b ∈ BDD, respectively. Then the vector of BDDs for term t1 + t2 can be
constructed by the function bvec add(a, b) presented in Listing 1. The listing
also provides the function bvec mul(a, b), which constructs the vector of BDDs
for the term t1 · t2. The algorithm starts with the result set to 0 and, for each
bit bi of the second argument b, the result stays the same if bi is 0 and 2i · a
is added to the result if bi is 1. Note that the inner for-cycle responsible for
this addition ignores the first i least-significant bits as 2i · a has 0 in these bits.
The computation of 2i · a is performed by iteratively shifting a left by one bit
using the function bvec shl, which shifts the vector of BDDs in its first argument
by the number of bits given by the second argument and fills the vacant least-
significant bits with the BDD 0 . All other functions of the bit-vector theory such
as unsigned division, bitwise and, concatenation, or extraction are implemented
similarly. A term of the form ite(φ, t1, t2) is translated to a vector of BDDs by
the function bvec ite(a, b, c) provided also in Listing 1, where the BDD a
represents the models of φ and b, c ∈ BDD correspond to t1, t2, respectively.

When terms t1 and t2 of the same bit-width are translated to the correspond-
ing vectors of BDDs, we can compute the BDD for their equality t1 = t2, the BDD

for their unsigned inequality t1 ≤u t2, and the BDD for their signed inequality
t1 ≤s t2. Listing 2 shows the algorithm bvec eq for equality and bvec leq for
unsigned inequality. The algorithm for signed inequality is similar. Finally, if
we have a BDD b1 for φ1 and a BDD b2 for φ2, we can compute BDDs for the
formula ¬φ1 as !b1, the formula φ1∧φ2 as b1 & b2, the formula φ1∨φ2 as b1 | b2,
the formula ∀x (φ1) as bdd∀(x, b1), and the formula ∃x (φ1) as bdd∃(x, b1).
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Listing 1: Functions bvec add and bvec mul implementing addition (+) and multiplication (·)
on vectors a = (ai)0≤i<k and b = (bi)0≤i<k of BDDs, and function bvec ite implementing

if-then-else (ite) construct on BDD a and vectors b = (bi)0≤i<k and c = (ci)0≤i<k of BDDs.

1 bvec_add(a, b)
2 {

3 result ← ( 0 , 0 , . . . , 0 ) with the bit -width k;

4 carry ← 0 ;
5 for i from 0 to k − 1 {
6 resulti ← ai xor bi xor carry;
7 carry ← (ai & bi) | (carry & (ai | bi));
8 }

9 return result;
10 }
11

12 bvec_mul(a, b)
13 {

14 result ← ( 0 , 0 , . . . , 0 ) with the bit -width k;
15 for i from 0 to k − 1 {

16 added ← bvec add(result , a);
17 for j from i to k − 1 {
18 resultj ← (bi ? addedj : resultj);
19 }
20 a ← bvec shl(a, 1);
21 }

22 return result;
23 }
24

25 bvec_ite(a, b, c)
26 {
27 for i from 0 to k − 1 {
28 resulti ← (a ? bi : ci);
29 }

30 return result;
31 }

Note that all the mentioned BDD operations including the algorithms of List-
ings 1 and 2 are implemented for example in the BDD package BuDDy2. Hence,
one can easily implement the functions te2BDD and fo2BDD translating bit-vector
terms and formulas to the corresponding (vectors of) BDDs, respectively. Let us
note that these implementations are mutually recursive: fo2BDD calls te2BDD to
translate the subterms of the input formula to the corresponding vectors of BDDs
and te2BDD calls fo2BDD to translate the first argument of a term ite(φ, t1, t2)
to the corresponding BDD.

Unfortunately, the computation of fo2BDD(φ) is infeasible even for some short
formulas φ mentioned in Introduction as it aims to construct prohibitively large
BDDs.

2http://sourceforge.net/projects/buddy
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Listing 2: Functions bvec eq and bvec leq implementing equality (=) and unsigned inequality
(≤u) of vectors a = (ai)0≤i<k and b = (bi)0≤i<k of BDDs.

1 bvec_eq(a, b)
2 {

3 result ← 1 ;
4 for i from 0 to k − 1 {
5 result ← result & (ai ↔ bi);
6 }
7 return result;
8 }
9

10 bvec_leq(a, b)
11 {

12 result ← 1 ;
13 for i from 0 to k − 1 {
14 result ← (!ai & bi) | (result & (ai ↔ bi))
15 }
16 return result;
17 }

3. Term and Formula Abstractions

Although it is often infeasible to compute fo2BDD(φ) precisely, even an im-
precise result can sometimes be enough to decide satisfiability of φ as illustrated
in Introduction. In this section, we describe general notions of a term abstract
domain, which captures an imprecise computation of te2BDD, and a formula
abstract domain, which captures an imprecise computation of fo2BDD. A term
abstract domain defines a set of abstract objects A, a function α mapping terms
to these abstract objects, and an evaluation function J KA, which assigns to each
abstract object a and a variable assignment µ the set JaKAµ of bit-vectors repre-
sented by a.

Definition 1 (Term abstract domain). A term abstract domain is a triple
(A,α, J KA), where A is a set of abstract objects, α : T → A is an abstraction
function, and J KA : A× BVVars → 2BV is an abstract evaluation function.

As an example, consider the precise BDD term abstract domain, in which the
corresponding vector of BDDs is assigned to each term. Formally, the precise
BDD term abstract domain is the triple (BDD, te2BDD, J KBDD), where JaKBDDµ is
the singleton set {bv} such that bv is the bit-vector obtained by evaluation
of vector a of BDDs with the assignment µ, i.e., bv = JaKµ. Note that this
abstract domain serves only as an artificial example as it does not bring any
real abstraction. Nevertheless, it enjoys two interesting properties: for each term
t and assignment µ, the corresponding abstract object evaluates to the set of
values that contains the correct value JtKµ and it does not contain any incorrect
value. These properties are called completeness and soundness, respectively.

Definition 2. A term abstract domain (A,α, J KA) is complete if each term
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t ∈ T and each assignment µ satisfy JtKµ ∈ Jα(t)KAµ . It is sound if each t and µ

satisfy Jα(t)KAµ ⊆ {JtKµ}.

Similarly to the term abstract domain, the formula abstract domain defines
a set of abstract objects A, a function α mapping formulas to these abstract
objects, and an evaluation function J KA, which assigns to each abstract object
a and a variable assignment µ the set JaKAµ ⊆ {0, 1} of truth values associated
to a.

Definition 3 (Formula abstract domain). A formula abstract domain is a triple
(A,α, J KA), where A is a set of abstract objects, α : F → A is an abstraction
function, and J KA : A× BVVars → 2{1,0} is an abstract evaluation function.

Definition 4. A formula abstract domain (A,α, J KA) is complete if each for-
mula φ ∈ F and each assignment µ satisfy JφKµ ∈ Jα(φ)KAµ . It is sound if each

φ and µ satisfy Jα(φ)KAµ ⊆ {JφKµ}.

As in the case of terms, the precise computation of the BDD corresponding to
a formula yields a precise BDD formula abstract domain, which is complete and
sound. The precise BDD formula abstract domain is the triple (BDD, fo2BDD, J KBDD),
where JaKBDDµ is the singleton set {b}, where b ∈ {0, 1} is the result of evaluation
of the BDD a in the assignment µ, i.e., b = JaKµ.

In the following, we weaken the precise term and formula BDD abstract
domains by dropping the requirement on the soundness, while still retaining the
requirement of completeness. As the following theorem demonstrates, such an
abstract domain can still be used for deciding satisfiability of the input formula.

Theorem 1. Let φ be a formula and (A,α, J KA) be a complete formula abstract
domain. If there exists an assignment µ such that Jα(φ)KAµ = {1}, the formula

φ is satisfiable. On the other hand, if all assignments µ satisfy Jα(φ)KAµ = {0},
the formula is unsatisfiable.

Proof. Suppose that there is an assignment µ such that Jα(φ)KAµ = {1}. Since
the abstract domain is complete, we know that JφKµ ∈ {1}. Therefore JφKµ = 1
and φ is indeed satisfiable.

