
LTL to Self-Loop Alternating Automata
with Generic Acceptance and Back?

Frantǐsek Blahoudeka, Juraj Majorb, Jan Strejčekb

aUniversity of Texas at Austin, USA
bMasaryk University, Brno, Czech Republic

Abstract

Self-loop alternating automata (SLAA) with Büchi or co-Büchi acceptance are
popular formalisms also known as very weak alternating automata (VWAA). They
are often used as an intermediate results in translations of LTL to deterministic or
nondeterministic automata. This paper considers SLAA with generic transition-
based Emerson-Lei acceptance and presents translations of LTL to these automata
and back. Importantly, the translation of LTL to SLAA with generic acceptance
produces considerably smaller automata than previous translations of LTL
to Büchi or co-Büchi SLAA. Our translation is already implemented in the
tool ltl3tela, where it helps to produce small deterministic or nondeterministic
transition-based Emerson-Lei automata for given LTL formulae.

Keywords: LTL, Omega-automata, LTL to automata translation, Alternating
automata, ltl3tela

1. Introduction

Translation of linear temporal logic (LTL) [26] into equivalent automata
over infinite words is an important part of many methods for model checking,
controller synthesis, monitoring, etc. This paper presents improved translations
of LTL to self-loop alternating automata (SLAA) [30], which are alternating
automata that contain no cycles except self-loops. These automata are studied
for more than 20 years under several different names including very weak [13,
28], linear [19], linear weak [15], or 1-weak [25] alternating automata. The first
publications showing that any LTL formula can be easily translated to an SLAA
with only a linear number of states in the length of the formula are even older [22,
31]. An LTL to SLAA translation forms the first step of many LTL to automata
translations. For example, it is used in popular tools ltl2ba [13] and ltl3ba [2]
translating LTL to nondeterministic automata, and also in the tool ltl3dra [1]
translating a fragment of LTL to deterministic automata.

?This is an extended version of a paper presented at ICTAC 2019 [5].
Email addresses: frantisek.blahoudek@gmail.com (Frantǐsek Blahoudek),

major@fi.muni.cz (Juraj Major), strejcek@fi.muni.cz (Jan Strejček)

Preprint submitted to Elsevier May 25, 2020

A nice survey of various instances of LTL to SLAA translations can be found
in Tauriainen’s doctoral thesis [30], where he also presents another improved LTL
to SLAA translation. To our best knowledge, the only new improvement since
publication of the thesis has been presented by Babiak et al. [2]. All the LTL to
SLAA translations considered so far produce SLAA with (state-based) Büchi
or co-Büchi acceptance. The only exception is the translation by Tauriainen
producing SLAA with transition-based co-Büchi acceptance.

In this paper, we follow a general trend of recent research and development
in the field of automata over infinite words and their applications: consider a
more general acceptance condition to construct smaller automata. In theory,
this change usually does not decrease the upper bound on the size of constructed
automata. Moreover, the complexity of algorithms processing automata with
a more involved acceptance condition can be even higher. However, practical
experiences show that achieved reduction of automata size often outweighs
complications with a more general acceptance condition. This can be documented
by observations of nondeterministic as well as deterministic automata.

Nondeterministic automata are usually considered with Büchi acceptance.
However, all three most popular LTL to nondeterministic automata translators,
namely ltl2ba [13], ltl3ba [2], and Spot [9], translate LTL formulae to transition-
based generalized Büchi automata (TGBA), which are further transformed to
Büchi automata. When solving emptiness check, which is the central part of
many model checking tools, algorithms designed for TGBA perform better than
algorithms analyzing the corresponding Büchi automata [7, 27].

Deterministic automata were typically considered with Rabin, Streett, or
parity acceptance. Tools of the Rabinizer family [18] and the tool ltl3dra [1]
produce also deterministic automata with transition-based generalized Rabin
acceptance. The equivalent Rabin automata are often dramatically larger. Direct
processing of generalized Rabin automata can be substantially more efficient as
shown by Chatterjee et al. [6] for probabilistic model checking and LTL synthesis.

All the previously mentioned acceptance conditions can be expressed by a
generic acceptance condition originally introduced by Emerson and Lei [11] and
recently reinvented in the Hanoi omega-automata (HOA) format [3]. Emerson-
Lei acceptance condition is any positive boolean formula over terms of the form
Inf and Fin , where is an acceptance mark. A run of a nondeterministic
automaton (or an infinite branch of a run of an alternating automaton) satisfies
Inf or Fin if it visits the acceptance mark infinitely often or finitely often,
respectively. The acceptance marks placed on states denote traditional state-
based acceptance, while marks placed on transitions correspond to transition-
based acceptance.

Some tools that work with transition-based Emerson-Lei automata (TELA)
already exist. For example, Delag [23] produces deterministic TELA, Spot is
now able to produce both deterministic and nondeterministic TELA, and we
have recently developed ltl3tela [21] that directly specializes in production of
deterministic and nondeterministic TELA. The produced TELA are often smaller
than the automata produced by the tools mentioned in the previous paragraphs.
Since version 2.7, Spot provides also an emptiness check for TELA, and a

2

ϕ Ga

GFb Fb

tt
a

a

b
b̄

b
b̄

b̄

b

Fin

(basic)

ϕ

Fb

1tt 3 a

2
b

b̄2

1 b̄

b

Fin 1 ∧ (Fin 2 ∨ Fin 3)

(F-merging)

ϕ1tt 3 a

5
2

b
2

4 b̄

Fin 1 ∧
(Fin 2 ∨ Fin 3) ∧

(Fin 4 ∨ Inf 5)

(F,G-merging)

Figure 1: Automata for the formula ϕ = F(Ga ∨ GFb): the co-Büchi SLAA produced by the
basic translation (left), the Inf-less SLAA produced by F-merging (middle), and the SLAA
produced by F,G-merging (right). Graphical notation is explained in Section 2.

probabilistic model checking algorithm working with deterministic Emerson-
Lei automata has been implemented in PRISM. In both cases, an improved
performance over previous solutions has been reported [4].

This paper presents a translation of LTL to SLAA with transition-based
Emerson-Lei acceptance. The translation aims to take advantage of the generic
acceptance and produce SLAA with less states. We present it in three steps.

1. Section 3 recalls a basic translation producing co-Büchi SLAA. The de-
scription uses the same terminology and notation as the following modified
translations. In particular, the acceptance marks are on transitions.

2. In Section 4, we modify the translation such that states for subformulae
of the form Fψ are merged with states for ψ. The technique is called
F-merging. The acceptance condition of constructed SLAA is a positive
boolean combination of Fin-terms. We call such automata Inf-less SLAA.

3. Finally, we further modify the translation in Section 5, where states for
some subformulae of the form Gψ are merged with states for ψ. The
resulting technique is thus called F,G-merging. Constructed SLAA use
acceptance condition containing both Inf- and Fin-terms.

The difference between these translations is illustrated by Figure 1 showing three
SLAA for the formula F(Ga ∨ GFb). One can observe that the initial state of the
middle automaton is merged with the states for Ga and GFb due to F-merging.
In the automaton on the right, the state for GFb is merged with Fb and the
initial state is then merged with Ga and GFb. Hence, the resulting automaton
contains only one state and the LTL to SLAA translation in this case produces
directly a nondeterministic automaton.

LTL to SLAA translations are traditionally accompanied by automata sim-
plification based on transition dominance [13]. Section 6 extends this idea to
SLAA with generic acceptance and introduces additional simplifications that
reduce the state space and increase determinism of SLAA.

3

Section 7 completes the theoretical part of the paper with a backward
translation which takes an SLAA with transition-based Emerson-Lei acceptance
and produces an equivalent LTL formula. Altogether, we get that SLAA with
the generic acceptance have the same expressiveness as LTL.

The three presented LTL to SLAA translations are implemented in the tool
ltl3tela [21], which also implements an SLAA dealternation algorithm. Section 8
provides an experimental comparison of the three presented translations and
the LTL to SLAA translation implemented in ltl3ba. The effect of SLAA
simplifications is shown as well. On randomly generated formulae containing
only temporal operators eventually (F) and always (G), which are favourable to
our translation improvements, the F,G-merging can save nearly 50% of states.
This is a considerable reduction, especially with respect to the fact that even the
simplest LTL to SLAA translations produce automata of linear size and thus the
space for reduction is not big. Our experiments also show that SLAA produced
by the F,G-merging are often nondeterministic (or even deterministic) as they
do not contain any universal branching. We compared such automata with the
results of state-of-the art LTL to deterministic or nondeterministic automata
translators, namely ltl3tela, Spot, Delag, ltl2dgra (the current replacement of
Rabinizer 4 distributed with Owl [17]), and ltl3ba.

This paper extends our ICTAC 2019 paper [5] in several directions. In
particular, here we include proofs of theorems claiming that our translations are
correct. In Section 6, we present one modified SLAA simplification (the original
formulation was incorrect), introduce one new simplification, and illustrate the
simplifications with examples. Further, we add a new section about the tool
ltl3tela. Finally, the experimental evaluation now presents some additional
comparisons and we redone the original experiments using the current versions
of tools.

2. Preliminaries

This section recalls the notion of linear temporal logic [26] and the definition
of self-loop alternating automata [30]. We always use automata with transition-
based acceptance condition given in the format of Emerson-Lei acceptance. For
example, co-Büchi automaton is an automaton with acceptance condition Fin .

2.1. Linear Temporal Logic (LTL)

We define the syntax of LTL formulae directly in the positive normal form as

ψ ::= tt | ff | a | ¬a | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | ψ Rψ,

where tt stands for true, ff for false, a ranges over a set AP of atomic propositions,
and X,U,R are temporal operators called next, until, and release, respectively.
A word is an infinite sequence u = u0u1u2 . . . ∈ Σω, where Σ ⊆ 2AP . By ui.. we
denote the suffix ui.. = uiui+1 We define when a word u satisfies ψ, written
u |= ψ, as follows:

4

u |= tt
u 6|= ff
u |= a iff a ∈ u0

u |= ¬a iff a 6∈ u0

u |= ψ1 ∨ ψ2 iff u |= ψ1 or u |= ψ2

u |= ψ1 ∧ ψ2 iff u |= ψ1 and u |= ψ2

u |= Xψ iff u1.. |= ψ
u |= ψ1 Uψ2 iff ∃i ≥ 0 such that ui.. |= ψ2 and ∀ 0 ≤ j < i . uj.. |= ψ1

u |= ψ1 Rψ2 iff ∃i ≥ 0 such that ui.. |= ψ1 and ∀ 0 ≤ j ≤ i . uj.. |= ψ2,
or ∀i ≥ 0 . ui.. |= ψ2

For a fixed alphabet Σ ⊆ 2AP , a formula ψ defines the language L(ψ) =
{u ∈ Σω | u |= ψ}. If Σ is not specified, we consider Σ = 2AP(ψ), where AP(ψ)
denotes the set of atomic propositions occurring in ψ. Further, we extend the
syntax of LTL with derived operators eventually (F) and always (G) defined
by Fψ ≡ tt Uψ and Gψ ≡ ff Rψ. A temporal formula is a formula where the
topmost operator is neither conjunction, nor disjunction. A formula without
any temporal operator is called state formula. Formulae tt ,ff , a,¬a are both
temporal and state formulae.

