
Witch 3: Validation of Violation
Witnesses in the Witness Format 2.0⋆

(Competition Contribution)

⋆⋆ and Jan Strejček

Masaryk University, Brno, Czech Republic
{xayaziov,strejcek}@fi.muni.cz

Abstract. Witch 3 is a new validator of violation witnesses in the wit-
ness format 2.0. Note that our previous tool, Symbiotic-Witch 2, can
validate only violation witnesses in the old GraphML format. Witch 3
validates witnesses of reachability of an error function, overflows, and in-
valid dereferences and deallocations. Similarly to Symbiotic-Witch 2,
the tool is based on symbolic execution and uses parts of the Symbi-
otic framework. Support of the witness format 2.0 in Witch 3 includes
features not supported by Symbiotic-Witch 2, such as constraints on
the program variables and function return values, specifying statements
by column, and providing the concrete statement in which the violation
occurs. These additional features can further restrict the explored state
space, and, more importantly, allow for much more precise validation.

1 Witness Validation Approach

Witch 3 is a new validator of violation witnesses based on symbolic execu-
tion. It extends the line of validators Symbiotic-Witch [1] and Symbiotic-
Witch 2 [2], which are used to validate violation witnesses in the GraphML
witness format [6] (now called 1.0). The main difference of Witch 3 is that it
processes witnesses in the witness format 2.01 [3] (also known as “the YAML for-
mat”). Since this format is based on witness segments and waypoints as opposed
to witness automata from the GraphML format, there are large differences in the
validation process compared to Symbiotic-Witch 2.

Since the tool performs symbolic execution on the llvm IR [9] of the in-
put program and some information may be lost during the compilation, we first
preprocess both the witness and the input program. The preprocessing entails
wrapping the branching conditions in the program with a special function so
that the condition is not decomposed or flipped during compilation. This ensures
that the conditions in the branching statements and the corresponding branches
are correctly mapped to those described in the witness. Another crucial step is
adjusting the witness so that the identifiers of the waypoints will be preserved
⋆ This work has been supported by the Czech Science Foundation grant GA23-06506S.

⋆⋆ Jury member of SV-COMP 2024
1 Description is available at https://gitlab.com/sosy-lab/benchmarking/sv-witnesses.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 341–346, 2024.
https://doi.org/10.1007/978-3-031-57256-2_18

Paulína Ayaziová(B)

http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_18&domain=pdf
https://eapls.org/pages/artifact_badges/

in the debug information in the llvm program. In this phase we also inject the
constraints from the assumption waypoints into the input program as calls to
a special function __VALIDATOR_assume which will be handled later. After this
preprocessing, the tool compiles the program into llvm IR and runs the internal
validator Witch-Klee on the llvm program and the preprocessed witness.

The validator begins symbolic execution in the entry point of the program, as-
sociating this state with the first segment of the witness. Throughout the process,
each state of symbolic execution is associated with one witness segment.

Whenever the tool executes an instruction that could be associated with a
waypoint of type function_enter, function_return, or branching (i.e. a func-
tion call, function return, or a branching instruction), it is checked whether this
instruction matches a waypoint of the associated segment and the corresponding
constraint is enforced on the state. More precisely, if the instruction matches
the type and location of an avoid waypoint in the segment, the negation of the
constraint in the witness is added to the path condition of the state to guarantee
that the waypoint is avoided. If the path condition is not satisfiable, the current
state of symbolic execution is terminated. Note that this is always the case for
waypoints of type function_enter, as their fixed constraint true is negated into
false. If the instruction matches the follow waypoint of a segment, we add the
given constraint to the path condition and the witness traversal moves to the
next segment.