For the second claim, suppose that all assignments µ satisfy Jα(φ)KAµ = {0}.
Again, from the completeness we know that JφKµ ∈ {0} for all assignments µ.
Therefore JφKµ = 0 for any assignment µ and φ is indeed unsatisfiable.

One can define various abstract domains in the context of bit-vector logic, for
example, a complete term abstract domain that tracks only bits with a known
fixed value (0 or 1). Another example of a complete term abstract domain is a
domain that computes an interval containing all possible values of a given term.
These abstractions are computationally cheap but very coarse.

Abstract domains used in practice have usually some parameters that enable
their applications to find the balance between precision and performance. For
example, the approximations mentioned in Introduction, which reduce effective
bit-width, can be expressed as an abstract domain with parameters. Namely,
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the parameters specify which bits will be fixed and how they will be fixed.
The following section presents other adjustable abstract domains, namely the
truncating term and formula abstract domains.

4. Truncating Term and Formula Abstract Domains

This section describes a term abstract domain and a formula abstract do-
main that allow truncating results of bit-vector operations, i.e., computing only
several bits from the results of arithmetic bit-vector operations. As formulas
contain terms and terms can contain formulas due to the construct ite(φ, t1, t2),
the definitions of the two abstract domains are interdependent. Therefore we
first define the truncating formula abstract domain without precise specifica-
tion of its abstraction function. Then we introduce the truncating term abstract
domain and discuss its properties. After that, we return back to the trun-
cating formula abstract domain to present its abstraction function and prove
its completeness. Note that although we present the two abstraction functions
separately, if the functions should be defined fully formally, they have to be
mutually recursive.

In this whole section, we suppose that all formulas are in negation normal
form, i.e., logical operations are conjunctions, disjunctions, and negations, where
negations are applied only to atomic subformulas. As usual, we denote the
literal ¬(t1 = t2) as t1 ̸= t2, the literal ¬(t1 ≤u t2) as t2 <u t1, and the literal
¬(t1 ≤s t2) as t2 <s t1.

4.1. Truncating Formula Abstract Domain: Part One

In our truncating approach, some bits of bit-vectors may not be computed
and their precise values may be unknown. Intuitively, the truncating formula
abstract domain interprets the unknown bits simultaneously in two ways: as
a pessimist and as an optimist. If the truth value of some atomic formula
depends on unknown bits, the pessimist assumes that the atomic formula is
false while the optimist assumes that it is true. More precisely, the abstract
objects of the truncating formula abstract domain are BDD pairs (bmust , bmay),
where bmust (the pessimist) determines the assignments that satisfy the formula
for all possible values of unknown bits and bmay (the optimist) determines the
assignments that satisfy the formula for at least one value of the unknown bits.
Hence, bmust represents a subset of all formula models while bmay represents a
superset of all formula models.

Formally, the truncating formula abstract domain is a triple

(BDDpair, fo2BDDpair, J KBDDpair),

where BDDpair = BDD × BDD and the evaluation function assigns to each pair
(bmust , bmay) ∈ BDDpair and an assignment µ the set of Boolean values

J(bmust , bmay)KBDDpairµ = {v ∈ {0, 1} | JbmustKµ =⇒ v =⇒ JbmayKµ}.

12
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Figure 4: Truncated result of addition x2x1x0 + y2y1y0 of two bit-vectors of bit-width 3.

Observe that J(bmust , bmay)KBDDpairµ is {0} when JbmustKµ = JbmayKµ = 0, it is {1}
when JbmustKµ = JbmayKµ = 1, and it is {0, 1} when JbmustKµ = 0, JbmayKµ = 1.
The result would be ∅ in the remaining case JbmustKµ = 1, JbmayKµ = 0, but this
situation never happens for the BDD pairs produced by the abstraction function
fo2BDDpair.

4.2. Truncating Term Abstract Domain

In the truncating term abstract domain, terms are represented by vectors
whose elements are BDDs, as in the precise term abstract domain, or do-not-
know values. The do-not-know value, denoted as ?, represents an unknown value
of the corresponding bit – it can be any of 0 and 1.

For example, Figure 4 shows the result of computing only the least-significant
bit of an addition of two bit-vectors x2x1x0+y2y1y0 (compare to Figure 2). The
value of this abstract object under the assignment {x 7→ 001, y 7→ 100} is the set
{001, 011, 101, 111}, since only the value of the least-significant bit is computed
precisely.

Formally, the truncating term abstract domain is a triple

(BDD?, te2BDD?, J KBDD?),

where the set BDD? of abstract objects consists of vectors of BDDs and ? elements:

BDD? = {(bi)0≤i<k | k > 0, bi ∈ BDD ∪ {?} for all 0 ≤ i < k}.

Further, the abstract evaluation function J KBDD? assigns to each b = (bi)0≤i<k ∈
BDD? and an assignment µ the set of bit-vector values

JbKBDD?µ = {(vi)0≤i<k | if bi = ? then vi ∈ {0, 1} else vi = JbiKµ, 0 ≤ i < k}.

There are multiple possible versions of the abstraction function te2BDD?
including the following two:

1. the number of precisely computed bits is fixed and the remaining bits are
set to ?,

2. the limit on the number of BDD nodes in the result of the operation is
specified and after reaching it, the remaining bits are not computed and
are set to ?.

13



We focus purely on the second option as our preliminary evaluation has shown
that it outperforms the first one. Furthermore, it is easy to derive the imple-
mentation of the first option based on the description of the second option.

We suppose that the limit on BDD nodes is fixed for the given domain. Note
that our procedure deciding satisfiability uses multiple abstract domains varying
by the BDD node limit (see Section 5 for details).

The function te2BDD? is in fact very similar to the function te2BDD described
in Subsection 2.3, which translates a term to a vector of BDDs precisely repre-
senting the bit-vector function given by the term. For variables and constants,
both functions produce the same vectors of BDDs (illustrated with Figure 3).
For more complex terms, the abstraction function te2BDD? is also computed
recursively, but it differs from the precise function te2BDD in two important
aspects.

1. The computation has to work correctly with ? elements. To achieve this,
we modify the BDD operations &, |, ↔, xor, and ( ? : ), which are the
building blocks of the te2BDD computation. The handling of ? in the
modified operations is similar to the definition of logical connectives in
the three-valued logic and to the way bit-masks are computed in the SMT

solver mcBV [23]. The modified BDD operations &t, |t, ↔t, xort, and
( ? : )t are computed as follows:

a &t b =


0 if a = 0 or b = 0

a & b if a, b /∈ { 0 , ?}
? otherwise

a |t b =


1 if a = 1 or b = 1

a | b if a, b /∈ { 1 , ?}
? otherwise

a↔t b =

{
a↔ b if a, b ̸= ?

? otherwise

a xort b =

{
a xor b if a, b ̸= ?

? otherwise

(a ? b : c)t =


b if a = 1 or b = c

c if a = 0

(a ? b : c) if a ̸∈ { 0 , 1 , ?} and b, c ̸= ? and b ̸= c

? otherwise

Note that ? ↔t ? and ? xort ? are left unknown as each ? can represent a
different value.
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2. For terms with bit-vector arithmetic functions, the computation has to
consider the given limit on the number of BDD nodes and set the bits that
have not been computed precisely to ? after the limit has been reached.
Listing 3 provides algorithms that compute these truncating versions of
addition and multiplication (compare to the original functions given in
Listing 1). Both algorithms use the function bddNodes, which returns the
total number of BDD nodes in a given vector of BDDs and ? elements. In
truncating addition, individual bits of the result are computed precisely
until the node limit is reached and the remaining bits are set to ?. The
algorithm for multiplication is modified in a similar way: once the limit is
reached, all bits of the result that could be modified in the rest of the pre-
cise algorithm are set to ?. The algorithm uses function bvec shl trunc,
which is a straightforward extension of bvec shl to vectors BDD?. The
algorithms for other truncating bit-vector functions are similar. How-
ever, they may differ in the order in which the precise bits are produced:
during the computation of addition and multiplication, the first precisely
computed bits are the least significant ones; during the computation of
division, the first precisely computed bits are the most-significant ones.
Therefore if truncating addition or multiplication reaches the BDD node
limit, the remaining most-significant bits are set to ?, while truncating
division sets to ? the remaining least-significant bits.