2.2. Self-Loop Alternating Automata (SLAA)

An alternating automaton is a tuple A = (S,Σ,M,∆, sI , Φ), where

• S is a finite set of states,

• Σ is a finite alphabet,

• M is a finite set of acceptance marks,

• ∆ ⊆ S × Σ× 2M × 2S is an alternating transition relation,

• sI ∈ S is the initial state, and

• Φ is an acceptance formula, which is a positive boolean combination of
terms Fin and Inf , where ranges over M.

An alternating automaton is a self-loop alternating automaton (SLAA) if there
exists a partial order on S such that for every (s, α,M,C) ∈ ∆, all states in C
are lower or equal to s. In other words, SLAA contain no cycles except self-loops.

Subsets C ⊆ S are called configurations. A quadruple t = (s, α,M,C) ∈ ∆ is
called a transition from s to C under α (or labelled by α or α-transition) marked
by elements of M . A transition t = (s, α,M,C) ∈ ∆ is looping (or simply a
loop) if its destination configuration C contains its source s.

A multitransition T under α is a set of transitions under α such that the
source states of the transitions are pairwise different. The source configuration
dom(T) of a multitransition T is the set of source states of transitions in T . The
destination configuration range(T) is the union of destination configurations of
transitions in T . For an alternating automaton A, ΓA denotes the set of all
multitransitions of A and ΓAα denotes the set of all multitransitions of A under α.

5

A run ρ of an alternating automaton A over a word u = u0u1 . . . ∈ Σω is an
infinite sequence ρ = T0T1 . . . of multitransitions such that dom(T0) = {sI} and,
for all i ≥ 0, Ti is labelled by ui and range(Ti) = dom(Ti+1). Each run ρ defines
a directed acyclic edge-labelled graph Gρ = (V,E, λ), where

V =

∞⋃
i=0

Vi, where Vi = dom(Ti)× {i},

E =

∞⋃
i=0

{(
(s, i), (s′, i+ 1)

)
| (s, α,M,C) ∈ Ti, s′ ∈ C

}
, and

the labeling function λ : E → 2M assigns to each edge e = ((s, i), (s′, i+ 1)
)
∈ E

the acceptance marks from the corresponding transition, i.e., λ(e) = M where
(s, α,M,C) ∈ Ti. A branch of the run ρ is a maximal (finite or infinite) sequence
b = (v0, v1)(v1, v2) . . . of consecutive edges in Gρ such that v0 ∈ V0. For an
infinite branch b, let M(b) denote the set of marks that appear in infinitely
many sets of the sequence λ((v0, v1))λ((v1, v2)) An infinite branch b satisfies
Inf if ∈ M(b) and it satisfies Fin if 6∈ M(b). An infinite branch
is accepting if it satisfies the acceptance formula Φ. We say that a run ρ is
accepting if all its infinite branches are accepting. The language of A is the set
L(A) = {u ∈ Σω | A has an accepting run over u}.

Several examples of SLAA are given in Figure 1. Examples of SLAA with
their runs can be found in Figure 5. Note that a transition (s, α,M,C) ∈ ∆
of an alternating automaton is visualised as a branching edge leading from s
to all states in C. In this paper, an automaton alphabet has always the form
Σ = 2AP ′

, where AP ′ is a finite set of atomic propositions. To keep the visual
representation of automata concise, edges are labelled with boolean formulae
over atomic propositions in a condensed notation: ā denotes ¬a and conjunctions
are omitted. Hence, abc̄ would stand for a ∧ b ∧ ¬c. Every edge represents all
transitions under combinations of atomic propositions satisfying its label.

3. Basic Translation

This section presents a basic translation of LTL to co-Büchi SLAA similar
to the one implemented in ltl3ba [2]. To simplify the presentation, in contrast
to the translation of ltl3ba we omit the optimization called suspension, we
describe transitions for each α ∈ Σ separately, and we slightly modify the
acceptance condition of the SLAA; in particular, we switch from state-based to
transition-based acceptance.

Let ϕ be an LTL formula, where subformulae of the form Fψ and Gψ are
seen as abbreviations for tt Uϕ and ff Rϕ, respectively. An equivalent SLAA is
constructed as Aϕ = (S,Σ, { },∆, ϕ,Fin), where states in S are subformulae
of ϕ and Σ = 2AP(ϕ). The construction of the transition relation ∆ treats it
equivalently as a function ∆ : S×Σ→ 2P where P = 2M×2S . The construction
of ∆ is defined inductively and it directly corresponds to the semantics of LTL.

6

The acceptance mark is used to ensure that an accepting run cannot stay in
a state ψ1 Uψ2 forever. In other words, it ensures that ψ2 will eventually hold.
The translation uses an auxiliary product operator ⊗ and a marks eraser me
defined for each P, P ′ ⊆ P as:

P ⊗ P ′ = {(M ∪M ′, C ∪ C ′) | (M,C) ∈ P, (M ′, C ′) ∈ P ′}
me(P) = {(∅, C) | (M,C) ∈ P}

The product operator is typically used to handle conjunction: to get successors
of ψ1∧ψ2, we compute the successors of ψ1 and the successors of ψ2 and combine
them using the product operator ⊗. The marks eraser has two applications.
First, it is used to remove unwanted acceptance marks on transitions looping
on states of the form ψ1 Rψ2. Second, it is used to remove irrelevant accepting
marks from the automaton, which are all marks not lying on loops. Indeed, only
looping transition can appear infinitely often on some branch of an SLAA run
and thus only marks on loops are relevant for acceptance.

∆(tt , α) = {(∅, ∅)}
∆(ff , α) = ∅
∆(a, α) = {(∅, ∅)} if a ∈ α, ∅ otherwise

∆(¬a, α) = {(∅, ∅)} if a /∈ α, ∅ otherwise

∆(ψ1∧ψ2, α) = me
(
∆(ψ1, α)⊗∆(ψ2, α)

)
∆(ψ1∨ψ2, α) = me

(
∆(ψ1, α) ∪∆(ψ2, α)

)
∆(Xψ, α) =

{
(∅, {ψ})

}
∆(ψ1Uψ2, α) = me

(
∆(ψ2, α)

)
∪
({

({ }, {ψ1Uψ2})
}
⊗me

(
∆(ψ1, α)

))
∆(ψ1Rψ2, α) = me

(
∆(ψ1, α)⊗∆(ψ2, α)

)
∪me

({
(∅, {ψ1Rψ2})

}
⊗∆(ψ2, α)

)
The automaton Aϕ has at most |ϕ| states as the states are subformulae of ϕ.

To prove that the constructed automaton is a self-loop alternating automaton,
it is enough to consider the partial order ‘being a subformula of’ on states.

As the basic translation handles formulae Fψ and Gψ as abbreviations, we do
not have to explicitely define ∆(Fψ, α) and ∆(Gψ, α). Nevertheless, we provide
their values to facilitate the comparison of the basic translation and the following
translations, which differ particularly in processing of Fψ and Gψ.

∆(Fψ, α) = ∆(tt Uψ, α) =
{

({ }, {Fψ})
}
∪me

(
∆(ψ, α)

)
∆(Gψ, α) = ∆(ff Rψ, α) =

{
(∅, {Gψ})

}
⊗me

(
∆(ψ, α)

)
4. F-Merging Translation

Now we modify the basic translation on subformulae of the form Fψ. The
modified translation produces Inf-less SLAA, which are SLAA without Inf
terms in acceptance formulae.

7

Fψ ψ

A
α

β

tt

β

α

Fin

Fψ ψ∨

AF

α

β

tt

Fin

Figure 2: Automata for Fψ: the SLAA A built by the basic translation (left) and the SLAA
AF built by the F-merging translation (right).

Before giving the formal translation, we discuss three examples to explain
the ideas behind F-merging. We start with a formula Fψ where ψ is a temporal
formula. Further, assume that the state ψ of the SLAA constructed by the
basic translation has two types of transitions: non-looping labelled by α and
loops labelled by β. The SLAA A for Fψ can be found in Figure 2 (left). States
Fψ and ψ can be merged into a single state that represents their disjunction
(which is equivalent to Fψ) as shown by the SLAA AF of Figure 2 (right). The
construction is still correct: (i) Clearly, AF can precisely mimic each sequence of
transitions that can be taken in A. (ii) The sequences of transitions of AF that
cannot be precisely mimicked by A are those where the tt-loop is taken after
some β-loop. However, every accepting run of AF uses the tt-loop only finitely
many times and thus we can find a corresponding accepting run of A: instead of
each β-loop that occurs before the last tt-loop we can use the tt-loop since β
implies tt .

The second example deals with the formula Fψ where ψ = (aR b) ∧ Gc.
Figure 3 (left) depicts the SLAA A produced by the basic translation. The state
ψ is dotted as it is unreachable. Hence, merging Fψ with ψ would not save any
state. However, we can modify the translation rules to make ψ reachable and
aR b unreachable at the same time. The modification is based on the following

Gc

c

aR b

b

ab

(aR b)∧Gc

abc
bc

F((aR b)∧Gc)
bc

abc
ttA

Fin

Gc

c

aR b

b

ab

(aR b)∧Gc

abc
bc

F((aR b)∧Gc) bc

abc
ttA′

Fin

Figure 3: Automata for F((aR b) ∧ Gc): the SLAA A built by the basic translation (left) and
the modified SLAA A′ where states in the grey area can be merged (right).

8

F(ψ1 ∨ ψ2 ∨ ψ3)

ψ1 ψ2 ψ3

ψ

32 31 21

tt

Fin ∧ (Fin 1 ∨ Fin 2 ∨ Fin 3)

Figure 4: Transitions of the state F(ψ1 ∨ ψ2 ∨ ψ3) merged with states ψ1, ψ2, and ψ3.

observation. Taking the red bc-edge in A would mean that both aR b and Gc
have to hold in the next step, which is equivalent to (aR b) ∧ Gc. Thus we can
replace the red edge by the red bc-loop as shown in the automaton A′ of Figure 3
(right). Because transitions leaving the state Fψ are computed from transitions
of ψ, this replacement makes the state (aR b) ∧ Gc reachable and the state aR b
becomes unreachable. The states Fψ and ψ of A′ can be now merged for the
same reason as in Figure 2.

While the previous paragraph studied a formula Fψ where ψ is a conjunction,
the third example focuses on disjunctions. Let us consider a formula Fψ where
ψ = ψ1 ∨ψ2 ∨ψ3 and each ψi is a temporal formula. As in the previous example,
the state ψ is unreachable in the SLAA produced by the basic translation and
thus merging Fψ with ψ does not make any sense. However, we can merge
the state Fψ with states ψ1, ψ2, ψ3 as indicated in Figure 4. In contrast to the
original SLAA, a single run of the merged SLAA can use a loop corresponding
to a state ψi and subsequently a transition corresponding to a different ψj .
Instead of every such a loop, the original SLAA can simply use the tt-loop of
Fψ. However, as the tt-loop is marked by , we can use it only finitely many
times. In fact, the runs of the merged automaton that contain infinitely many
loops corresponding to two or more different states ψi should be nonaccepting.
Therefore we adjust the acceptance formula to Fin ∧ (Fin 1 ∨ Fin 2 ∨ Fin 3)
and place the new acceptance marks as shown in Figure 4. Clearly, Fin 1 says
that transitions of ψ2 and ψ3 are taken only finitely many times, Fin 2 does the
same for transitions of ψ1 and ψ3, and Fin 3 for transitions of ψ1 and ψ2.

