
Symbiotic 10: Lazy Memory Initialization
and Compact Symbolic Execution∗

(Competition Contribution)

Abstract. Symbiotic 10 brings four substantial improvements. First,
we extended our clone of Klee called JetKlee with lazy memory ini-
tialization. With this extension, JetKlee can symbolically execute a
function without knowing its context. In SV-COMP, we use it to han-
dle extern variables. Second, we have implemented the technique called
compact symbolic execution to Slowbeast. Third, we have implemented
a non-trivial may-happen-in-parallel analysis, which improves slicing of
parallel programs. Finally, we have implemented support for violation
witnesses in the new witness format 2.0.

1 Verification Approach

Just like previous versions, Symbiotic 10 relies on a combination of static anal-
ysis, code instrumentation, and several flavors of symbolic execution (SE) [8]. It
employs two symbolic executors: Slowbeast and our fork of Klee [2] called
JetKlee. Slowbeast implements standard (forward) SE, backward SE with
loop folding [5], and compact SE [13]. JetKlee implements standard SE.

The rest of the section describes the precise workflow for various types of
properties and discusses the differences between Symbiotic 10 and Symbi-
otic 9.1, which is the version that competed in SV-COMP 2023.

Verification of the Property unreach-call For this property, Symbiotic 10
performs slicing of the given program to remove the parts that have no influence
on reaching the target function, and executes sequential portfolio of the following
engines. Each of the engines is executed for the given number of seconds. The
execution can be shorter if the engine decides or fails to decide, e.g., due to an
unsupported feature of the input program like threads or symbolic floats.

1. Forward symbolic execution by JetKlee for 333 seconds. JetKlee is ef-
ficient industrial-strength symbolic executor and most of the solved bench-
marks are solved by JetKlee.

∗ This work has been supported by the Czech Science Foundation grant GA23-06506S.
B Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 406–411, 2024.
https://doi.org/10.1007/978-3-031-57256-2_29

Martin Jonáš1(B) , Kristián Kumor1, Jakub Novák1, Jindřich Sedláček1,
Marek Trt́ık1 , Lukáš Zaoral2, Pauĺına Ayaziová1 , and Jan Strejček1

1 Masaryk University, Brno, Czech Republic
martin.jonas@mail.muni.cz

2 Red Hat, Brno, Czech Republic

http://orcid.org/0000-0003-4703-0795
http://orcid.org/0009-0009-6122-9574
http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_29&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


2. Compact symbolic execution (CSE) [13] by Slowbeast for 60 seconds. In
most cases, CSE either finishes quickly or brings no benefit compared to
standard forward symbolic execution.

3. Backward symbolic execution with loop folding (BSELF) [5] by Slowbeast
without time limit.

4. If BSELF fails, we perform forward symbolic execution by Slowbeast with-
out time limit. The reason for this is that Slowbeast has better support
for floating point arithmetic and threads than JetKlee.

If an error is found by any of the engines, it is replayed on the unsliced
code. If the replay succeeds, we generate a violation witness. If the program
is decided safe by BSELF, we generate a correctness witness containing the
generated invariants. The other engines do not support invariant generation,
therefore if the program is decided safe by any other of the engines, we generate
a trivial correctness witness.

Verification of Other Properties For other properties, Symbiotic 10 uses
the same workflow as Symbiotic 9 [4]. In a nutshell, we identify program in-
structions that can violate the property, instrument the program with code that
dynamically checks the property violation before each of the identified instruc-
tions, slice the program, and run either JetKlee or Slowbeast.

Compact Symbolic Execution We extended Slowbeast with compact sym-
bolic execution (CSE) [13]. CSE analyzes each looping path of the execution and
tries to summarize it by a quantified formula that describes the effect of κ iter-
ations of that cyclic path, where κ is a free variable. For example, if we apply
compact symbolic execution to the loop

while (i < n) { if (A[i] = 0) { break; }; i += 2; },
the path condition will be augmented by the quantified formula

κ ≥ 0 ∧ ∀τ. (0 ≤ τ < κ → (i+ 2τ < n ∧A[i+ 2τ ] ̸= 0)) .

This allows symbolic execution to fully explore some programs with unbounded
loops and find deep counterexamples. However, it works only for looping paths
of specific form and requires potentially expensive quantified smt reasoning.