Listing 3 also shows the function bvec ite trunc that computes the value
of te2BDD? for terms ite(φ, t1, t2). The function does not contain any test
against the BDD node limit as the ite( , , ) construct is not an arithmetic op-
eration and the size of its output is comparable to the size of its inputs. The
first two arguments of bvec ite trunc(amust, amay, b, c) form the BDD pair
(amust , amay) corresponding to the formula φ in the truncating formula abstract
domain and the other two arguments b, c ∈ BDD? correspond to t1, t2, respec-
tively. The BDD pair (amust , amay) is computed by the function fo2BDDpair(φ)
defined later. Here we assume that the values represented by the BDD pair al-
ways contain the correct value of φ, i.e., JφKµ ∈ J(amust , amay)KBDDpairµ for each
assigment µ. Observe that the BDD amust xor amay represents the assignments
µ for which the values of amust and amay differ and thus the BDD pair does
not determine the value of JφKµ. The algorithm bvec ite trunc computes the
bits of the result one by one. If (amust xor amay) &t (bi xort ci) is the BDD

0 , there is no assignment for which the value of φ is not determined by the
BDD pair and i-th bit produced by the then branch differs from the i-th bit
produced by the else branch. In other words, for each assignment µ, it either
holds that JamustKµ = JamayKµ = JφKµ or JbiKµ = JciKµ and thus the value of
the i-th bit can be computed as (amust ? bi : ci)t. On the other hand, if there is
an assignment for which the BDD pair does not determine the value of φ and
the results of the branches differ, we cannot produce a precise result and the
algorithm thus sets the i-th bit to ?.

The definition of te2BDD? directly guarantees that this function produces
vectors where each element is either ? or the BDD precisely representing the
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Listing 3: Functions bvec add trunc and bvec mul trunc implement truncating versions of addi-
tion (+) and multiplication (·) on vectors a = (ai)0≤i<k and b = (bi)0≤i<k in BDD?. Function
bvec ite trunc implements the ite( , , ) construct on the BDD pair amust , amay representing
the value of its first argument in the truncating formula abstract domain and on two vectors
b = (bi)0≤i<k and c = (ci)0≤i<k in BDD?.

1 bvec_add_trunc(a, b, nodeLimit)
2 {

3 result ← ( 0 , 0 , . . . , 0 ) with the bit -width k;

4 carry ← 0 ;
5 for i from 0 to k − 1 {

6 if (bddNodes(result) > nodeLimit) {
7 resulti ← ?;
8 } else {
9 resulti ← ai xort bi xort carry;

10 carry ← (ai &t bi) |t (carry &t (ai |t bi));
11 }
12 }

13 return result;
14 }
15

16 bvec_mul_trunc(a, b, nodeLimit)
17 {

18 result ← ( 0 , 0 , . . . , 0 ) with the bit -width k;
19 for i from 0 to k − 1 {

20 added ← bvec add trunc(result , a);
21 for j from i to k − 1 {
22 resultj ← (bi ? addedj : resultj)t;

23 if (bddNodes(result) > nodeLimit) {
24 for m from i+ 1 to k − 1 {
25 resultm ← ?;
26 }

27 return result;
28 }
29 }
30 a ← bvec shl trunc(a, 1);
31 }

32 return result;
33 }
34

35 bvec_ite_trunc(amust , amay , b, c)
36 {
37 for i from 0 to k − 1 {

38 if (((amust xor amay ) &t (bi xort ci)) = 0 ) {
39 resulti ← (amust ? bi : ci)t;
40 } else {
41 resulti ← ?;
42 }
43 }

44 return result;
45 }
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corresponding bit of a given term. This is formally stated by the following
theorem.

Theorem 2. Let t ∈ T be a term such that for each subterm ite(φ, t1, t2) of
t and for each assigment µ it holds JφKµ ∈ Jfo2BDDpair(φ)KBDDpairµ . Then each

element of te2BDD?(t) is either ? or it is equal to the corresponding element of
te2BDD(t).

The theorem is employed in the next subsection, where we prove complete-
ness of the truncating term abstract domain and the truncating formula abstract
domain. Note that the truncating term abstract domain is not sound, as an ab-
stract object can describe also incorrect results.

4.3. Truncating Formula Abstract Domain: Part Two

The truncating formula abstract domain (BDDpair, fo2BDDpair, J KBDDpair) is
defined in Subsection 4.1 except for its abstraction function fo2BDDpair : F →
BDDpair. The function maps formulas to BDD pairs (bmust , bmay). We define
fo2BDDpair(φ) inductively as follows.

1. Assume that φ is an atomic formula or its negation, i.e., φ ≡ t1 1 t2 for
1 ∈ {=, ̸=,≤u, <u,≤s, <s}. The function fo2BDDpair computes the pair
(bmust , bmay) from te2BDD?(t1) and te2BDD?(t2) using modified algorithms
for the corresponding predicates on vectors of standard BDDs. For exam-
ple, Listing 4 shows an algorithm for equality of vectors in BDD? (compare
to the original function for equality of vectors of standard BDDs presented
in Listing 2). In this algorithm, the value bmust becomes 0 if there is ? in
any of the input vectors, because then the arguments may differ for some
value of the ?. On the other hand, the value bmay is the conjunction of
equality of all pairs of corresponding bits that both have a known value.
In particular, construction of bmay ignores the pairs of bits containing
some ? as it could be the case that equality holds for these bits. Listing 4
also shows the algorithms computing disequality and unsigned inequality
of vectors in BDD?. The algorithms for other predicates are similar.

2. Now assume that φ has the form φ1∧φ2 or φ1∨φ2. Let (b
1
must , b

1
may) be the

result of fo2BDDpair(φ1) and (b2must , b
2
may) be the result of fo2BDDpair(φ2).

Then we define

fo2BDDpair(φ1 ∧ φ2) = ((b1must & b2must), (b
1
may & b2may)),

fo2BDDpair(φ1 ∨ φ2) = ((b1must | b2must), (b
1
may | b2may)).

3. Finally, assume that φ has the form ∀x (φ1) or ∃x (φ1). Let (b
1
must , b

1
may)

be the result of fo2BDDpair(φ1). Then we define

fo2BDDpair(∀x (φ1)) = (bdd∀(x, b
1
must), bdd∀(x, b

1
may)),

fo2BDDpair(∃x (φ1)) = (bdd∃(x, b
1
must), bdd∃(x, b

1
may)).
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Listing 4: Functions bvec eq trunc, bvec neq trunc, and bvec leq trunc implementing equality,
disequality, and unsigned inequality on vectors a = (ai)0≤i<k and b = (bi)0≤i<k in BDD?.