The F-merging translation combines the ideas presented above when pro-
cessing any F-subformula, while other subformulae are handled as in the basic
translation. Hence, we no longer treat Fψ as an abbreviation for tt Uψ. Further,
we think about formulae Fψ as formulae of the form F

∨
i

∧
j ψi,j , where ψi,j are

temporal formulae. Formally, we define formula decomposition into disjunctive
normal form ψ as follows:

ψ = {{ψ}} if ψ is a temporal formula

ψ1 ∨ ψ2 = ψ1 ∪ ψ2

9

ψ1 ∧ ψ2 = {C1 ∪ C2 | C1 ∈ ψ1 and C2 ∈ ψ2}.

Let K ∈ ψ be a set of temporal formulae. We use ψK to denote ψK =
∧
ψ′∈K ψ

′.
Clearly, ψ is equivalent to

∨
K∈ψ ψK . We define two auxiliary transition functions

∆L,∆NL to implement the trick illustrated with red edges in Figure 3. Intuitively,
∆L(ψK , α) is the set of α-transitions of ψK such that their destination configura-
tion subsumes K (the transitions are looping in this sense, hence the subscript
L), while ∆NL(ψK , α) represents the remaining α-transitions of ψK (non-looping,
hence the subscript NL). To mimic the trick of Figure 3, we should replace in
the destination configuration of each looping transition all elements of K by
the state corresponding to ψK . To simplify this step, we define the destination
configurations of looping transitions in ∆L(ψK , α) directly without elements of
K.

∆L(ψK , α) =
{

(M,C rK) | (M,C) ∈ ∆(ψK , α), K ⊆ C
}

∆NL(ψK , α) =
{

(M,C) | (M,C) ∈ ∆(ψK , α), K 6⊆ C
}

Simultaneously with the trick of Figure 3, we apply the idea indicated in Figure 4
and merge the state Fψ with all states ψK for K ∈ ψ. Hence, instead of extending
the looping transitions with states ψK , we extend it with the merged state called
simply Fψ. Altogether, we get

∆(Fψ, α) =
{

({ }, {Fψ})
}
∪

∪
⋃
K∈ψ

(
me
(
∆NL(ψK , α)

)
∪
{

(MK , {Fψ})
}
⊗∆L(ψK , α)

)
where

MK = { K′
| K ′ ∈ ψ and K ′ 6= K}.

In other words, the merged state Fψ has three kinds of transitions: the tt-loop
marked by , non-looping transitions of states ψK for each disjunct K ∈ ψ,
and the looping transitions of states ψK which are marked as shown in Figure 4.
Finally, we redefine the set of acceptance marksM and the acceptance formula Φ
of the constructed SLAA as follows, where Fϕ denotes the set of all subformulae
of ϕ of the form Fψ:

M = { } ∪ { K | Fψ ∈ Fϕ and K ∈ ψ}

Φ = Fin ∧
∧

Fψ∈Fϕ

∨
K∈ψ

Fin
K

In fact, we can reduce the number of orange marks (marks with an upper
index) produced by F-merging translation. Let nϕ = max{|ψ| | Fψ ∈ Fϕ} be the
maximal number of such marks corresponding to any subformula Fψ of ϕ. We
can limit the total number of orange marks to nϕ by reusing them. We redefine
M and Φ as

M = { } ∪ { i | 1 ≤ i ≤ nϕ} and Φ = Fin ∧
nϕ∨
i=1

Fin
i

10

GFa

Fa

tt

a

tt
a

A

Fin

0 1 2 3 4 5 6

· · ·

∅ ∅ ∅ ∅{a} {a}

GFa ∧ Fa
tt a

AF,G

Fin ∨ Inf · · ·

Figure 5: An SLAA A for the formula GFa built by the basic translation (top) and an
equivalent SLAA AF,G built by the F,G-merging translation (bottom) and their runs over the
word (∅∅{a})ω .

and alter the above definition of MK . For every Fψ ∈ Fϕ, we assign a unique
index iK , 1 ≤ iK ≤ nϕ, to each K ∈ ψ. Sets MK in transitions of Fψ are then

defined to contain all orange marks except
iK , formally MK =Mr { ,

iK}.
This optimization is correct as any branch of an SLAA run cannot cycle between
two states of the form Fψ.

5. F,G-Merging Translation

We further improve the F-merging translation by adding a special rule also
for subformulae of the form Gψ. The resulting F,G-merging translation produces
SLAA with an acceptance formula that is not Inf-less.

We start again with a simple example. Consider the formula GFa. The
basic translation produces the SLAA A from Figure 5 (top). In general, each
transition of the state Gψ is a transition of ψ extended with a loop back to Gψ.
The one-to-one correspondence between transitions of Gψ and ψ leads to the
idea to merge the states into one that corresponds to their conjunction (Gψ)∧ψ,
which is equivalent to Gψ. However, merging these states needs a special care.
Figure 5 (bottom) shows an SLAA where the states GFa and Fa are merged.
Consider now the word u = (∅∅{a})ω and the runs of the two automata over
u. The branches of the top run collapse into a single branch in the bottom
run. While each branch of the top run has at most one occurrence of , the
single branch in the bottom run contains infinitely many of these marks. The
SLAA AF,G accepts u only because of the added marks. The intuition for their
placement is explained using the concept of escaping multitransitions.

A multitransition T of an SLAA A′ is s-escaping for a state s if it contains a
non-looping transition (s, α,M,C) ∈ T . For an acceptance mark , we define
its owners O() = {s ∈ S | (s, α,M,C) ∈ ∆ and ∈ M} as the set of all
states with outgoing transitions marked by . The following observation holds
for every mark with a single owner s. A run of A′ satisfies Fin (i.e., all

11

its infinite branches satisfy Fin) if and only if the run contains only a finite
number of multitransitions T marked by or if it contains infinitely many
s-escaping multitransitions.

Transitions of AF,G correspond to multitransitions of A with source configu-
ration {GFa,Fa}. The observation implies that AF,G would be equivalent to A
if we mark all transitions corresponding to Fa-escaping multitransitions with
a new mark and change the acceptance formula to Fin ∨ Inf as shown in
Figure 5 (bottom).

This approach naturally extends to the case of Gψ where ψ =
∧
i ψi is a

conjunction of temporal formulae. In this case, Gψ can be merged with all
states ψi into a single state representing the conjunction (Gψ) ∧

∧
i ψi. However,

we have to pay a special attention to acceptance marks as the observation
formulated above holds only for marks with a single owner. For every ψi with a

-marked transition, we need to track ψi-escaping multitransitions separately.
To implement this, we create a copy of for each ψi and we use a specific ψi

mark to label transitions corresponding to ψi-escaping multitransitions.
Unfortunately, due to the duality of the F and G operators and the fact that

the transition relation of SLAA is naturally in disjunctive normal form (which is
suitable for F), we did not find any way to improve the translation of Gψ if ψ is a
disjunction. On the bright side, we can generalize the merging to G

∧
i ψi where

each ψi is a temporal or state formula (which can contain disjunctions). This
is due to the fact that a state formula ψi affects only the labels of transitions
with origin in the state G

∧
i ψi and thus it does not create any reachable state

or acceptance mark.
Formally, we first modify the translation rules introducing acceptance marks

to work with marks of the form ψ as discussed above. More precisely, we
change the rule for ψ1Uψ2 presented in the basic translation and the rule for Fψ
of the F-merging translation to the following (note that the optimization reusing
orange marks make no longer sense as we need to create their copies for each Fψ
anyway).

∆(ψ1Uψ2, α) = me
(
∆(ψ2, α)

)
∪
({

({ ψ1Uψ2
}, {ψ1Uψ2})

}
⊗me

(
∆(ψ1, α)

))
∆(Fψ, α) =

{
({ Fψ}, {Fψ})

}
∪

∪
⋃
K∈ψ

(
me
(
∆NL(ψK , α)

)
∪
{

(MK , {Fψ})
}
⊗∆L(ψK , α)

)
,

where MK = { K′

Fψ | K ′ ∈ ψ and K ′ 6= K}

Further, we add a specific rule for formulae Gψ where ψ =
∧
ψ′∈K ψ

′ for
some set K of temporal and state formulae. Formulae Gψ of other forms are
handled as ff Rψ. On the top level, the rule simply defines transitions of Gψ as
transitions of Gψ ∧

∧
ψ′∈K ψ

′:

∆(Gψ, α) =
{

(∅, {Gψ})
}
⊗
⊗
ψ′∈K

∆′(ψ′, α)

12

The definition of ∆′(ψ′, α) differs from ∆(ψ′, α) in two aspects. First, it removes
ψ′ from destination configurations because ψ′ is merged with Gψ and the state
Gψ is added to each destination configuration by the product on the top level.
Second, it identifies all non-looping transitions of ψ′ and marks them with ψ′

as ψ′-escaping. We distinguish between looping and non-looping transitions
only when ψ′ has the form ψ1 Uψ2 or Fψ1. All other ψ′ have only looping
transitions (e.g., G-formulae) or no marked transitions (e.g., state formulae or R-
or X-formulae) and thus there are no ψ′-escaping transitions or we do not need
to watch them. Similarly to Fϕ, we use Uϕ for the set of all subformulae of ϕ of
the form ψ1 Uψ2. The function ∆′(ψ′, α) is defined as follows:

∆′(ψ′, α) =

∆′L(ψ′, α) ∪∆′NL(ψ′, α) if ψ′ ∈ Fϕ or ψ′ ∈ Uϕ{
(M,C r {ψ′}) | (M,C) ∈ ∆(ψ′, α)

}
otherwise

∆′L(ψ′, α) =
{

(M,C r {ψ′}) | (M,C) ∈ ∆(ψ′, α), ψ′ ∈ C
}

∆′NL(ψ′, α) =
{

({ ψ′}, C) | (M,C) ∈ ∆(ψ′, α), ψ′ /∈ C
}

Finally, we redefine the set of marks M and the acceptance formula Φ. Now
each subformula from Uϕ and Fϕ has its own set of marks, and the marks are
used to implement the intuition given using the Figure 5.

M = { ψ, ψ | ψ ∈ Uϕ} ∪
{

Fψ, Fψ,
K
Fψ | Fψ ∈ Fϕ and K ∈ ψ

}
Φ =

∧
ψ∈Uϕ

(
Fin ψ ∨ Inf ψ

)
∧
∧

Fψ∈Fϕ

(Fin Fψ ∧
∨
K∈ψ

Fin
K
Fψ

)
∨ Inf Fψ

5.1. Correctness and Complexity

Here we prove that the F,G-merging translation produces correct automata
and we analyse the size of these automata. For the rest of this section, let ϕ be
an arbitrary but fixed LTL formula and let Aϕ be the corresponding SLAA over
alphabet Σ = 2AP(ϕ) built by the F,G-merging translation. For any subformula
ψ of ϕ, by Aψ we mean the automaton identical to Aϕ except for the initial
state, which is ψ instead of ϕ.

In the proof of correctness, we often compose runs of automata for some
subformulae of ϕ over suffixes of w. The following auxiliary lemma says that one
can select runs that are so-called synchronized, which means that whenever the
runs read the same suffix from the same state, they use the same transitions.