The assumption waypoints are handled slightly differently. Since the con-
straints are already injected in the program, what remains is to enforce them
at the right time. Hence, whenever a __VALIDATOR_assume call is executed, the
tool checks whether the current state of symbolic execution is associated with
the corresponding segment. If it is not, the call is ignored and symbolic execution
continues normally. Otherwise, for a follow waypoint, the tool adds the constraint
to the path condition of the state and moves to the next segment. For an avoid
waypoint, we enforce the negation of the constraint in a similar manner. If the
resulting path condition is not satisfiable, the state is terminated.

If the symbolic executor detects a property violation, the tool investigates
whether the violating instruction matches the target waypoint, which is the last
waypoint of the violation witness. If the segment associated with the violating
state is not the last, the tool terminates the current state but continues exploring
other states of symbolic execution. This is also the case if the associated segment
is the last but the target waypoint of the segment does not match the instruction
violating the property. Otherwise, i.e., if the witness traversal reached the target
waypoint, Witch 3 confirms the witness by reporting false.

If the exploration ends without confirming the witness, there are two possible
results. Normally, Witch 3 outputs true to refute the witness. However, the
symbolic executor used by Witch 3 may replace a symbolic value by a concrete
one due to an unsupported feature (for example, it does not support symbolic
floats). This substitution can cause that not all possible execution paths are
explored and thus a valid witness can be refuted. Hence, in such instances, witness
refutation is suppressed and Witch 3 reports unknown.

342 P. Ayaziová and J. Strejček

2 Strengths and Weaknesses

The main strong point of Witch 3 is the support of all features of the for-
mat 2.0. This includes enforcing constraints on the values of program variables.
These constraints can be included also in the GraphML witnesses, but they are
ignored by both Symbiotic-Witch and Symbiotic-Witch 2 with the excep-
tion of the equality constraints on the return values of __VERIFIER_nondet_*
functions. These tools also ignore the attribute offset (replaced by column in
the witness format 2.0) specifying the exact location of an instruction on a given
program line. Such shortcomings of our older validators can lead to incorrectly
validated witnesses and more unknown results. In contrast, full support of the
new format allows Witch 3 to produce much more reliable results. Moreover,
even in the cases where our older validators produce a correct result without
using the contraints provided in the witness, Witch 3 can use the constraints to
reduce the explored state-space and thus speed up the validation.

On the negative side, the witness format 2.0 currently supports only witnesses
of reachability of an error function, overflows, and invalid dereferences and deal-
locations. Hence, Witch 3 can only be used in these categories. Once the format
is extended for more properties, we plan to implement their support.

Another shortcoming is that the tool currently requires the exact location
of a waypoint, including the optional column number. This does not cause any
incorrect results since the validation fails in the case of missing information.
Moreover, as of SV-COMP 2024, all tools which produced violation witnesses in
the format 2.0 included this information. Despite this, we consider it a weakness
and plan to fix it in future versions of the tool.

Witch 3 also inherits weaknesses from the technology that it uses. The fact
that the symbolic executor works with programs in llvm requires more prepro-
cessing on the program and the witness to ensure that no crucial information is
lost during the translation. For this reason, there are cases in which the valida-
tion process may be slower. Additionally, the program may contain some inner
nondeterminism, such as an unspecified order of evaluation, which is resolved
during the compilation. If this order is different to that prescribed by the wit-
ness, the witness may be incorrectly refuted. However, we have not yet found any
such incorrect result in practice. Most incorrect results stem from technical errors
such as missing models of library functions — these functions are then treated
as nondeterministic and pure, which may not be the case.

3 Software Architecture

Witch 3 can be divided into two components: Symbiotic [8], which is used as
a wrapper for the second component, and Witch-Klee, a witness validator for
llvm programs.

For the purposes of this tool, we extended Symbiotic 9 with scripts for pre-
processing the witness and the program as previously described. It also compiles
the program into llvm, links necessary function models, and parses the output
of the internal validator, Witch-Klee.