1 bvec_eq_trunc(a, b)
2 {

3 resultmust ← 1 ;

4 resultmay ← 1 ;
5 for i from 0 to k − 1 {
6 if (ai == ? or bi == ?) {

7 resultmust ← 0 ;
8 } else {
9 resultmust ← resultmust & (ai ↔ bi);

10 resultmay ← resultmay & (ai ↔ bi);
11 }
12 }
13 return (resultmust , resultmay );
14 }
15

16 bvec_neq_trunc(a, b)
17 {

18 resultmust ← 0 ;

19 resultmay ← 0 ;
20 for i from 0 to k − 1 {
21 if (ai == ? or bi == ?) {

22 resultmay ← 1 ;
23 } else {
24 resultmust ← resultmust | (ai xor bi);
25 resultmay ← resultmay | (ai xor bi);
26 }
27 }
28 return (resultmust , resultmay );
29 }
30

31 bvec_leq_trunc(a, b)
32 {

33 resultmust ← 1 ;

34 resultmay ← 1 ;
35 for i from 0 to k − 1 {
36 if (ai ̸= ? and bi ̸= ?) {
37 resultmust ← (!ai & bi) | (resultmust & (ai ↔ bi));
38 resultmay ← (!ai & bi) | (resultmay & (ai ↔ bi));

39 } else if (ai = 1 or bi = 0 ) {

40 resultmust ← 0 ;
41 resultmay ← resultmay ;
42 } else {

43 resultmust ← 0 ;

44 resultmay ← 1 ;
45 }
46 }
47 return (resultmust , resultmay );
48 }
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Example 1. Let t, r, s, u be bit-vector terms of an identical bit-width, for which
we have computed only the least-significant bit. Formally,

te2BDD?(t) = (?, . . . , ?, bt), te2BDD?(r) = (?, . . . , ?, br),

te2BDD?(s) = (?, . . . , ?, bs), te2BDD?(u) = (?, . . . , ?, bu),

where bt, br, bs, bu are BDDs.
Consider the formula t = r. The function fo2BDDpair applied on this for-

mula returns the pair ( 0 , bmay), where bmay is bt ↔ br. The pair says that an
assignment may satisfy the formula t = r only if it satisfies bt ↔ br. Therefore,
if t = r is put in conjunction with another formula implying that bt ↔ br is
equal to 0 , the whole conjunction can be decided as unsatisfiable.

Consider the formula s ̸= u. The function fo2BDDpair now produces the pair
(bs xor bu, 1 ). Intuitively, if an assignment satisfies bs xor bu, it also satisfies
the formula s ̸= u, regardless the values of the remaining bits of s and u.

Further, consider the formula t = r ∧ s ̸= u. The result of fo2BDDpair
applied to this formula is computed as ( 0 & (bs xor bu), (bt ↔ br) & 1 ), which
can be simplified to ( 0 , bt ↔ br). This BDD pair contains neither bs nor bu.

Finally, consider the formula t = r ∨ s ̸= u. The result of fo2BDDpair(t =
r ∨ s ̸= u) is computed as ( 0 | (bs xor bu), (bt ↔ br) | 1 ), which is clearly
equivalent to (bs xor bu, 1 ). This BDD pair contains neither bt nor br.

Now we prove the completeness of both truncating abstract domains.

Theorem 3. The truncating term abstract domain and the truncating formula
abstract domain are complete.

Proof. To prove the completeness of the abstract domains, we need to show that
for every term t ∈ T , every formula φ ∈ F , and every assignment µ it holds

JtKµ ∈ Jte2BDD?(t)KBDD?µ and JφKµ ∈ Jfo2BDDpair(φ)KBDDpairµ .

In the proof, we use that fact that the latter condition is equivalent to the
following claim where fo2BDDpair(φ) = (bmust , bmay).

JbmustKµ =⇒ JφKµ =⇒ JbmayKµ

As formulas contain terms and terms can contain formulas thanks to the
ite( , , ) construct, we prove completeness of both abstract domains together
by a structural induction.

The base case are the terms and formulas without any ite( , , ) subterms.
For each term t without any ite( , , ) subterms, Theorem 2 says that each
element of te2BDD?(t) is either ? or it is equal to the corresponding element

of te2BDD(t). Together with the definition of J KBDD?, we immediately get that

for each assignment µ it holds Jte2BDD(t)Kµ ∈ Jte2BDD?(t)KBDD?µ . As JtKµ =

Jte2BDD(t)Kµ, we have JtKµ ∈ Jte2BDD?(t)KBDD?µ .
For formulas φ without any ite( , , ) subterms, we prove the base case by

a nested structural induction. The first item below proves the base case of the
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nested induction (i.e., the claim holds for atomic formulas) and the subsequent
items employ induction hypothesis (i.e., the assumption that the claim holds
for proper subformulas of the current formula).

1. Assume that φ is an atomic subformula or its negation, i.e., φ ≡ t1 1 t2
for 1 ∈ {=, ̸=,≤u, <u,≤s, <s}. Terms t1, t2 were translated by te2BDD?
to vectors in BDD?, where each element of these vectors is either ? or a
BDD representing precisely the corresponding bit (see Theorem 2).

We first consider the case for φ ≡ t1 = t2. The value of fo2BDDpair(φ) is
computed by function bvec eq trunc of Listing 4. We compare this func-
tion with function bvec eq of Listing 2 which computes the precise result
fo2BDD(φ). In other words, the BDD result produced by bvec eq satisfies
JresultKµ = JφKµ. If both of the arguments of function bvec eq trunc con-
tain no ? element, then its output clearly satisfies resultmust = resultmay =
result and we are done. If any argument of function bvec eq trunc con-
tains some ?, then resultmust = 0 and thus JresultmustKµ =⇒ JφKµ.
Further, resultmay is computed in the same way as result , only some “con-
juncts” of the form ai ↔ bi are skipped. Therefore, JφKµ = JresultKµ =⇒
JresultmayKµ. The situation is dual for φ ≡ t1 ̸= t2 and bvec neq trunc.

For φ ≡ t1 ≤u t2, we compare the functions bvec leq of Listing 2 and
bvec leq trunc of Listing 4. Consider variables resultmust and resultmay

from bvec leq trunc. We show that

JresultmustKµ =⇒ JresultKµ =⇒ JresultmayKµ (*)

for each assignment µ is an invariant of the for loop, where result refers
to the value of the variable from the corresponding iteration of bvec leq.
The claim clearly holds before the first iteration of the loop, as all three
of the BDDs are 1 . We now show that the invariant is preserved by each
loop iteration. Assume that (*) holds for each assignment µ before an
iteration. Let us denote as result ′ = (!ai & bi) | (result & (ai ↔ bi)) the
value of result after an iteration of bvec leq. We consider all three cases
from the pseudocode of bvec leq trunc. If ai ̸= ? and bi ̸= ?, the BDDs
(!ai & bi) and (ai ↔ bi) in bvec leq trunc are the same as in bvec leq.
Therefore, both

J(!ai & bi) | (resultmust & (ai ↔ bi))Kµ =⇒ Jresult ′Kµ and

Jresult ′Kµ =⇒ J(!ai & bi) | (resultmay & (ai ↔ bi))Kµ

must hold for each assignment µ due to monotonicity of & and |. For the
second case, if ai = 1 or bi = 0 , then (!ai & bi) computed by bvec leq
is 0 . Therefore result ′ is equal to result & (ai ↔ bi). Together with the
assumption (*) this gives Jresult ′Kµ =⇒ JresultKµ =⇒ JresultmayKµ for
each assignment µ. As a result, J 0 Kµ =⇒ Jresult ′Kµ =⇒ JresultmayKµ
holds for each assignment µ. In the final case, J 0 Kµ =⇒ Jresult ′Kµ =⇒
J 1 Kµ clearly holds.
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The argumentation for the cases t1 <u t2, t1 ≤s t2, and t1 <s t2 is
analogous.

2. Now assume that φ has the form φ1 ∧ φ2. The definition of fo2BDDpair
says that

fo2BDDpair(φ1 ∧ φ2) = ((b1must & b2must), (b
1
may & b2may)),

where (b1must , b
1
may) is the result of fo2BDDpair(φ1) and (b2must , b

2
may) is

the result of fo2BDDpair(φ2). Let µ be an arbitrary assignment. We know
from the induction hypothesis that Jb1mustKµ =⇒ Jφ1Kµ and Jb2mustKµ =⇒
Jφ2Kµ. As the BDD operation & corresponds to conjunction, we have
Jb1must & b2mustKµ = Jb1mustKµ ∧ Jb2mustKµ and thus Jb1must & b2mustKµ =⇒
Jφ1Kµ and Jb1must & b2mustKµ =⇒ Jφ2Kµ. This immediately implies

Jb1must & b2mustKµ =⇒ Jφ1Kµ ∧ Jφ2Kµ = Jφ1 ∧ φ2Kµ.

The induction hypothesis also gives us Jφ1Kµ =⇒ Jb1mayKµ and Jφ2Kµ =⇒
Jb2mayKµ. As Jφ1∧φ2Kµ = Jφ1Kµ∧ Jφ2Kµ, we have Jφ1∧φ2Kµ =⇒ Jb1mayKµ
and Jφ1 ∧ φ2Kµ =⇒ Jb2mayKµ. As & implements conjunction, we can
conclude that

Jφ1 ∧ φ2Kµ =⇒ Jb1mayKµ ∧ Jb2mayKµ = Jb1may & b2mayKµ.