Lemma 1. Let wi.. and wj.. be two suffixes of some w ∈ Σω. Further, let ψ1, ψ2

be subformulae of ϕ such that wi.. ∈ L(Aψ1) and wj.. ∈ L(Aψ2). Then there
always exist an accepting run R0R1 . . . of Aψ1 over wi.. and an accepting run
S0S1 . . . of Aψ2

over wj.. such that the two runs are synchronized, i.e., for each
k ≥ j we have that Tk = Rk−i ∪ Sk−j is a multitransition of Aϕ.

13

Proof. Consider an accepting run R0R1 . . . of Aψ1 over wi.. and an accepting
run S0S1 . . . of Aψ2 over wj... The runs are not synchronized if and only if there
exists some k ≥ j such that both runs reach the same state q ∈ dom(Rk−i) ∪
dom(Sk−j) before reading wk.. and each run uses a different transition leading
from q. If we modify one of these runs to use the same transition as the other
run whenever such situation arises, we get two synchronized runs. Note that the
modified run is still accepting as the other run was accepting. 2

The lemma can be easily extended to any finite number of suffixes. Now we
are ready to formulate and prove the main theorem.

Theorem 1. The F,G-merging translation is correct, i.e., L(Aϕ) = L(ϕ). Fur-
ther, the number of states of Aϕ is linear to the size of ϕ and the number of
acceptance marks is at most exponential to the size of ϕ.

Proof. We prove the correctness part of the theorem by structural induction.
We suppose that for each strict subformula ψ of ϕ, the SLAA Aψ represents the
language L(ψ) over alphabet Σ.

We use the following notation. Let T be a multitransition and S be a set of
states. Then T [S] = {t = (s, α,M,C) | t ∈ T and s ∈ S} is the set of transitions
from T with a source from S, and T [S̄] = T r T [S]. For K ∈ ψ, we again use
the notation ψK =

∧
ψ′∈K ψ

′.

To prove L(ϕ) ⊆ L(Aϕ), let w ∈ Σω be a word such that w |= ϕ. We find
an accepting run ρ = T0T1 . . . of Aϕ over w for each possible form of ϕ. In the
following, when we choose multiple accepting runs over suffixes of some word, we
always assume they are synchronized. This assumption is valid due to Lemma 1.

If ϕ is one of tt , a, or ¬a where a ∈ AP , we have T0 = {(ϕ,w0, ∅, ∅)} and
Ti = ∅ for i ≥ 1. The transition in T0 exists in Aϕ by definition and the run is
accepting since it has no infinite branch. If ϕ ≡ ff , then no word satisfies ϕ and
there is nothing to prove.

Let ϕ ≡ ψ1∨ψ2. We can assume that w |= ψ1 (the proof for the case w |= ψ2

is analogous). Therefore, there is an accepting run σ of Aψ1 over w, and we
define ρ as ρ = {(ϕ,w0, ∅, C)}T1T2 . . . where σ = {(ψ1, w0,M,C)}T1T2. The
run ρ is accepting as it has branches isomorphic to branches of σ.

Let ϕ ≡ ψ1 ∧ ψ2. Then we can assume two synchronized runs R0R1 . . .
of Aψ1 and S0S1 . . . of Aψ2 over w with R0 = {(ψ1, w0,M1, C1)} and S0 =
{(ψ2, w0,M2, C2)}. We define T0 = {(ϕ,w0, ∅, C1 ∪ C2)} and Ti = Ri ∪ Si for
i > 0. The run ρ is a union of branches of the two runs and thus is accepting.

If ϕ ≡ Xψ, then we create ρ as {(ϕ,w0, ∅, {ψ})}T1T2 . . . where T1T2 . . . is an
accepting run of Aψ over w1...

Let ϕ ≡ ψ1 Uψ2 where ψ1 6≡ tt and let k ≥ 0 be the smallest index such
that wk.. |= ψ2. We know that wj.. |= ψ1 for all j < k as w |= ϕ, and thus

for each such j there exist an accepting run σj = Sj0S
j
1 . . . of Aψ1

over wj...
Further, there is an accepting run σk = Sk0S

k
1 . . . of Aψ2 over wk... We define

14

the multitransitions of ρ as follows.

Ti =
⋃

0≤j<i
j<k

Sji−j ∪

{(
ϕ,wi,

{
ϕ

}
, C ∪ {ϕ}

)
| (ψ1, wi,M,C) ∈ Si0

}
i < k{

(ϕ,wi, ∅, C) | (ψ2, wi,M,C) ∈ Sk0
}

i = k

Ski−k i > k

The run ρ contains the branches of all σj for j ≤ k, some of them prefixed with
finitely many ϕ-labelled edges between nodes of the form (ϕ, i). Since ϕ

only appears in the first k multitransitions, Fin ϕ is satisfied, the rest of the
acceptance formula is satisfied as we reuse the branches of accepting runs.

If ϕ ≡ Fψ, we again denote by k the smallest index such that wk.. |= ψK for

some K ∈ ψ. Let MK = { K′

ϕ | K 6= K ′ ∈ ψ}. By the induction hypothesis,
there exists a run σ = S0S1 . . . of AψK

over wk... Let l be the minimal index
l ≥ k such that K 6⊆ range(Sl[K]) if exists and l =∞ otherwise. In the following
definition, we exceptionally redefine S0[K] = S0 and S0[K̄] = ∅ in the special case
of k = 0. To mitigate the implementation of the trick with looping transitions of
ψK , for each k ≤ i < l we define Ci = range(Si[K]) rK. We can finally define
the multitransitions of ρ as follows.

Ti =

{(
ϕ,wi,

{
ϕ

}
, {ϕ}

)}
i < k

{(ϕ,wi,MK , Ci ∪ {ϕ})} ∪ Si[K̄] k ≤ i < l

{(ϕ,wi, ∅, range(Si[K]))} ∪ Si[K̄] i = l

Si i > l

The run ρ is accepting because ϕ only appears in first k multitransitions,
K
ϕ does not appear anywhere in the run, and the rest of the condition inherited

from automata for subformulae is trivially satisfied by the branch that stays in
ϕ forever and is satisfied on the other branches as they only contain marks of
AψK

and they mimic (using Si[K̄]) the accepting run σ.
Let ϕ ≡ ψ1 Rψ2 such that ψ1 6≡ ff or ψ2 is not a conjunction of temporal

and state formulae. Let k be the smallest number such that wk.. |= ψ1 ∧ ψ2

and that for all i < k we have wi.. |= ψ2. If no such k exists, we set k = ∞.
Similarly as for the U-case, from the induction principle we have accepting runs
σi = Si0S

i
1 . . . of Aψ2

over wi.. for 0 ≤ i ≤ k and an accepting run σ = S0S1 . . .
of Aψ1 over wk... The multitransitions of ρ are defined as follows.

Ti =

i−1⋃
j=0

Sji−j ∪

{(ϕ,wi, ∅, C ∪ {ϕ}) | (ψ2, wi,M,C) ∈ Si0} i < k

{(ϕ,wk, ∅, range(S0) ∪ range(Sk0))} i = k

Si−k i > k

Finally, let ϕ ≡ G
∧
ψ∈K ψ where each ψ ∈ K is a temporal or state formula.

For every ψ ∈ K and every i ≥ 0 we know that wi.. |= ψ and thus by induction

hypothesis we have accepting runs σψ,i = Sψ,i0 Sψ,i1 . . . of Aψ over wi... Further,

we may assume that these runs are synchronized due to Lemma 1, and thus Sψ,i0 ⊆
Sψ,i−jj for all j ≤ i. Similarly to the Fψ′ case, we define Cψi = range(Sψ,i0)r{ψ}.

15

Moreover, assuming Sψ,i0 = {(ψ,wi,M,C)}, we define Mψ
i = { ψ} if Sψ,i0 is

ψ-escaping and ψ ∈ Fϕ ∪ Uϕ, and Mψ
i = M otherwise.

Ti = {(ϕ,wi,Mi, Ci)} ∪
⋃
ψ∈K

0≤j<i

Sψ,ji−j [{ψ}], where

Mi =
⋃
ψ∈K

Mψ
i Ci = {ϕ} ∪

⋃
ψ∈K

Cψi

The acceptance formula is satisfied by ρ as, for each ψ ∈ K ∩ (U ∪ F) the

marks ψ (and some
S
ψ) appear only in finitely many multitransitions of ρ, or

there are infinitely many ψ-escaping multitransitions and we have Inf ψ satisfied
by the branch staying in ϕ. The rest of the formula is satisfied by ρ because it
was satisfied by all the branches of runs σψi .

To prove L(Aϕ) ⊆ L(ϕ), we show that if there exists an accepting run
ρ = T0T1 . . . of Aϕ over w, then w |= ϕ. For a run σ = T0T1 . . . of Aϕ,
a set of states C, and an index i ≥ 0 we use Ti[C] . . . to describe the run
σ′ = Ti[C]Ti+1[range(Ti[C])] . . . of Aψ over wi.. where ψ =

∧
ψ′∈C∩dom(Ti)

ψ′. If

σ is accepting, σ′ is also accepting as it contains only suffixes of branches of σ.
The statement is trivially true for ϕ ≡ tt (every word satisfies tt) and ϕ ≡ ff

(there cannot exist an accepting run over Aff).
If ϕ ≡ a, then surely T0 is an w0-labelled multitransition such that a ∈ w0,

hence w |= ϕ. Similar argument applies to ϕ ≡ ¬a.
Let ϕ ≡ ψ1 ∨ ψ2. Then ρ is (up to dom(T0)) equivalent to (also accepting)

run of Aψ1 or Aψ2 over w. Therefore w |= ψ1 or w |= ψ2, so w |= ϕ.
If ϕ ≡ ψ1∧ψ2, then, by definition of ∆, ρ consists exactly of branches of runs

of Aψ1
and Aψ2

, again with the only difference in dom(T0), all of which have to
be accepting. Therefore, by the induction hypothesis, w |= ψ1 and w |= ψ2, so
w |= ϕ.

Let ϕ ≡ Xψ. By the definition of ∆, T1T2 . . . is an accepting run of Aψ over
w1.., thus w1.. |= ψ and so w |= ϕ.

Let ϕ ≡ ψ1 Uψ2. Since ρ is accepting but, by the definition of ∆, no ϕ or
K
ϕ appear in the run. Therefore Fin ϕ has to hold. We can see that every

outgoing transition of ϕ is looping if and only if its acceptance label contains

ϕ, so there exists some k ∈ N such that, after k steps, the run escapes from ϕ
and, by the definition of ∆, the run TkTk+1 . . . is an accepting run of Aψ2

over
wk.. and thus wk.. |= ψ2 by induction hypothesis. Moreover, for each i < k the
multitransition Ti contains (by definition of ∆) a transition (ϕ,wi, { ϕ}, {ϕ}∪C)
such that {(ψ1, wi,M,C)}Ti+1[C] . . . for some M is an accepting run of Aψ1

over wi.., so wi.. |= ψ1.

If ϕ ≡ Fψ, then again no ϕ appears in the run, so both Fin ϕ and Fin
K
ϕ

for some K ∈ ψ holds. Therefore there exists k ∈ N such that neither ϕ nor
K
ϕ appears in TkTk+1 This happens because of two reasons: either the run

eventually leaves the state ϕ using some transition from ψK′ (where K ′ ∈ ψ),

16

or we only use transitions from ψK (with ψK replaced by ϕ). In both cases,
wk |= ψ so w |= ϕ.