Witch 3: Validation of Violation Witnesses in the Witness Format 2.0 343

Witch-Klee takes the program in the llvm IR and the preprocessed wit-
ness and performs the validation. The tool is based on the symbolic executor
JetKlee, a fork of Klee [7] developed for the purposes of Symbiotic. Witch-
Klee uses the yaml-cpp2 library to parse the witness in the YAML format and
Z3 [10] as the SMT solver in symbolic execution.

Both components of Witch 3 use llvm 10.0.1.

4 Tool Setup and Configuration

The archive containing Witch 3 as it participated in SV-COMP 2024 is avail-
able on Zenodo [4]. The validation is invoked by the command

./symbiotic [--prp <prop>] [--32 | --64] --witness-check <witness> <prg>

where <prop> is the considered property, the switches --32 and --64 spec-
ify the considered architecture, <witness> is a violation witness in the YAML
format, and <prg> is the input C program. The property can be provided either
as a .prp file or one of the shortcuts no-overflow and valid-memsafety. The
default setting is the property of unreachability of the function reach_error and
the 64-bit architecture.

The version of Symbiotic used by Witch 3, as well as the internal validator
Witch-Klee, are available on GitHub (see below) under the tag svcomp24. To
build Witch 3 from its sources, build each of the components separately. To run
the validator, add the location of the Witch-Klee executable to $PATH and use
the command as presented above.

5 Software Project and Contributors

Both components of Witch 3 are available on GitHub. The source code of the
validator Witch-Klee is available at

https://github.com/ayazip/witch-klee

and the source code of the version of Symbiotic used by Witch 3 can be
found at

https://github.com/ayazip/symbiotic/tree/witch-klee.

The tool has been developed at the Faculty of Informatics of Masaryk Univer-
sity by Paulína Ayaziová under the supervision and with advice of Jan Strejček.
It is available under the MIT license and all internally used tools and libraries
(llvm, JetKlee, Z3, yaml-cpp, Symbiotic) are available under open-source
licenses that comply with SV-COMP’s policy for the reproduction of results.

2 https://github.com/jbeder/yaml-cpp

344 P. Ayaziová and J. Strejček

https://github.com/ayazip/witch-klee
https://github.com/ayazip/symbiotic/tree/witch-klee
https://github.com/jbeder/yaml-cpp

Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [5] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Witch 3 used in the competition is archived on Zenodo [4].

References

1. Ayaziová, P., Chalupa, M., Strejček, J.: Symbiotic-Witch: A Klee-based violation
witness checker (competition contribution). In: Fisman, D., Rosu, G. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244, pp. 468–473.
Springer (2022), https://doi.org/10.1007/978-3-030-99527-0_33

2. Ayaziová, P., Strejček, J.: Symbiotic-Witch 2: More efficient algorithm and wit-
ness refutation (competition contribution). In: Sankaranarayanan, S., Sharygina,
N. (eds.) Tools and Algorithms for the Construction and Analysis of Systems -
29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April
22-27, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994,
pp. 523–528. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_30

3. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. Submitted to SPIN 2024.

4. Ayaziová, P., Strejček, J.: Witch 3. Zenodo (2023). https://doi.org/10.5281/zenodo.
10064512

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579, https://doi.org/10.1145/3477579

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

8. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Symbi-
otic 9: String analysis and backward symbolic execution with loop folding (com-
petition contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 462–467. Springer (2022),
https://doi.org/10.1007/978-3-030-99527-0_32

9. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society (2004),
https://doi.org/10.1109/CGO.2004.1281665

10. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3_24

Witch 3: Validation of Violation Witnesses in the Witness Format 2.0 345

5. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS, vol. 14572,
pp. xx–yy. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57256-2_15

https://sv-comp.sosy-lab.org
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.5281/zenodo.10064512
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-57256-2_15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

346 P. Ayaziová and J. Strejček

http://creativecommons.org/licenses/by/4.0/

	Witch 3: Validation of Violation Witnesses in the Witness Format 2.0⋆ (Competition Contribution)