The case when the formula φ has the form φ1 ∨ φ2 is analogous.

3. Assume that φ has the form ∀x (φ1). The definition of fo2BDDpair says
that

fo2BDDpair(∀x (φ1)) = (bdd∀(x, b
1
must), bdd∀(x, b

1
may)),

where (b1must , b
1
may) is the result of fo2BDDpair(φ1). Let µ be an arbitrary

assignment. We want to show that Jbdd∀(x, b
1
must)Kµ =⇒ J∀x (φ1)Kµ and

J∀x (φ1)Kµ =⇒ Jbdd∀(x, b
1
may)Kµ.

For the first implication, assume that Jbdd∀(x, b
1
must)Kµ = 1 and v is

an arbitrary bit-vector of the same bit-width as x. We want to show
that Jφ1Kµ[x 7→v] = 1. The assumption and the definition of operation
bdd∀ imply that Jb1mustKµ[x7→v] = 1. The induction hypothesis says that
Jb1mustKµ[x7→v] =⇒ Jφ1Kµ[x7→v] and thus Jφ1Kµ[x 7→v] = 1.

For the second implication, assume that J∀x (φ1)Kµ = 1. We want to
prove that Jbdd∀(x, b

1
may)Kµ = 1. In other words, we need to show that

Jb1mayKµ[x 7→v] = 1 for an arbitrary bit-vector v of the same bit-width as x.
The assumption implies that Jφ1Kµ[x 7→v] = 1 and the induction hypothesis
says that Jφ1Kµ[x 7→v] =⇒ Jb1mayKµ[x 7→v]. As a direct consequence, we get
Jb1mayKµ[x 7→v] = 1.

The case when the formula φ has the form ∃x (φ1) is again analogous.
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It remains to prove the induction step of the outer induction. Let t be
an arbitrary term and φ be an arbitrary formula. Due to the induction hy-
pothesis, we can assume that for each their subterm ite(φ′, t1, t2) and for each
assigment µ it holds Jφ′Kµ ∈ Jfo2BDDpair(φ′)KBDDpairµ . This matches the as-

sumption of Theorem 2 and thus we can prove JtKµ ∈ Jte2BDD?(t)KBDD?µ and

JφKµ ∈ Jfo2BDDpair(φ)KBDDpairµ the same arguments as in the base case.

Since the truncating formula abstract domain is complete, we can use Theo-
rem 1 to check satisfiability of a given formula φ. Assume that fo2BDDpair(φ) =
(bmust , bmay). If bmust is not 0 , then there exists an assignment µ such that
JbmustKµ = 1 and thus the formula φ is satisfiable. Furthermore, if bmay is 0 ,
then JbmayKµ = 0 for each assignment µ and thus φ is unsatisfiable.

This satisfiability check solves the formulas mentioned in Introduction as
the motivation for the described approach. For all three of the formulas, the
BDD bmay is 0 after computing at most 5 bits of the multiplication. Thus the
formulas can be decided as unsatisfiable.

5. Implementation and Deployment

We have implemented the described truncating formula abstract domain into
the SMT solver Q3B [13], which is written in C++. The solver Q3B uses the
package cudd [20] for BDD representation and operations, and the implemen-
tation of bit-vectors and bit-vector operations for cudd by P. Navrátil [17]. We
have modified this implementation to support ? elements in input of all opera-
tions over vectors of BDDs. Further, we have modified all algorithms for relation
operators, logical operators, and quantifier processing to work with BDD pairs
(bmust , bmay) rather than with individual BDDs. The operations that introduce
? elements, when the precise result would contain too many BDD nodes, are
addition, multiplication, and division. We have selected these operations as the
original version of Q3B without operation abstractions often has difficulties to
handle them. The other bit-vector operations do not introduce new ? elements,
but they can produce them on inputs containing some ? elements. The imple-
mentation supports all the bit-vector operations defined by smt-lib standard,
is open-source and available on GitHub3.

The implementation also contains several improvements, which use the re-
turned BDD bmay even in the cases where the abstraction cannot be used to
decide the satisfiability of the input formula. First of these is checking the
potential models described by bmay as explained in Subsection 5.1. Further,
Subsection 5.2 shows that bmay can be also used to identify some bits whose
values are implied by the input formula.

Furthermore, Subsection 5.3 introduces formula modifications that add new
variables for results of multiplications and divisions and their respective con-
gruences to further amplify the positive effect of the truncating abstractions.

3https://github.com/martinjonas/Q3B
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Finally, Subsection 5.4 shows how to combine the proposed operation abstrac-
tions with the approximations of bit-widths of variables [10], which were already
implemented in Q3B.

5.1. Checking Possible Models

The satisfiability check based on truncating abstraction, which is explained
at the end of Section 4, returns a definite answer only if bmust is not 0 or if
bmay is 0 . In the former case the formula is decided as satisfiable; in the latter
case it is decided as unsatisfiable. Even if neither of the two conditions holds,
bmay can sometimes be used to decide the satisfiability of the formula: one can
extract a model from bmay and check whether it satisfies φ. If it does, the input
formula is satisfiable; if it does not, the result is unknown.

This checking of potential models is supported in our implementation, but it
is more involved. The problem is that the potential model contains values only
for free variables and top-level existential variables, and substituting the model
values for those variables in φ results in a (closed) formula φsubst that can still
contain nested universal and existential quantifiers. Such a formula cannot be
directly evaluated to yield 1 or 0 and has to be decided as another query to
a solver for quantified formulas. However, satisfiability check of φsubst can be
potentially expensive and we want to ensure that the model checking finishes
quickly. Therefore, in our implementation, we compute only b′must for φsubst

using a very low limit on the number of BDD nodes. Note that this computation
will usually finish in a short time. If the resulting b′must is not 0 , then φsubst is
satisfiable, and thus also the input formula is satisfiable. In the opposite case,
b′must is 0 and the potential model is discarded, because it is either not a model
of the input formula or could not be validated quickly.

Example 2. Consider the following formula φ in which the variable x is free
and all the variables have bit-width 32:

x >u 1 ∧ ∀y∃z(y = x · z).

The subformula y = x · z implies that the least-significant bits of the variables
must satisfy y0 ↔ (x0∧z0). If we translate φ to (bmust , bmay) such that only the
least-significant bit of x · z is computed precisely, then bmust = 0 and bmay cor-
responds to the formula (x >u 1)∧ (∀y0∃z0(y0 ↔ (x0∧z0))), which is equivalent
to the formula (x >u 1) ∧ x0. In other words, bmay says that every x satisfying
the formula must represent an odd number greater than one.

We cannot decide satisfiability of φ from this pair of BDDs. However, we can
take a model of bmay , say x = 3, and substitute it to φ. We obtain the formula
φsubst ≡ ∀y∃z(y = 3 · z). The BDD b′must = 1 corresponding to the formula
φsubst can be computed even for a small node limit. This implies that φsubst is
satisfiable, and thus φ is also satisfiable and x = 3 is its model.

A dual approach can be used for closed formulas that contain universally
quantified variables on the top-level of the formula. If a BDD bmust for such
formula is 0 , one can identify a potential countermodel, i.e., an assignment of
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values to the top-level universal variables that makes the formula unsatisfiable.
Such a potential countermodel can then be checked against the original formula.

Since no countermodel can be computed directly from the result bmust = 0 ,
in the implementation we have an option to negate an input formula if it is
closed and has a universal top-level quantifier. This reduces the problem to the
one described in the beginning of this subsection: if the negation of the closed
input formula is satisfiable, the original is unsatisfiable and vice versa. Note
that although this option is supported by our solver, it is not enabled by default
and it is not used in the experiments.