Lazy Memory Initialization We extended JetKlee with lazy memory ini-
tialization, which constructs symbolic memory objects lazily during the first
access to that object, not during its initialization. This allows isolated symbolic
execution of functions without knowing their arguments and calling context. As
all programs in SV-COMP start with the main function and there is no need to
analyze an isolated function, we use this feature in the competition only to sup-
port externally defined variables. Note that this cannot be achieved by merely
making the externally defined variable symbolic, as it can be a pointer to exter-
nal memory, which needs to be properly initialized. For this reason, externally
defined variables were not supported by the previous version of Symbiotic.

Symbiotic 10: Lazy Memory Initialization and CSE 407



Table 1. The comparison of Symbiotic 9.1 and Symbiotic 10 on the intersection of
benchmarks from SV-COMP 2023 and SV-COMP 2024. The table is computed from
the official results of SV-COMP 2023 and SV-COMP 2024.

Property Benchmarks Both solved Only 10 solved Only 9.1 solved

no-data-race 783 0 0 0
no-overflow 7502 442 4102 1
termination 1809 1220 10 31
unreach-call 9537 3577 116 225
valid-memcleanup 61 35 0 0
valid-memsafety 4113 416 1427 34

May-Happen-in-Parallel Analysis We improved slicing of parallel programs
by employing a static may-happen-in-parallel analysis [11], which overapproxi-
mates the set of pairs of program locations that can happen in parallel in different
threads. Previously, Symbiotic assumed that all possible pairs of instructions
can happen in parallel, which reduced effectivity of slicing. The implementation
currently does not consider thread synchronization. For more details, see the
bachelor’s thesis about the implementation [12]. In the future, we want to use
this analysis also for proving some no-data-race properties.

Other Changes All external dependencies of Symbiotic 10 have been updated
to newer versions and all parts of Symbiotic 10 have been ported to llvm 14.
Notably, this concerns JetKlee, into which we merged most of the upstream
changes from the base Klee (more than 300 commits).

We extended JetKlee with support for generating yaml-based violation
witnesses in witness format 2.03. Slowbeast still supports only the older wit-
ness format 1.0 based on GraphML.

We also fixed incorrect overflow checking of 64-bit integers and incorrect
modeling of fscanf for the purposes of static analysis and instrumentation. Due
to these problems, Symbiotic 9.1 did not support any of *-Juliet benchmarks,
which are now fully supported.

Unlike the previous versions of Symbiotic, Symbiotic 10 does not employ
Predator [6] as a static analyzer. This is due to technical difficulties during
porting our version of Predator to llvm 14. This is a temporary solution and
we plan include Predator in the future versions of Symbiotic.

2 Strengths and Weaknesses

Standard forward symbolic execution suffers from path explosion and is unable
to fully analyze programs with unbounded loops. Backward symbolic execution
with loop folding and compact symbolic execution can finish analysis even for

3 https://gitlab.com/sosy-lab/benchmarking/sv-witnesses

408 M. Jonáš et al.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses


some programs with unbounded loops, yet they still suffer from path explosion
and will time out on programs with a large number of branching paths.

The results of SV-COMP 2024 show that the combination of static analysis,
instrumentation, program slicing, and several variants of symbolic execution are
efficient in practice, in particular for bug hunting. The static analyses are often
able to prove that some parts of the code are correct or do not influence the
property. These parts of the code then can be removed by slicing. This partly
mitigates the scalability problem caused by path explosion.

Results of Symbiotic 10 in SV-COMP 2024 Symbiotic 10 participated
in all categories of SV-COMP 2024 for C programs. It won silver medals in
categories MemSafety and FalsificationOverall [1]. Symbiotic 10 produced 19
wrong answers; most of these are caused by imprecise modeling of the system
functions setlocale and getopt long. They are not fundamental problems of
the approach and will be fixed.

Table 1 compares the results of Symbiotic 9.1 in SV-COMP 2023 and
Symbiotic 10 in SV-COMP 2024 on the benchmarks that were used in both
years. Symbiotic 10 was able to correctly solve 5655 benchmarks that were not
solved by Symbiotic 9.1. From these, 5366 benchmarks (3990 no-overflow +
1376 valid-memsafety) are from subcategories *-Juliet, which the previous
version of Symbiotic did not support. Unfortunately, 147 of the previously de-
cided benchmarks from ConcurrencySafety-main with property unreach-call

were not decided by Symbiotic 10 due to a bug in our version of Slowbeast.
Additionally, 31 of previously decided benchmarks (16 in Memsafety-Heap and
15 in Memsafety-LinkedLists) were not decided by Symbiotic 10 due to ex-
clusion of Predator. If Predator had not been excluded or the wrong results
had been fixed, Symbiotic 10 would have won the MemSafety category.