If ϕ ≡ ψ1 Rψ2, each Ti that contains ϕ contains a transition (ϕ,wi, ∅, C1∪C2)
such that {(ψ2, wi,M,C2)}Ti+1[C2] . . . for some M is an accepting run of Aψ2

over wi.., hence wi.. |= ψ2. If C1 = {ϕ} for all i, we have that w |= ϕ. Otherwise,
there is a minimal k ≥ 0 such that {(ψ1, wk,M,C1)}Tk+1[C1] . . . for some M is
an accepting run of Aψ1 over wk.., hence wk.. |= ψ1 and again, w |= ϕ.

Finally, let ϕ ≡ G
∧
ψ∈K ψ where ψ ∈ K are all temporal or state formulae.

For each ψ ∈ K and each i we construct an accepting run σψi of Aψ over wi...
By definition of ∆ we know that in each Ti there is a transition of the form
(ϕ,wi,Mi, Ci). Let Cψi = {ψ} if ψ /∈Mi, and Cψi = ∅ otherwise. By definition

of ∆, there is some C ′i ⊆ Ci such that t = (ψ,wi,M
′
i , C

′
i ∪ C

ψ
i) is a transition

of Aψ for some M ′i which is arbitrary if ψ ∈ Mi and M ′i ⊆ Mi otherwise. If

Cψi = ∅ then σψi = {t}Ti+1[C ′i] . . ., and otherwise σψi = {t}(Ti+1[C ′i] . . . t σ
ψ
i+1)

where t makes a union of corresponding multitransitions (multitransitions on
the same positions) of two runs.

Each σψi consists of a subset of branches of ρ (or their suffixes) and some
branches that loop in ψ for a while. If the branch stays forever in ψ then its
marks are exactly those marks of ρ relevant to ψ (have the ψ subscript) and
such branch must satisfy the accepting formula of Aψ. Branches that eventually
leave ψ have suffix that is already in ρ and thus must satisfy the acceptance
formula too. Hence, σψi is an accepting run of Aψ over wi.. and we have that
wi.. |= ϕ for each i and ψ, hence w |= ϕ.

The linear number of states of Aϕ with respect to the size of ϕ comes from
the fact that states of Aϕ are subformulae of ϕ. Let n be the number of states
of Aϕ. Then we have at most n marks of the form ψ, at most n marks of the

form ψ, and finally at most 2n marks of the form
K
ψ (the exponential blowup

may be caused only by conversion to DNF, if necessary). Overall, the number of
marks is at most exponential with respect to size of ϕ. 2

6. SLAA Simplifications

We start with SLAA simplifications based on transition dominance, which is a
standard technique of improving various automata constructions [13]. In SLAA, a
transition t1 = (q, α,M1, C1) dominates a different transition t2 = (q, α,M2, C2)
if C1 ⊆ C2 and M1 is “at least as helpful and at most as harmful for acceptance”
as M2. Any dominated transition can be removed without changing the language
of the produced automaton. This automata simplification is usually applied on-
the-fly, i.e., during the automata construction. In other words, the construction
does not add any transition that is dominated by a transition already present in
the automaton. Moreover, when it adds a transition, all transitions dominated
by the new transition are removed.

This section presents two versions of transition dominance that differ in the
check of the condition “at least as helpful and at most as harmful for acceptance”.

17

Basic dominance is a direct extension of dominance for Büchi and co-Büchi
automata and acceptance-aware dominance improves the basic dominance by
utilizing the current acceptance formula.1 Although we formulate the dominance
relations for SLAA, they can be used for arbitrary (alternating or nonalternating)
TELA.

We further present a simplification called destination configuration trimming,
which is tailored to our LTL to SLAA translations and which often amplifies
the effect of dominance-based simplifications. This simplification employs the
semantic labels of the created states, but it can be generalized to any SLAA
construction that allows to easily decide language inclusion of states.

6.1. Basic Transition Dominance

In the classic case of co-Büchi SLAA with acceptance formula Fin , the
condition M1 is “at least as helpful and at most as harmful for acceptance” as
M2 translates into ∈ M1 =⇒ ∈ M2. For Büchi SLAA with acceptance
formula Inf , the condition has the form ∈M2 =⇒ ∈M1.

Now consider an SLAA with an arbitrary acceptance formula Φ. Let Fin(Φ)
and Inf(Φ) be the sets of all acceptance marks appearing in Φ in subformulae
of the form Fin and Inf , respectively. We say that a transition (q, α,M1, C1)
dominates another transition (q, α,M2, C2) iff C1 ⊆ C2 and

M1 ∩ Fin(Φ) ⊆M2 and M2 ∩ Inf(Φ) ⊆M1.

With this formulation, we can simplify the part of an SLAA in Figure 6 by
removing the dotted transition t2 that is dominated by the solid transition t1.
Indeed, each accepting run ρ that uses t2 has an analogous run ρ′ that uses t1
instead. Clearly, ρ′ is accepting since all its branches are also branches of ρ, only
some occurrences of 1 on these branches are replaced by 2 .

6.2. Acceptance-Aware Transition Dominance

While the basic transition dominance is correct (in the sense that it does not
change the language of the produced automaton), it does not work well with
more complicated acceptance formulae. Consider the example in Figure 7 with
the acceptance formula Φ = (Fin 1 ∧ Inf 2) ∨ Fin 3 . The solid transition t1 does
not dominate t2 by the definition of basic dominance as { 2 }∩ Inf(Φ) = { 2 } 6⊆ ∅.
However, if there is some accepting branch that uses t2 infinitely often, it does
not satisfy the disjunct (Fin 1 ∧ Inf 2) due to 1 , and thus must satisfy Fin 3 .
Therefore, the mark 2 missing in t1 does not matter for dominance and we
only care about marks that appear in the subformula Fin 3 . To formalize
this observation, we introduce transition dominance with respect to acceptance
formula.

A minimal model O of an acceptance formula Φ is a subset of its terms
satisfying Φ and such that no proper subset of O is a model of Φ. For example,

1Note that the first version of formula-aware dominance presented at ICTAC 2019 [5] is
incorrect as it can modify the language of a simplified automaton.

18

Fin 1 ∧ Inf 2

q

p

p′

a

2

a
1

Figure 6: The effect of the basic transition
dominance: the dotted transition t2 is re-
moved as it is dominated by the solid transi-
tion t1.

(Fin 1 ∧ Inf 2) ∨ Fin 3

q

p

p′

a

1

a
1

2

Figure 7: The effect of the acceptance-aware
transition dominance: the dotted transition
t2 is removed as it is dominated by the solid
transition t1.

the formula (Fin 1 ∧ Inf 2) ∨ Fin 3 has two minimal models: {Fin 1 , Inf 2 } and
{Fin 3 }. If we switch ∨ and ∧, the formula (Fin 1 ∨ Inf 2) ∧ Fin 3 has again two
minimal models, but now they are {Fin 1 ,Fin 3 } and {Inf 2 ,Fin 3 }. For each
minimal modelO, by Fin(O) and Inf(O) we denote the sets of all acceptance marks
appearing in O in terms of the form Fin and Inf , respectively. Intuitively, the
formula-aware dominance checks only those minimal models of Φ that are not
broken by some Fin-mark on t2. Formally, a transition (q, α,M1, C1) dominates
another transition (q, α,M2, C2) with respect to Φ iff C1 ⊆ C2 and for each
minimal model O of Φ it holds

M2 ∩ Fin(O) = ∅ =⇒
(
M1 ∩ Fin(O) = ∅ and M2 ∩ Inf(O) ⊆M1

)
.

The solid transition in Figure 7 dominates with respect to the given acceptance
formula the dotted transition.

6.3. Destination Configuration Trimming

The last simplification we present trims the destination configurations of
transitions. It is based on the LTL semantics that the states carry. In a
transition (s, α,M,C) with {ψ,Fψ} ⊆ C, we can replace C with C r {Fψ} as
the satisfaction of Fψ is ensured by visiting ψ anyway. This approach naturally
extends to transitions with {ψ,F(ψ ∨ ρ)} ⊆ C, where we remove F(ψ ∨ ρ) from
C. Symmetrically, if {ψ,G(ψ ∧ ρ)} ⊆ C then we replace C with C r {ψ} as the
satisfaction of ψ is enforced by the state G(ψ ∧ ρ).

This simplification is not only beneficial on its own, it also supports (any kind
of) transition dominance by increasing the potential of transitions for dominating
other transitions. Consider, for example, the three automata for the formula
ϕ = G(a ∧ (bUXa)) in Figure 8. The automaton with three states (on the left)
is produced by the basic translation and can be reduced to two states using the
F,G-merging technique (in the middle). Trimming the destination configuration
{ϕ, a} of the transitions represented by the edge labeled by a in the middle
automaton to {ϕ}, has two effects: (i) the state a becomes unreachable, and

19

G(a ∧ (bUXa))

bUXa a

Fin

ab a

tt
b

a

G(a ∧ (bUXa))

a

Fin ∨ Inf

ab a

a

G(a ∧ (bUXa))

Fin ∨ Inf

a

Figure 8: SLAA for the formula G(a ∧ (bUXa)) produced by the basic translation (left),
F,G-merging (middle), and F,G-merging with destination configuration trimming and basic
transition dominance (right).

(ii) it triggers transition dominance removing the edge labeled by ab and the
automaton even becomes deterministic. The resulting automaton (on the right)
is the minimal automaton for the formula Ga, which is indeed equivalent to the
original formula.

7. Translation of SLAA to LTL

We have already shown that every LTL formula can be translated into an
equivalent SLAA. This section shows a translation of SLAA to equivalent LTL
formulae. Before we start, we need to solve one technical issue connected to
alphabets used by the two formalisms. While SLAA can work with any finite
alphabet Σ, LTL works with subsets of 2AP . To bridge this gap, in the following
we assume that for every a ∈ Σ there exists a state formula ϕa satisfied exactly
by the words of Σω starting with a. For example, if Σ = 2AP ′

for some finite set
of atomic propositions AP ′ ⊆ AP , then ϕα can be defined as

ϕα =
∧
a∈α

a ∧
∧

a∈AP ′r{α}

¬a.

Theorem 2. For every SLAA A there exists an LTL formula ϕ such that
L(A) = L(ϕ).

Proof. Let A = (S,Σ,M,∆, sI , Φ) be an SLAA. For each state s ∈ S we
construct an LTL formula ϕ(s) such that u ∈ Σω satisfies ϕ(s) if and only if u is
accepted by A with its initial state replaced by s. Hence, A is equivalent to the
formula ϕ(sI).

The formula construction is inductive. Let s be a state such that we have
already constructed LTL formulae for all its successors. Further, let Mod(Φ)
denote the set of all minimal models of Φ. Further, given a set of states C, by

20

ϕ(C) we denote the conjunction ϕ(C) =
∧
s∈C ϕ(s). We define ϕ(s) as follows:

ϕ(s) = ϕ1(s) ∨
(
ϕ2(s) ∧ ϕ3(s)

)
ϕ1(s) =

∨
(s,α,M,C)∈∆

s∈C

ϕα ∧ Xϕ(C r {s}) U
∨

(s,α,M,C)∈∆
s6∈C

ϕα ∧ Xϕ(C)

ϕ2(s) = G
∨

(s,α,M,C)∈∆
s∈C

ϕα ∧ Xϕ(C r {s})

ϕ3(s) =
∨

O∈Mod(Φ)

(∧
∈Inf(O)

(
GF

∨
(s,α,M,C)∈∆

s∈C, ∈M

ϕα ∧ Xϕ(C r {s})
)
∧

∧
∧
∈Fin(O)

(
FG

∨
(s,α,M,C)∈∆

s∈C, 6∈M

ϕα ∧ Xϕ(C r {s})
))

Intuitively, ϕ1(s) covers the case when a run leaves s after a finite number of
looping transitions. Indeed, the until operator ensures that looping transitions
(corresponding to the left subformula) are taken only finitely many times and
then the state is left by some non-looping transition (corresponding to the right
subformula). Note that ϕ1(s) completely ignores acceptance marks on transitions
of s as they play no role in acceptance of runs leaving s.