5.2. Learning From Overapproximations

The implementation uses bmay not only for generating potential models, but
also for identifying values of some bits that are necessary to satisfy the formula.
Since bmay represents a superset of all the satisfying assignments, if the value
of some bit b is 1 in all the represented assignments, this bit must be 1 if the
input formula should be satisfied. This also works analogously if the value of
a bit is 0 in all the represented assignments. After identifying all such bits,
we replace them by their implied values, which preserves satisfiability of the
formula, and we try solving the resulting formula with an increased node limit.
In the implementation, these bits and their implied values are identified using
the cudd function FindEssential().

For example, consider the formula x ≤u 30 ∧ x · y = 0 where x, y are 32-bit
variables. The precise BDD for the subformula x · y = 0 is exponentially large.
But because the BDD for the subformula x ≤u 30 can be computed precisely,
the aforementioned procedure can identify that the most-significant 27 bits of
x must be zero from the result of bmay . Therefore, the formula can be modified
to (00 . . . 0x4x3x2x1x0 ≤u 30) ∧ (00 . . . 0x4x3x2x1x0 · y = 0). For this formula,
the computation of the precise BDD is feasible.

Now consider the formula x ≤s 4 ∧ x ≥s −4 ∧ x · y = 0. Although
the most-significant 29 bits of x must be either all 0 (if x is non-negative) or
all 1 (if x is negative), the aforementioned procedure cannot identify this, as
these bits have more possible values. Therefore, we have also implemented a
procedure that identifies which successive bits of a variable must be equal for
the formula to be true. In the example, we can thus identify that the most-
significant 29 bits of x must be all the same and therefore we can represent
all these bits by a single Boolean variable in the following iterations and start
the solving again. The pseudocode for the procedure get implied eqns that
identifies equalities implied by bmay is presented in Listing 5. The idea of this
procedure is straightforward: if a conjunction of bmay with a xor b is 0 , there
is no satisfying assignment of the formula with different values of a and b. And
thus the values of a and b must have the same value if the formula should be
satisfied.

5.3. Adding New Variables and Congruences

The abstractions by themselves cannot directly solve simple formulas as
x · y ≤u 2 ∧ x · y ≥u 4. Even if the subterms x · y are computed abstractly, the
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Listing 5: Function get implied eqns computes equivalences of the successive bits of variables
that are implied by the input formula. Function vars(φ) returns the set of all bit-vector
variables in φ and bitWidth(v) returns the bit-width of variable v.

1 get_implied_eqns(φ, bmay )
2 {
3 impliedEqualities ← ∅;
4 foreach v in vars(φ) {
5 foreach i from 0 to bitWidth(v) - 2 {

6 if ((bmay & (vi xor vi+1)) == 0 ) {
7 impliedEqualities ← impliedEqualities ∪ {(vi, vi+1)};
8 }
9 }

10 }
11 return impliedEqualities;
12 }

information that the corresponding ? elements in the two vectors representing
the two occurrences of x ·y have been the same is lost after computing BDD pairs
for x · y ≤u 2 and x · y ≥u 4. Therefore, in the implementation, each multiplica-
tion and division is replaced by a fresh existentially quantified variable and the
constraint specifying its relation to the multiplication or division, respectively,
is added to the formula. For example, the previous formula is transformed to
the equivalent formula

∃mx,y (mx,y ≤u 2 ∧ mx,y ≥u 4 ∧ mx,y = x · y).

This formula is decided as unsatisfiable even if x ·y is computed with arbitrarily
low precision. Let us note that this particular case could be solved by the
original Q3B without operation abstractions by computing precise BDD only for
the subformula mx,y ≤u 2 ∧ mx,y ≥u 4 (and not for the third conjunct) as this
conjunction is already unsatisfiable.

A similar problem arises for example in the unsatisfiable formula x · y ≤u

2 ∧ ∀z (z · y ≥u 4). This formula cannot be solved even after performing the
above-mentioned transformation. The transformation yields the formula

∃mx,y (mx,y ≤u 2 ∧ mx,y = x · y ∧ ∀z ∃mz,y (mz,y ≥u 4 ∧ mz,y = z · y)),

which cannot be decided unsatisfiable even by using the abstractions, because
without computing the multiplication precisely, the solver cannot infer the re-
lationship between variables mx,y and mz,y. To solve such formula, our imple-
mentation adds a congruence subformula stating that (x = z) → (mx,y = mz,y)
to the formula. This results in the formula

∃mx,y

(
mx,y ≤u 2 ∧ mx,y = x · y ∧

∧ ∀z ∃mz,y

(
mz,y ≥u 4 ∧ mz,y = z · y ∧ ((x = z) → (mx,y = mz,y))

))
,

which can be decided unsatisfiable using the abstractions. Similarly to the pre-
vious transformation, the resulting formula is equivalent to the original one and
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its unsatisfiability cannot be shown by the original solver without the abstrac-
tions, because it is infeasible to compute the precise BDD for the inner quantified
subformula.

We now precisely describe the implemented formula modifications. For sim-
plicity, suppose that the input formula is closed. The modifications proceed in
two steps:

1. In the first step, we introduce constantsmx,y for each subterm x·y, where x
and y are bit-vector variables. Namely, we recursively traverse the formula
and identify all subformulas of the formQ1x (ψ), where ψ has a subformula
of the form Q2y (ρ) and ρ contains a subterm x · y for Q1, Q2 ∈ {∃,∀} and
bit-vector variables x, y. We replace all such subformulas ρ by

ρ′ ≡ ∃mx,y (ρ[x · y 7→ mx,y] ∧ mx,y = x · y),

where mx,y is a fresh variable.

Note that a general approach would be to introduce new variables for
multiplications of arbitrary terms; not just variables. However, our pre-
liminary experiments have shown that adding new variables only for mul-
tiplications of variables is often sufficient for real-world formulas.

2. In the resulting formula, we add the subformulas expressing the congru-
ences for the variables mx,y. We iterate through all the modified subfor-
mulas ρ′ ≡ ∃mx,y (ρ[x·y 7→ mx,y] ∧ mx,y = x·y) such that the occurrence
of the subformula ρ′ is in scope of some newly introduced variable mz,v

such that x, y, z, v have the same bit-width. Based on the syntactic equal-
ity of the variables x, y, z, and v, we then perform one of the following
modifications:

• If x ̸= z and y = v, the body of the quantified subformula ρ′ is
conjoined with the formula (x = z) → (mx,y = mz,y).

• If x = z and y ̸= v, the body of the quantified subformula ρ′ is
conjoined with the formula (y = v) → (mx,y = mx,v).

• If x ̸= z and y ̸= v, the body of the quantified subformula ρ′ is
conjoined with the formula (x = z ∧ y = v) → (mx,y = mz,v).

The analogous procedure is also implemented for terms x ÷ y with division.
Similar transformation is not implemented for addition as it was not helpful
according to our preliminary experiments. Note that these formula modifica-
tions increase both the number of the variables in the formula and its size, so
the resulting BDD can in the worst case be exponentially larger than the BDD

for the original formula. However, we did not observe this kind of behavior in
practice and the overhead was outweighed by the benefits.

5.4. Combining Operation Abstractions and Formula Approximations

As mentioned in Introduction, the solver Q3B employs formula approxima-
tions, which can in some cases help with solving harder input formulas including
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formulas with multiplication. These formula approximations are based on fix-
ing bits of the formula variables and are orthogonal to the newly introduced
operation abstractions. On the one hand, there are formulas, such as the three
formulas from Introduction, where fixing bits of the variables cannot help with
deciding satisfiability of the formula and operation abstractions have to be em-
ployed. On the other hand, consider the formula x · y = z from Introduction.
As has been explained, this formula can be decided as satisfiable by consider-
ing the underapproximation in which most of the bits of all three variables are
assigned to constant 0. The introduced operation abstractions alone, however,
cannot decide satisfiability of this formula. This happens because unless all
bits of x · y are computed precisely, the resulting BDD pair satisfies bmust = 0
and bmay ̸= 0 . Generally speaking, formula approximations tend to be useful
when satisfiability of the formula depends on a small subsets of domains of the
variables. On the other hand, operation abstractions tend to be useful when
satisfiability of the formula depends on a small number of bits from the results
of the hard operations.