3 Software Architecture, Usage, and Contributors

All components of Symbiotic 10 use llvm 14 [9] for the intermediate repre-
sentation. To obtain the llvm bitcode from the verified C program, Symbiotic
relies on clang. Slicer and instrumentation module are written in C++ and rely
on the library DG [3]. JetKlee is implemented in C++ and Slowbeast [14] is
written in Python. Both symbolic executors use Z3 [10] as the smt solver. Con-
trol scripts are written in Python. All the components and external dependencies
have permissive open-source licenses.

Binary form of Symbiotic 10 is available Zenodo [7], source code is available
from https://github.com/staticafi/symbiotic under the tag svcomp24. You can
run Symbiotic with

bin/symbiotic --sv-comp --prp <prpfile> [--32] <source>.

For details, see the file README.md in the mentioned repository.
Symbiotic 10 has been developed at the Faculty of Informatics of Masaryk

University by the authors of this paper under the supervision of Jan Strejček.

Symbiotic 10: Lazy Memory Initialization and CSE 409

https://github.com/staticafi/symbiotic


References

1. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

2. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full
papers/cadar/cadar.pdf

3. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: ATVA 2020.
LNCS, vol. 12302, pp. 557–563. Springer (2020), https://doi.org/10.1007/
978-3-030-59152-6 33

4. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Sym-
biotic 9: String analysis and backward symbolic execution with loop fold-
ing - (Competition Contribution). In: Fisman, D., Rosu, G. (eds.) TACAS
2022. Lecture Notes in Computer Science, vol. 13244, pp. 462–467. Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0 32, https://doi.org/10.1007/
978-3-030-99527-0 32

5. Chalupa, M., Strejček, J.: Backward symbolic execution with loop folding. In: SAS
2021. LNCS, vol. 12913, pp. 49–76. Springer (2021). https://doi.org/10.1007/978-
3-030-88806-0 3, https://doi.org/10.1007/978-3-030-88806-0 3

6. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for check-
ing manipulation of dynamic data structures using separation logic. In: CAV
2011. LNCS, vol. 6806, pp. 372–378. Springer (2011), https://doi.org/10.1007/
978-3-642-36742-7 49

7. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Shandilya, S., Trt́ık, M., Zao-
ral, L., Strejček, J.: Symbiotic 10: Submission to SV-COMP 2024 (Nov 2023).
https://doi.org/10.5281/zenodo.10202594

8. King, J.C.: Symbolic execution and program testing. Communications of ACM
19(7), 385–394 (1976)

9. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society
(2004), https://doi.org/10.1109/CGO.2004.1281665

10. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

11. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An Efficient Algorithm for Computing
MHP Information for Concurrent Java Programs. In: Nierstrasz, O., Lemoine, M.
(eds.) ESEC / SIGSOFT FSE 1999. Lecture Notes in Computer Science, vol. 1687,
pp. 338–354. Springer (1999). https://doi.org/10.1007/3-540-48166-4 21, https://
doi.org/10.1007/3-540-48166-4 21

12. Sedláček, J.: May-Happen-in-Parallel Analysis for Slicing of Parallel Programs.
Bachelor’s thesis, Masaryk University (2024), https://is.muni.cz/th/he6cd/

13. Slaby, J., Strejček, J., Trt́ık, M.: Compact symbolic execution. In: Hung, D.V.,
Ogawa, M. (eds.) ATVA 2013. Lecture Notes in Computer Science, vol. 8172, pp.
193–207. Springer (2013). https://doi.org/10.1007/978-3-319-02444-8 15, https://
doi.org/10.1007/978-3-319-02444-8 15

14. Slowbeast repository. https://gitlab.com/mchalupa/slowbeast (2021)

410 M. Jonáš et al.

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.5281/zenodo.10202594
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-48166-4_21
https://doi.org/10.1007/3-540-48166-4_21
https://doi.org/10.1007/3-540-48166-4_21
https://is.muni.cz/th/he6cd/
https://doi.org/10.1007/978-3-319-02444-8_15
https://doi.org/10.1007/978-3-319-02444-8_15
https://doi.org/10.1007/978-3-319-02444-8_15
https://gitlab.com/mchalupa/slowbeast


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Symbiotic 10: Lazy Memory Initialization and CSE 411

http://creativecommons.org/licenses/by/4.0/

	Symbiotic 10: Lazy Memory Initialization and Compact Symbolic Execution