Further, ϕ2(s) describes the case when a run never leaves s. In this case, ϕ3(s)
ensures that the infinite branch of the run staying in s forever is accepting. More
precisely, ϕ3(s) says that there exists some minimal model O of the acceptance
condition Φ such that each mark in Inf(O) appears infinitely often (the GF-
subterm) on the branch and each mark in Fin(O) does not appear on the branch
since some moment (the FG-subterm). 2

Theorems 1 and 2 imply that LTL and the class of SLAA with alphabets of
the form 2AP ′

for a finite set AP ′ ⊆ AP have the same expressive power.

8. Experimental Evaluation

We have implemented the presented translations in the tool ltl3tela [21]. The
tool is built on top of the Spot library [9] and is released under the GNU GPL
3.0 license at https://github.com/jurajmajor/ltl3tela. In addition to the
algorithms presented in this paper, the tool also offers translations of LTL to
nondeterministic or deterministic TELA. More information about the tool and
its usage for LTL to SLAA translation can be found in Appendix A.

This section provides basically three experimental comparisons. The first
one focuses on LTL to SLAA translations and compares the three translations
presented in this paper and the ltl3ba tool. One of the outcomes of this compar-
ison is that the F,G-translation combined with the simplifications of Section 6

21

https://github.com/jurajmajor/ltl3tela

often produces SLAA without universal branching. These automata can be
nondeterministic or even deterministic, altogether, we call them nonalternating.
The non-trivial number of nonalternating automata produced by our algorithm
motivates the second comparison — we let Spot further reduce these automata
and then we compare them with the automata produced by state-of-the-art
translators of LTL to deterministic or nondeterministic automata. Finally, the
third comparison returns back to translations of LTL to SLAA, but this time we
consider parametric formulae. This comparison aims to investigate the behavior
of our algorithms on large formulae. All scripts and formulae used for the
evaluations presented below are available in a Jupyter notebook.2

8.1. Settings of Comparisons on Nonparametric Formulae

The translation improvements presented in Sections 4 and 5 can have some
impact only on formulae that contain at least one Fψ subformula where ψ contains
some temporal subformula, or at least one G

∧
i ψi subformula where some ψi

is temporal. We call such formulae mergeable. We first evaluate how likely we
can obtain a formula that is mergeable in Section 8.2, and then we present the
impact of our merging technique on mergeable formulae in Sections 8.3 (SLAA)
and 8.4 (nonalternating automata). For that, we consider formulae that come
from two sources.

1. We use formulae collected from literature [10, 12, 16, 24, 29] that can be
obtained using the tool genltl from Spot [8]. For each such a formula,
we consider also its negation. We simplified all the formulae and removed
duplicates and formulae equivalent to tt or ff . The resulting benchmark
set contains 221 formulae.

2. We run the tool randltl from Spot to generate random formulae. We
generate formulae with up to five atomic propositions and with tree size
equal to 15 (the default settings of randltl) before simplifications. The
generator allows the user to specify priority for each LTL operator which
determines how likely the given operator appears in the generated formulae.
By default, all operators (boolean and temporal) have priority 1 in randltl.
We consider 4 different sets of random formulae. For the sets rnd1, rnd2,
and rnd4, the number indicates the priority that was used for F and G and
sets 0 to all other temporal operators. We generate 1000 formulae with
each priority setting to study mergeability in Section 8.2. For Sections 8.3
and 8.4, we generate for each priority setting 1000 formulae that are
mergeable (and throw away the rest).

The experimental evaluation employs five different LTL to automata transla-
tors, namely ltl3ba 1.1.3, ltl3tela 2.2.1, Spot 2.9 (more precisely, the translator
ltl2tgba of the Spot library), and two translators Delag and ltl2dgra (formerly
known as Rabinizer 4) from the library Owl 19.06.3.

2https://github.com/jurajmajor/ltl3tela/blob/master/Experiments/TCS.ipynb

22

https://github.com/jurajmajor/ltl3tela/blob/master/Experiments/TCS.ipynb

Table 1: Comparison of LTL to SLAA translations on mergeable formulae.

ltl3ba basic F-merg. F,G-merg. F,G+simpl.

st
at

es

lit (24) 140 140 110 65 65
rnd1 (1000) 6253 6234 5417 4582 4573
rnd2 (1000) 6313 6317 5317 4291 4276
rnd4 (1000) 6412 6389 5213 3988 3961
rndfg (1000) 5051 5068 3936 2656 2656

ed
g
es

lit (24) 330 358 285 214 210
rnd1 (1000) 13103 14164 12089 10364 10191
rnd2 (1000) 13195 14755 11911 10092 9821
rnd4 (1000) 13395 15314 11925 9795 9417
rndfg (1000) 9546 11005 8378 6757 6461

a
cc

.
m

ar
k
s lit (24) 24 24 46 98 98

rnd1 (1000) 1000 997 1160 2973 2973
rnd2 (1000) 1000 1000 1248 3334 3334
rnd4 (1000) 1000 1000 1366 3693 3693
rndfg (1000) 1000 1000 1363 3009 3009

8.2. Mergeability

The set of formulae from literature contains mainly quite simple formulae.
As a result, only 24 out of the 221 formulae are mergeable. We refer to the set
of these 24 formulae as lit. For rnd1, rnd2, rnd4, and rndfg we have 302, 488,
697, and 802 mergeable formulae out of 1000, respectively. Consistently with
intuition, the ratio of mergeable formulae increases considerably with F and G
being more frequent. Recall that rnd1, rnd2, rnd4, and rndfg refer to sets of
1000 mergeable formulae since now on.

8.3. Comparison of LTL to SLAA Translations

We compare the SLAA produced by the basic translation of Section 3, the
F-merging translation of Section 4, the F,G-merging translation of Section 5,
and the F,G-merging translation combined with simplifications of Sections 6.2
and 6.3 as implemented in ltl3tela, and the SLAA produced by ltl3ba [2]. The
exact options used in the execution of the translators can be found in Table B.5
in Appendix B. In particular, ltl3tela is always set to use formula preprocessing
and the basic transition dominance (except the instance for the F,G-merging
translation with simplifications, which applies the acceptance-aware transition
dominance and the destination configuration trimming). Due to these settings,
ltl3tela’s behavior is more consistent with ltl3ba which also applies formula
rewriting rules and basic transition dominance.

Table 1 shows the cumulative numbers of states, edges, and acceptance
marks of SLAA produced by the individual translations on the considered sets
of mergeable formulae. One can observe that the basic translation produces

23

SLAA of similar size as ltl3ba: small differences are caused by some additional
techniques implemented in ltl3ba [2] and by LTL rewriting rules implemented
in Spot (and thus applied by ltl3tela during formula preprocessing) but not
in ltl3ba. For example, the formula FG(a ∧ Fb) would be translated to a 4-
state automaton by both ltl3ba and the basic translation, but Spot’s formula
simplification procedure rewrites the formula to G(Fb ∧ FGa) and the basic
translation subsequently produces an automaton with 5 states. Further, the
F-merging, F,G-merging, and F,G-merging with simplifications bring gradual
reduction of the automata size measured by the number of states. The ratio
of states that can be saved compared to ltl3ba or the basic translation grows
with the increasing occurrence of F and G operators up to 48% for the formulae
of rndfg. The scatter plots in Figure 9 offer more data about the improvement
(in the number of states) of F,G-merging with simplifications over the basic
translation. The scatter plots reveal that F,G-merging with simplifications saves
up to 3 states in most cases. However, there are also cases where the F,G-merging
with simplifications reduces the resulting SLAA to 1 state only while the basic
translation needs 8 or even more states. The trimming simplification described
in Section 6.3 helped to get rid of the very rare cases where the basic translation
produces smaller automaton than unoptimized F-merging and F,G-merging (one
such a case can be seen in the ICTAC 2019 version of this paper [5]).

Table 1 also shows that the basic translation produces automata with more
edges than ltl3ba. This is mainly due to the suspension technique [2] introduced
in ltl3ba and not implemented in our translations, and different rules for the
formula preprocessing. All improved translations produce less edges than ltl3ba.
As expected, the lowest number of edges is produced by F,G-merging with
simplifications, which saves about one third of edges compared to ltl3ba on the
lit and rndfg sets.

The situation with the numbers of acceptance marks is completely different.
The basic translation sometimes produces less acceptance marks than ltl3ba
as it produces 0 acceptance marks for input formulae with no F or U operator.
The improved translations produce SLAA with more acceptance marks than
the basic translation or ltl3ba. This is the price for small automata, and it is
natural to ask whether it pays off. We believe that there are situations when it
is better to have an automaton with less states and more acceptance marks than
the SLAA produced by ltl3ba or the basic translation. For example, this can be
the case of applications that construct a product of the automaton with another,
potentially very large system, like explicit model checking algorithms do. In
such applications, every saved state of the automaton can substantially reduce
the product. There are also algorithms exponential in the number of states and
less sensitive to the number of acceptance marks, like algorithms transforming
SLAA to nonalternating automata, see Major’s thesis for more details [20]. The
increase of acceptance marks can be probably suppressed by some acceptance
formula optimization, which is a topic for our future research.

Translation improvements and advanced simplifications have a positive impact
also on the type of the produced automata as they remove both some universal
and nondeterministic branching from the automaton. Table 2 shows for each

24

0 5 10
0

5

10

basic

F,
G

-m
er

g
in

g
+

si
m

p
l.

literature (24)

1

2

3

4

0 5 10 15
0

5

10

15

basic

F,
G

-m
er

gi
n

g
+

si
m

p
l.

rnd1 (1000)

50

100

150

0 5 10 15
0

5

10

basic

F,
G

-m
er

g
in

g
+

si
m

p
l.

rnd2 (1000)

50

100

0 5 10 15
0

5

10

15

basic

F,
G

-m
er

gi
n

g+
si

m
p

l.
rnd4 (1000)

20

40

60

80

100

0 2 4 6 8
0

2

4

6

basic

F,
G

-m
er

gi
n

g+
si

m
p

l.

rndfg (1000)

50

100

Figure 9: Effect of F,G-merging on SLAA size for mergeable formulae. A dot represents the
number of states of the SLAA produced by F,G-merging with simplifications (y-axis) and by
the basic translation (x-axis) for the same formula. The color of the dot reflects the number of
dots at the position.

25

Table 2: Numbers of produced SLAA that are in fact deterministic or at least nonalternating.

ltl3ba basic F-merg. F,G-merg. F,G+simpl.
d

et
er

m
.

lit (24) 0 0 1 9 10
rnd1 (1000) 5 5 61 123 137
rnd2 (1000) 2 2 49 111 130
rnd4 (1000) 0 0 39 111 134
rndfg (1000) 0 0 80 223 245

n
on

al
t.

lit (24) 6 6 6 18 18
rnd1 (1000) 148 148 171 358 362
rnd2 (1000) 114 116 148 366 377
rnd4 (1000) 89 97 127 391 403
rndfg (1000) 144 161 208 645 645

set of formulae and each translation, the number of nonalternating automata
(bottom part) and the number of automata that are even deterministic (top
part).