Since both of these cases happen in practice, and often both happen in a
single formula, this subsection elaborates on the interaction of the previously-
implemented approximations with the newly implemented operation abstrac-
tions.

Recall that approximations of formulas are of two kinds: underapproxima-
tion and overapproximation. An underapproximation is basically a formula that
logically entails the input formula; therefore if an underapproximation is satisfi-
able, the original formula is also satisfiable. Analogously, an overapproximation
is a formula that is logically entailed by the input formula; if an overapproxi-
mation is unsatisfiable, the original formula is also unsatisfiable. In Q3B, the
formula approximations are performed on formulas in negation normal form by
reducing the effective bit-width of selected bit-vector variables by fixing some
of their bits to chosen values. The underapproximations are obtained by de-
creasing effective bit-widths of all free and existentially quantified variables to
a given value and the overapproximations are obtained by decreasing effective
bit-widths of universally quantified variables to a given value.

The combination of formula approximations and operation abstractions re-
lies on the following simple theorem.

Theorem 4. Let φ be an arbitrary formula. Let φ be an underapproximation
of φ, i.e., φ |= φ, and (bmust , bmay) be the abstract object corresponding to φ.

Then if bmust ̸= 0 , the formula φ is satisfiable.
Analogously, let φ be an overapproximation of φ, i.e., φ |= φ, and (bmust , bmay)

be the abstract object corresponding to φ. Then if bmay = 0 , the formula φ is
not satisfiable.

Proof. Directly follows from definitions of underapproximations, overapproxi-
mations, and from the proof of Theorem 3.

Q3B first simplifies the input formula using simplification rules designed for
quantified formulas [11] and other general simplification rules. Then it starts
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Figure 5: High-level overview of SMT solving approach used by Q3B. The three shaded areas
are executed in parallel and the first result is returned.

solving the simplified formula, underapproximations of this formula, and over-
approximations of this formula in parallel. The first result of these three threads
is then returned to the user. The overall solving approach of Q3B is depicted
on Figure 5. We have integrated the proposed operation abstractions into the
functions for solving underapproximations and overapproximations. The func-
tion solving the original formula can be adjusted to use operation abstractions
as well, but the tool performs better if we keep this function unchanged.

Listing 6 shows the simplified implementations of solving underapproxi-
mations and overapproximations. The algorithm solve underapproximations
starts with the small initial values of the effective bit-width effBW for free and
existential variables and the limit nodeLimit on the number of BDD nodes in the
results of arithmetic operations. It repeatedly tries to solve the input formula
and if the result is not determined, either the effective bit-width or the node
limit is increased before another try:

• if operation abstractions caused an imprecision, the node limit is increased;

• if the BDD pair returned by fo2BDDpair was precise, but the reduced
effective bit-width could have caused imprecision, the effective bit-width
is increased.

Currently, the initial effective bit-width is 1 and it is increased to 2, 4, 6, 8, . . ..
Both the initial node limit and the limit for model checking is 1000 and the
function increaseNodeLimit() multiplies the node limit by 4 each time. The
implementation solve overapproximations for solving overapproximations is
analogous. Note that the implementation that increases effective bit-with first
and the node limit second is also possible. However, the implementation pro-
posed above produced best results in our preliminary experiments.
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Listing 6: Functions solve underapproximation and solve overapproximation combining oper-
ation abstractions with approximations.

1 solve_underapproximations(φ)
2 {
3 effBW ← initialEffBW;
4 nodeLimit ← initialNodeLimit;
5 while (true) {
6 φu ← underApprox(φ, effBW);
7 (bmust , bmay ) ← fo2BDDpair(φu, nodeLimit );

8 if (bmust != 0 ) return SAT;

9 if (bmay == 0 and φ == φu) return UNSAT;
10 if (bmust != bmay ) {
11 nodeLimit ← increaseNodeLimit(nodeLimit );
12 }
13 if (bmust == bmay and φ != φu) {
14 effBW ← increaseEffBW(effBW);
15 }
16 }
17 }
18

19 solve_overapproximations(φ)
20 {
21 effBW ← initialEffBW;
22 nodeLimit ← initialNodeLimit;
23 while (true) {
24 φo ← overApprox(φ, effBW);
25 (bmust , bmay ) ← fo2BDDpair(φo, nodeLimit );

26 if (bmay == 0 ) return UNSAT;

27 if (bmust != 0 and φ == φo) return SAT;
28

29 candidateModel ← getSatisfyingAssignment(bmay );
30 φsubst ← substitute(φ, candidateModel );
31 (b′must , b′may ) ← fo2BDDpair(φsubst , modelCheckNodeLimit );

32 if (b′must != 0 ) return SAT;
33

34 impliedBitsAndEqns ← getImpliedBitsAndEquations(bmay );
35 φ ← substitute(φ, impliedBitsAndEqns );
36

37 if (bmust != bmay ) {
38 nodeLimit ← increaseNodeLimit(nodeLimit );
39 }
40 if (bmust == bmay and φ != φo) {
41 effBW ← increaseEffBW(effBW);
42 }
43 }
44 }
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In addition, the function solve overapproximations uses the improvements
mentioned in Subsections 5.1 and 5.2 in each iteration before increasing the
effective bit-width or the node limit. These techniques are not implemented
in the solve underpproximations function, because they apply only to over-
approximated results. Before calling the functions solve underapproximations
and solve overapproximations, we also first transform the formula by adding
variables and congruences for the results of multiplications and divisions, as
described in Subsection 5.3. These are not used for the precise solver, because
for a solver without abstractions they help in only a small number of cases and
generally increase the solving time.

6. Experimental Evaluation

This section describes the setup of our experiments and their results.

6.1. Setup

We have evaluated efficiency of the implemented operation abstractions in
version 1.0 of the SMT solver Q3B4 [13]. We have tested 4 different configurations
of Q3B:

Q3B is the configuration that uses only the approximations of variable bit-
widths,

Q3B+OA is the configuration that uses approximations of variable bit-widths
and the described abstractions of bit-vector operations,

Q3B+Cong is the configuration that uses the approximations of variable bit-
widths and introduces variables mx,y and their respective congruence sub-
formulas as described in Subsection 5.3,

Q3B+OA+Cong is the configuration that uses approximations of variable
bit-widths, abstractions of bit-vector operations, and introduces variables
mx,y and their respective congruence subformulas.

Moreover, all four of these configurations check candidate models (Subsec-
tion 5.1) and learn from overapproximations (Subsection 5.2). The two config-
urations Q3B+OA and Q3B+OA+Cong use the algorithm from Subsection 5.4
to combine variable approximations with operation abstractions. The other two
configurations use only variable approximations and only increase the effective
bit-width during the refinement.

We have further compared these four configurations of Q3B against the SMT

solvers Z3 [8], Boolector [19], and CVC4 [1]. We used Z3 in the version 4.8.9,
Boolector in the version 3.2.1, and CVC4 in the version 1.8. All the solvers
were executed in their default configurations. We evaluated all 7 solvers on all

4Commit 12ded255950a8fa8d81c7656a035b4df070c05e3.
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5846 quantified bit-vector formulas from the smt-lib repository [2] used in smt-
comp 2020. The used benchmarks are divided into eight benchmark sets: two
sets of benchmarks from the tool Ultimate Automizer by M. Heizmann (marked
as heizmann-ua-17 and heizmann-ua-19 ), unsatisfiable benchmarks that were
created by M. Preiner et al. to verify bit-vector invertibility conditions [18] used
by the SMT solver CVC4 (marked as preiner-cav18 ), benchmarks that were cre-
ated by converting integer and real arithmetic benchmarks to bit-vectors by
M. Preiner (marked as preiner-keymaera, preiner-psyco, preiner-scholl-smt08,
preiner-tptp, and preiner-ua), benchmarks corresponding to verification condi-
tions for software optimizations (llvm13-smtlib), and benchmarks from software
and hardware verification by C. M. Wintersteiger (marked as wintersteiger).
The total numbers of benchmarks in these benchmark families are shown in the
column Total in Table 1.