8.4. Comparison of Nonalternating Automata

Now we evaluate the competitiveness of the nonalternating and deterministic
automata produced by the F,G-merging translation with simplifications. Hence,
we have selected the formulae for which the F,G-merging translation with sim-
plifications produces a nonalternating or even deterministic automaton. We
compare these automata with the results of state-of-the-art tools ltl3tela, Spot,
Delag, and ltl2dgra translating LTL to deterministic automata, and with tools
ltl3tela, ltl3ba, and Spot set to translate LTL to nonalternating automata. Note
that ltl3tela now refers to the entire translation algorithm of the tool including
the combination of different translation approaches, as explained in Appendix
A. The precise settings of all these tools can be found in Tables B.6 and B.7
in Appendix B. Note that we apply the tool autfilt from Spot to further
reduce the size of the automata produced by F,G-merging with simplifications as
the same or similar optimizations are included in all other tools as well.

Tables 3 and 4 compare the results on the formulae for which the F,G-merging
translation with simplifications produced deterministic or nonalternating au-
tomata, respectively. The results show that the full ltl3tela translation produces
the smallest (on average) automata measured by the number of states. This
is not surprising as it combines the power of the presented F,G-merging trans-
lation with simplifications, the translation of Spot, and other techniques and
heuristics. In particular, it cannot produce any automaton with more states
than F,G-merging with simplifications. However, Table 4 implies that the F,G-
merging with simplifications can sometimes produce a nonalternating automaton
with less edges that ltl3tela. This is due to the fact that ltl3tela prefers to
produce an automaton with less acceptance marks to an automaton with less
edges. We further observe that both deterministic and nonalternating automata

26

Table 3: Comparison of LTL to deterministic automata translators on the formulae where the
F,G-merging translation with simplifications produces deterministic automata.

F,G+simpl.+Spot ltl3tela Spot Delag ltl2dgra

st
at

es

lit (24) 10 10 10 10 11
rnd1 (137) 353 353 384 366 356
rnd2 (130) 266 266 288 269 270
rnd4 (134) 241 241 263 247 249
rndfg (245) 381 381 383 386 393

ed
g
es

lit (24) 68 67 67 72 70
rnd1 (137) 661 655 753 2172 660
rnd2 (130) 506 498 576 1295 509
rnd4 (134) 507 490 572 1177 512
rndfg (245) 858 828 883 1789 862

a
cc

.
m

a
rk

s lit (24) 23 23 23 26 30
rnd1 (137) 205 183 188 357 245
rnd2 (130) 193 168 180 313 241
rnd4 (134) 217 194 200 331 260
rndfg (245) 384 351 369 606 480

produced by the F,G-merging with simplifications have on average less states
and edges than automata produced by all other considered tools except ltl3tela.
Moreover, the numbers of states of the deterministic automata produced by
the F,G-merging with simplifications are equal to those produced by ltl3tela.
It indicates that if the F,G-merging translation with simplifications produces a
deterministic automaton, then the size of the automaton is competitive.

8.5. Comparison of LTL to SLAA Translations on Parametric Formulae

Finally, we compare the same LTL to SLAA translations as in Section 8.3, but
this time on parametric formulae from literature [8, 13, 14, 23]. The mentioned
papers contain 15 different mergeable parametric formulae. These formulae are
also encoded in the tool genltl, which can generate their instances for given
parameter values. We identify the parametric formulae with the corresponding
genltl options.

We have generated instances of each parametric formula for all parameter
values between 1 and 64. For each parametric formula and each of the five
considered LTL to SLAA translations, we ran the translation on each formula
instance and observed the maximal parameter value such that the corresponding
instance is translated within 30 seconds on a computer with Intel R© CoreTM

i7-8550U CPU and 16 GB of RAM. The results are presented in the topmost
part of Figure 10 marked as ‘max. n’. Roughly speaking, this measurement
compares speed of the translations: the higher ‘max. n’, the faster the translation.
However, there are also other aspects. In particular, the Spot library supports
automata with up to 32 acceptance marks. Hence, the translations producing

27

Table 4: Comparison of LTL to nonalternating automata translators on the formulae where
the F,G-merging translation with simplifications produces nonalternating automata.

F,G+simpl.+Spot ltl3tela Spot ltl3ba

st
at

es

lit (84) 21 19 19 51
rnd1 (362) 1152 1075 1243 1534
rnd2 (377) 1076 1006 1155 1547
rnd4 (403) 990 904 1063 1615
rndfg (645) 1347 1261 1349 2191

ed
g
es

lit (84) 108 136 136 154
rnd1 (362) 2266 2237 2559 2982
rnd2 (377) 2187 2148 2495 3232
rnd4 (403) 2225 2150 2530 3447
rndfg (645) 3092 3061 3260 4498

a
cc

.
m

ar
k
s lit (84) 60 45 45 37

rnd1 (362) 654 535 416 612
rnd2 (377) 768 570 479 697
rnd4 (403) 1021 711 612 819
rndfg (645) 1501 1009 1006 1156

multiple acceptance marks (i.e., F-merging, F,G-merging, and F,G-merging with
simplifications) fail to translate formulae if the corresponding SLAA should have
more than 32 acceptance marks. Anyway, for each parametric formula except
gh-r, ms-phi-r, and ms-phi-s, the translations can be ordered as

ltl3ba �n basic �n F-merging �n F,G-merging �n F,G-merging+simpl.,

where �n means that the translation on the left can handle at least as many
instances as the translation on the right. For the three remaining formulae, the
basic and F-merging translations are swapped in the ordering.

For each parametric formula, the horizontal line and the adjacent number
in the topmost part of Figure 10 show the maximal parameter such that the
corresponding formula instance was translated by all translations. Such formula
instance is called maximal common instance. For these maximal common
instances, Figure 10 indicates the numbers of states, edges, and acceptance
marks produced by each translation.

We can observe that the translations are ordered as

ltl3ba �s basic �s F-merging �s F,G-merging �s F,G-merging+simpl.,

where �s means that for each maximal common instance, the translation on
the left produces an automaton with at least as many states as the translation
on the right. The decrease in the number of states usually comes with a higher
number of acceptance marks. Further, the parametric formulae can be divided
into three sets.

28

20

40

60

30 30 31

64

6

28

4 6 5 8

64

7 8

30

64

m
a
x
.
n

40

80

120

st
at

es

100

300

500

ed
ge

s

f
x
g
-
o
r

m
s
-
p
h
i
-
h

o
r
-
f
g

a
n
d
-
f
g

g
f
-
e
q
u
i
v

g
f
-
i
m
p
l
i
e
s

g
h
-
r

m
s
-
p
h
i
-
r

m
s
-
p
h
i
-
s

a
n
d
-
g
f

g
f
-
e
q
u
i
v
-
x
n

g
o
-
t
h
e
t
a

g
x
f
-
a
n
d

m
s
-
e
x
a
m
p
l
e

o
r
-
g
f

10

20

30

ac
c.

m
ar

k
s

ltl3ba basic F-merg. F,G-merg. F,G+simpl.

Figure 10: Comparison of LTL to SLAA translations on mergeable parametric formulae, which
are on x-axis.

1. For fgx-or, ms-phi-h, or-fg, and and-fg, only F-merging reduces the
automaton size (states and edges), F,G-merging and simplifications do not
bring any further reductions.

2. For gf-equiv, gf-implies, gh-r, ms-phi-r, and ms-phi-s, both F-mer-
ging and F,G-merging gradually reduce the number of states. Simplifications
do not reduce the number of states any further, but reduce the number of
edges.

3. For and-gf, gf-equiv-xn, go-theta, gxf-and, ms-example, and or-gf,
F-merging has no effect and only F,G-merging reduces the size of automata.
In this group, simplifications have no measurable effect.

29

9. Conclusion

We have presented a novel translation of LTL to self-loop alternating automata
(SLAA) with Emerson-Lei acceptance condition. To our best knowledge, it is
the first translation of LTL producing SLAA with other than Büchi or co-Büchi
acceptance. The translation is implemented in a tool ltl3tela. Our experimental
results demonstrated that the expressive acceptance condition allows to produce
substantially smaller SLAA comparing to these produced by ltl3ba when F or G
operators appear in the translated formula.

This work opens doors for research of algorithms processing SLAA with
Emerson-Lei acceptance, in particular the algorithms transforming these SLAA
to nonalternating automata with various degrees of determinism: nondetermin-
istic, deterministic, or semi-deterministic (also known as limit-deterministic)
automata. Our implementation can serve as a natural source of such alternating
automata and it already helped to build the tool ltl3tela that can produce small
deterministic and nondeterministic TELA.

Acknowledgments

We would like to thank the two anonymous reviewers for their valuable
feedback and suggestions.

F. Blahoudek has been supported by the DARPA grant D19AP00004 and the
AFRL grant FA9550-19-1-0169. J. Major and J. Strejček have been supported
by the Czech Science Foundation grant GA19-24397S.

References

[1] T. Babiak, F. Blahoudek, M. Křet́ınský, and J. Strejček.“Effective Trans-
lation of LTL to Deterministic Rabin Automata: Beyond the (F, G)-
Fragment”. In: Proceedings of the 11th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’13). Lecture Notes
in Computer Science 8172, pp. 24–39. Springer, 2013.

[2] T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček.“LTL to Büchi Au-
tomata Translation: Fast and More Deterministic”. In: Proceedings of the
18th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’12). Lecture Notes in Computer
Science 7214, pp. 95–109. Springer, 2012.

[3] T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller,
D. Parker, and J. Strejček.“The Hanoi Omega-Automata Format”. In:
Proceedings of the 27th International Conference on Computer Aided
Verification (CAV’15). Lecture Notes in Computer Science 9206.I, pp. 479–
486. Springer, 2015.

30

[4] C. Baier, F. Blahoudek, A. Duret-Lutz, J. Klein, D. Müller, and J.
Strejček.“Generic Emptiness Check for Fun and Profit”. In: Proceedings of
the 17th International Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA’19). Lecture Notes in Computer Science 11781,
pp. 445–461. Springer, 2019.

[5] F. Blahoudek, J. Major, and J. Strejček.“LTL to Smaller Self-Loop Al-
ternating Automata and Back”. In: Proceedings of the 16th International
Colloquium on Theoretical Aspects of Computing (ICTAC’19). Lecture
Notes in Computer Science 11884, pp. 152–171. Springer, 2019.

[6] K. Chatterjee, A. Gaiser, and J. Křet́ınský.“Automata with Generalized
Rabin Pairs for Probabilistic Model Checking and LTL Synthesis”. In:
Proceedings of the 25th International Conference on Computer Aided
Verification (CAV’13). Lecture Notes in Computer Science 8044, pp. 559–
575. Springer, 2013.

[7] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.“On-the-Fly Emptiness
Checks for Generalized Büchi Automata”. In: Proceedings of the 12th
International Spin Workshop on Model Checking of Software (SPIN’05).
Lecture Notes in Computer Science 3639, pp. 169–184. Springer, 2005.

[8] A. Duret-Lutz.“Manipulating LTL Formulas Using Spot 1.0”. In: Proceed-
ings of the 11th International Symposium on Automated Technology for
Verification and Analysis (ATVA’13). Lecture Notes in Computer Science
8172, pp. 442–445. Springer, 2013.