Note that the described operation abstractions are not specific to quantified
formulas, but also work for quantifier-free formulas. However, our preliminary
experiments show that although the abstractions slightly improve the perfor-
mance also on quantifier-free formulas, our BDD-based SMT solver is not com-
petitive with state-of-the-art SMT solvers for quantifier-free formulas based on
bit-blasting and efficient SAT solvers. The benefit of using BDDs comes with
quantifiers, which are much easier for BDD-based SMT solvers than for tradi-
tional SMT solvers based on quantifier instantiation. We therefore focus solely
on formulas with quantifiers.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00GHz processors and 128 gb of ram. Each benchmark run was
limited to use 16 gb of ram and 60 minutes of cpu time. All measured times are
cpu times as wall times would give a indisputable advantage to solvers that use
multiple parallel threads, i.e., Boolector and Q3B. For reliable benchmarking
we employed BenchExec [4], a tool that allocates resources for a program
execution and measures their use precisely.

6.2. Results

Table 1 shows the numbers of solved benchmarks by the individual solvers.
In total, Q3B+OA was able to solve 39 more benchmarks than the original
version of Q3B. The configuration Q3B+OA+Cong, which also introduces new
variables and congruences for the results of multiplications and divisions as
described in Subsection 5.3, was able to solve 115 additional benchmarks (all
from preiner-keymaera) compared to Q3B+OA. Moreover, the configuration
Q3B+OA+Cong solved more benchmarks than other SMT solvers: 172 more
than Boolector, 228 more than CVC4, and 177 more than Z3. The column
Q3B+Cong of Table 1 also shows that the formula transformations that add
new variables for results of multiplications and divisions and the respective con-
gruences by themselves help only to solve 3 additional formulas from heizmann-
ua-17 compared to the configuration Q3B. In other words, these transformations
are effective only in combination with the introduced operation abstractions.

From the opposite point of view, Figure 6 shows the number of benchmarks
unsolved by the individual solvers. This graph shows that most of the benefit of
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Table 1: Numbers of benchmarks solved by the individual solvers divided by the satisfiabili-
ty/unsatisfiability and the benchmark family. The column Total also shows the total number
of benchmarks for the given category.
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heizmann-ua-17 110 11 110 17 104 107 107 107
heizmann-ua-19 73 13 55 35 72 72 72 72
llvm13-smtlib 6 1 6 5 1 1 1 1
preiner-cav18 591 557 568 555 566 565 566 565
preiner-keymaera 3924 3917 3921 3923 3786 3792 3786 3907
preiner-psyco 62 62 60 62 56 59 56 59
preiner-scholl-smt08 76 67 45 68 59 70 59 70
preiner-tptp 56 53 56 56 56 56 56 56
preiner-ua 137 137 137 137 137 137 137 137
wintersteiger 95 85 89 91 94 93 94 93
Total UNSAT 5130 4903 5047 4949 4931 4952 4934 5067

S
A
T

heizmann-ua-17 21 17 19 14 18 20 18 20
heizmann-ua-19 15 15 14 15 15 15 15 15
llvm13-smtlib 3 2 3 3 0 0 0 0
preiner-keymaera 108 106 34 108 104 104 104 104
preiner-psyco 132 131 131 132 125 125 125 125
preiner-scholl-smt08 259 249 110 204 233 249 233 249
preiner-tptp 17 17 17 17 17 17 17 17
preiner-ua 16 16 14 16 16 16 16 16
wintersteiger 86 67 78 60 82 82 82 82
Total SAT 657 620 420 569 610 628 610 628

Total 5846 5523 5467 5518 5541 5580 5544 5695
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Figure 6: The number of benchmarks unsolved by the individual solvers. The benchmarks
are divided by the source of the benchmark. For better readability, the numbers of unsolved
benchmarks less than 5 are not explicitly spelled out in the plot.

abstractions is on formulas from the preiner-keymaera and preiner-scholl-smt08
benchmark sets, where expensive operations like multiplication and division are
frequently used.

Naturally, due to the repeated refinement of the abstractions, some bench-
marks may require more solving time than without abstractions. In particular,
there are 4 formulas solved by Q3B and not Q3B+OA. The additional cost
of abstractions is observable also on some benchmarks that were decided both
with and without abstractions: computing abstractions slowed Q3B down by
more than 0.5 second on 127 benchmarks. On the other hand, there were 90
benchmarks on which the version with abstractions was faster by more than 0.5
second.

The addition of congruences also entails some computational cost, since the
modified formulas have more bit-vector variables and are larger overall. Al-
though there were no formulas that were solved by Q3B+OA and not solved by
Q3B+OA+Cong, with respect of times there are 62 formulas that were solved
by Q3B+OA by at least 0.5 second faster than by Q3B+OA+Cong. On the
other hand, the configuration Q3B+OA+Cong was able to solve 96 formulas by
at least 0.5 second faster than Q3B+OA.

The running times of Q3B configurations are compared in three scatter plots.
Figure 7 compares the base Q3B against Q3B+OA+Cong. We also compare
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Figure 7: Scatter plot of cpu times of the configuration Q3B and the best-performing con-
figuration Q3B+OA+Cong. Each point represents one benchmark and its color and shape
indicate the benchmark family.
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Figure 9: Cactus plot of all solved non-trivial benchmarks from the smt-lib repository. Trivial
benchmarks are those that all solvers solved within 2 s. The plot shows the number of non-
trivial benchmarks (x-axis) that each solver was able to decide within a given cpu time limit
(y-axis).

Q3B against the configurations where only operation abstractions are enabled
or only congruences are added. Namely, Figure 8 shows the effect of enabling
only operation abstractions without congruences (left) and the effect of enabling
only congruences without operation abstractions (right).

To compare the solving times of all solvers, Figure 9 shows a cactus plot
of solving times of non-trivial benchmarks for the individual solvers. We have
removed 4398 trivial benchmarks, i.e., the benchmarks that were decided by all
of the solvers in less than 2 s.

We investigated how the operation abstractions affect the numbers of iter-
ations of the abstraction refinement loop required to decide the given formula.
The numbers of iterations of the refinement loop with and without operation
abstractions are compared in Figure 10. The plot shows that enabling opera-
tion abstractions often leads to the increase of the number of iterations. This
is not surprising, as both the abstraction and its refinements are more fine-
grained. However, each iteration of the algorithm with operation abstractions
is potentially cheaper than the iteration without the operation abstractions,
which can compensate the increased number of iterations. This is clear from
the previously-presented results, which show that the solver with operation ab-
stractions can decide more formulas in general.

Finally, we investigate the effect of our techniques on the number of bench-
marks that were solved by any of the solvers. Although the benefit is not so
large as far as the number of solved benchmarks is concerned, the operation ab-
stractions improve the runtime. The virtual-best solver from Boolector, CVC4,
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Figure 10: Scatter plots of the numbers of iterations of the abstraction refinement loops
solve overapproximations and solve underapproximations, with and without the operation
abstractions. The results are divided according to the type of the approximation that decided
the given benchmark: the left subplot contains formulas decided by solve overapproximations
and the right subplot those that were decided by solve underapproximations within the port-
folio solver.

Z3, and Q3B can solve 5784 benchmarks in 272 minutes of wall time. After
adding also the configuration Q3B+OA+Cong into the list of the solvers, the
virtual-best solver solves 5787 benchmarks in 230 minutes of wall time. Two
of the newly-solved benchmarks are from the family preiner-scholl-smt08 ; the
third one is from preiner-keymaera. All three of these benchmarks were solved
also by Q3B+OA, but neither was solved by Q3B+Cong.

The detailed results of the evaluation, including the raw data files and further
analyses, such as cross comparisons, are available at:

http://fi.muni.cz/∼xjonas/papers/tcs operation abstractions/

7. Conclusions

We have presented operation abstractions that allow BDD-based SMT solvers
to decide a formula by computing only some bits of results of arithmetic oper-
ations. The experimental evaluation shows that with the help of these abstrac-
tions, BDD-based SMT solver Q3B is able to solve more quantified bit-vector
formulas from the smt-lib repository than the SMT solvers Boolector, CVC4,
and Z3.
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