[9] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L.
Xu.“Spot 2.0 - A Framework for LTL and ω-Automata Manipulation”. In:
Proceedings of the 14th International Symposium on Automated Technology
for Verification and Analysis (ATVA’16). Lecture Notes in Computer
Science 9938, pp. 122–129. 2016.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.“Property Specification
Patterns for Finite-State Verification”. In: Proceedings of the 2nd Workshop
on Formal Methods in Software Practice (FMSP’98), pp. 7–15. ACM, 1998.

[11] E. A. Emerson and C.-L. Lei. “Modalities for Model Checking: Branching
Time Logic Strikes Back”. In: Science of Computer Programming 8.3
(1987), pp. 275–306.

[12] K. Etessami and G. J. Holzmann.“Optimizing Büchi Automata”. In: Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR’00). Lecture Notes in Computer Science 1877, pp. 153–167.
Springer, 2000.

[13] P. Gastin and D. Oddoux.“Fast LTL to Büchi Automata Translation”.
In: Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01). Lecture Notes in Computer Science 2102, pp. 53–65.
Springer, 2001.

31

[14] J. Geldenhuys and H. Hansen.“Larger Automata and Less Work for LTL
Model Checking”. In: Proceedings of the 13th International SPIN Sympo-
sium on Model Checking of Software (SPIN’06). Lecture Notes in Computer
Science 3925, pp. 53–70. Springer, 2006.

[15] M. Hammer, A. Knapp, and S. Merz.“Truly On-the-Fly LTL Model Check-
ing”. In: Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05).
Lecture Notes in Computer Science 3440, pp. 191–205. Springer, 2005.

[16] J. Holeček, T. Kratochv́ıla, V. Řehák, D. Šafránek, and P. Šimeček. Verifi-
cation Results in Liberouter Project. Tech. rep. 03, 32pp. CESNET, Sept.
2004.

[17] J. Křet́ınský, T. Meggendorfer, and S. Sickert.“Owl: A Library for ω-Words,
Automata, and LTL”. In: Proceedings of the 16th International Symposium
on Automated Technology for Verification and Analysis (ATVA’18). Lecture
Notes in Computer Science 11138, pp. 543–550. Springer, 2018.

[18] J. Křet́ınský, T. Meggendorfer, S. Sickert, and C. Ziegler.“Rabinizer 4: From
LTL to Your Favourite Deterministic Automaton”. In: Proceedings of the
30th International Conference on Computer Aided Verification (CAV’18).
Lecture Notes in Computer Science 10981, pp. 567–577. Springer, 2018.

[19] C. Löding and W. Thomas.“Alternating Automata and Logics over Infinite
Words”. In: Proceedings of International Conference Theoretical Computer
Science, Exploring New Frontiers of Theoretical Informatics (IFIP TCS’00).
Lecture Notes in Computer Science 1872, pp. 521–535. Springer, 2000.

[20] J. Major. “Translation of LTL into nondeterministic automata with generic
acceptance condition”. MA thesis. Masaryk University, Brno, 2017. url:
https://is.muni.cz/th/o0rn5/dp.pdf.

[21] J. Major, F. Blahoudek, J. Strejček, M. Sasaráková, and T.
Zbončáková.“ltl3tela: LTL to Small Deterministic or Nondeterministic
Emerson-Lei Automata”. In: Proceedings of the 17th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA’19).
Lecture Notes in Computer Science 11781, pp. 357–365. Springer, 2019.

[22] D. E. Muller, A. Saoudi, and P. E. Schupp.“Weak Alternating Automata
Give a Simple Explanation of Why Most Temporal and Dynamic Logics
are Decidable in Exponential Time”. In: Proceedings of the Third Annual
Symposium on Logic in Computer Science (LICS ’88), pp. 422–427. IEEE
Computer Society, 1988.

[23] D. Müller and S. Sickert.“LTL to Deterministic Emerson-Lei Automata”.
In: Proceedings of the 8th International Symposium on Games, Automata,
Logics and Formal Verification (GandALF’17). EPTCS 256, pp. 180–194.
2017.

32

https://is.muni.cz/th/o0rn5/dp.pdf

[24] R. Pelánek.“BEEM: Benchmarks for Explicit Model Checkers”. In: Proceed-
ings of the 14th international SPIN conference on Model checking software
(SPIN’07). Lecture Notes in Computer Science 4595, pp. 263–267. Springer,
2007.

[25] R. Pelánek and J. Strejček.“Deeper Connections Between LTL and Alter-
nating Automata”. In: Proceedings of the 10th International Conference on
Implementation and Application of Automata (CIAA’05). Lecture Notes
in Computer Science 3845, pp. 238–249. Springer, 2005.

[26] A. Pnueli.“The Temporal Logic of Programs”. In: Proceedings of the
18th Annual Symposium on Foundations of Computer Science (FOCS’77),
pp. 46–57. IEEE Computer Society, 1977.

[27] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud.“Parallel Explicit
Model Checking for Generalized Büchi Automata”. In: Proceedings of the
21st International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’15). Lecture Notes in Computer Science
9035, pp. 613–627. Springer, 2015.

[28] G. S. Rohde. “Alternating Automata and the Temporal Logic of Ordinals”.
PhD thesis. University of Illinois at Urbana-Champaign, 1997. isbn: 0-591-
63604-2.

[29] F. Somenzi and R. Bloem.“Efficient Büchi Automata from LTL Formulae”.
In: Proceedings of the 12th International Conference on Computer Aided
Verification (CAV’00). Lecture Notes in Computer Science 1855, pp. 248–
263. Springer, 2000.

[30] H. Tauriainen. “Automata and Linear Temporal Logic: Translations with
Transition-Based Acceptance”. PhD thesis. Helsinki University of Tech-
nology, Laboratory for Theoretical Computer Science, 2006. isbn: 951-22-
8343-3.

[31] M. Y. Vardi.“Nontraditional Applications of Automata Theory”. In: Pro-
ceedings of the International Conference on Theoretical Aspects of Com-
puter Software (TACS’94). Lecture Notes in Computer Science 789, pp. 575–
597. Springer, 1994.

Appendix A. ltl3tela

Appendix A.1. LTL to SLAA Translation

The LTL to SLAA translations presented in Sections 3–5 can be executed
using the command ltl3tela -p1 [OPTIONS] -f ϕ, where -p1 says that the
tool should produce an SLAA and ϕ is an input LTL formula in any syntax
supported by Spot [8]. Options can modify the actual translation process in the
following ways:

-s[0|1] controls formula preprocessing: -s1 enables the formula simplification
procedure of Spot, while -s0 disables it.

33

-i[0|1] specifies the construction of initial states: -i1 enforces that the con-
structed SLAA will have just one initial state (as described in our transla-
tions), while -i0 can produce SLAA with multiple initial configurations of
states as ltl2ba [13] does.

-X[0|1] determines the translation of X-subformulae: -X1 produces automata
where every state Xψ has one transition leading to the state ψ (as described
in our translations), while -X0 constructs automata where transitions
from Xψ lead to configurations of maximal temporal subformulae of ψ as
ltl2ba [13] does.

-F[0|1] turns on (-F1) and off (-F0) use of F-merging.

-G[0|1] controls the use of G-merging: it is enabled with -G1 and disabled with
-G0. Note that G-merging can be enabled even if F-merging is not.

-d[0|1|2] specifies the kind of applied transition dominance simplification: no
such simplification is used with -d0, only the basic dominance is applied
with -d1, and -d2 turns on the acceptance-aware dominance.

-c[0|1] switches on (-c1) and off (-c0) the destination configuration trimming.

The default setting is -s1 -i0 -X0 -F1 -G1 -d2 -c1. When the SLAA is
constructed, its unreachable states are removed and the automaton is sent to
standard output in the HOA format [3].

Appendix A.2. LTL to TELA Translation

The tool ltl3tela actually offers much more than just LTL to SLAA transla-
tions: its main application is translation of LTL to small nondeterministic or
deterministic TELA. Therefore it also implements an algorithm that translates
SLAA to nondeterministic TELA [20]. To achieve the best results, ltl3tela
combines this LTL to TELA translation via SLAA with other translations
and techniques. Roughly speaking, the LTL formula is first decomposed to
its maximal temporal subformulae. Each subformula is then translated by our
LTL to TELA translation via SLAA and also by the translation of Spot, and
the smaller automaton is selected. Then we use various product constructions
to combine these automata into the automaton for the whole formula. The
process is precisely described in our recent tool paper about ltl3tela [21]. The
paper also present experimental comparison with state-of-the-art LTL to au-
tomata translators including ltl3ba, Spot, Delag, and ltl2dgra (formerly called
Rabinizer 4) showing that ltl3tela currently produces the smallest deterministic
and nondeterministic automata (on average).

Appendix B. Exact Settings of Translators in Experiments

Table B.5 provides the exact options used in the comparison of LTL to SLAA
translations of Table 1. ltl3ba is run with the option -H1 to enable the output of

34

the alternating automaton. The options -i1 -X1 of ltl3tela were used to stick
with the formal description of translations and because ltl3ba treats initial states
and X-subformulae in the same way.

Table B.5: Overview of commands executed to measure the differences between various LTL
to SLAA translation approaches.

translation command

ltl3ba ltl3ba -H1

basic ltl3tela -p1 -i1 -X1 -F0 -G0 -d1 -c0

F-merging ltl3tela -p1 -i1 -X1 -G0 -d1 -c0

F,G-merging ltl3tela -p1 -i1 -X1 -d1 -c0

F,G-merg.+simpl. ltl3tela -p1 -i1 -X1

Tables B.6 provides the exact options used for the comparison in Table 3
of the deterministic automata produced by the F,G-merging translation with
simplifications and by state-of-the-art LTL to deterministic automata translators.

Table B.6: List of tools used to compare the translation of LTL to deterministic automata.

tool command

F,G+simpl.+Spot ltl3tela -p1 | autfilt --high

ltl3tela ltl3tela -D1

Spot ltl2tgba -DG

Delag delag

ltl2dgra ltl2dgra

Similarly, Table B.7 provides the exact options used for the comparison of
nonalternating automata presented in Table 4. The use of -H2 option for ltl3ba
ensures that the output is a TGBA instead of an (often larger) Büchi automaton.

Table B.7: List of tools used to compare the translation of LTL to nonalternating automata.

tool command

F,G+simpl.+Spot ltl3tela -p1 | autfilt --high

ltl3tela ltl3tela

ltl3ba ltl3ba -H2

Spot ltl2tgba -G

35

	Introduction
	Preliminaries
	Linear Temporal Logic (LTL)
	Self-Loop Alternating Automata (SLAA)

	Basic Translation
	F-Merging Translation
	F,G-Merging Translation
	Correctness and Complexity

	SLAA Simplifications
	Basic Transition Dominance
	Acceptance-Aware Transition Dominance
	Destination Configuration Trimming

	Translation of SLAA to LTL
	Experimental Evaluation
	Settings of Comparisons on Nonparametric Formulae
	Mergeability
	Comparison of LTL to SLAA Translations
	Comparison of Nonalternating Automata
	Comparison of LTL to SLAA Translations on Parametric Formulae

	Conclusion
	ltl3tela
	LTL to SLAA Translation
	LTL to TELA Translation

	Exact Settings of Translators in Experiments

