
Gray-Box Fuzzing via Gradient Descent
and Boolean Expression Coverage⋆

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{martin.jonas,strejcek,trtikm,492717}@mail.muni.cz

Abstract. We present a gray-box fuzzing approach based on several
new ideas. While standard gray-box fuzzing aims to cover all branches
of the input program, our approach primarily aims to cover both results
of each Boolean expression. To achieve this goal, we track the distances
to flipping these results and we dynamically detect the input bytes that
influence the distance. Then we use this information to efficiently flip the
results. More precisely, we apply gradient descent on the detected bytes
or we create new inputs by using detected bytes from different inputs.
We implemented our approach in a tool called Fizzer. An evaluation
on the benchmarks of Test-Comp 2023 shows that Fizzer is fully com-
petitive with the winning tools of the competition, which use advanced
formal methods like symbolic execution or bounded model checking, usu-
ally in combination with fuzzing.

1 Introduction

Fuzzing is a technique for automated generation of test inputs for a given pro-
gram. The goal of fuzzing is to generate tests with high code coverage and to
quickly detect bugs in the code. We distinguish three basic kinds of fuzzing
based on their use of the given program. Black-box fuzzing [18] only runs the
given program on various inputs and observes the outputs. Gray-box fuzzing [18]
first instruments the program to get some information about performed execu-
tions. The instrumented code typically tracks the information about the basic
blocks visited during the execution. While black-box and gray-box fuzzing rely
on dynamic analysis of the original or instrumented code, white-box fuzzing [18]
combines dynamic analysis with some static analysis of the code, typically con-
colic execution, symbolic execution, or bounded model checking.

Black-box fuzzers have only limited efficiency due to the lack of information.
Gray-box fuzzers and white-box fuzzers proved to be very efficient and they
are routinely applied in software industry. For example, the gray-box fuzzer
AFL [27] discovered dozens of bugs in many recognized open-source projects
and the white-box fuzzer Sage [11] is intensively used in Microsoft.

The standard approach of successful gray-box fuzzers is to collect only a
very limited information about each program execution and to quickly perform
⋆ This work has been supported by the Czech Science Foundation grant GA23-06506S.
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 90–109, 2024.
https://doi.org/10.1007/978-3-031-57256-2_5

Martin Jonáš , Jan Strejček , Marek Trtík(B) , and Lukáš Urban

https://orcid.org/0000-0003-4703-0795
https://orcid.org/0000-0001-5873-403X
https://orcid.org/0009-0009-6122-9574
https://orcid.org/0009-0004-9781-3071
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_5&domain=pdf
http://eapls.org/pages/artifact_badges/

as many executions as possible. In this paper we suggest an approach that gath-
ers slightly more information about program executions and uses it to select
uncovered parts of the code and make more targeted attempts to cover it. We
can illustrate some ideas of our approach on a simple example. Consider a pro-
gram that contains a branching statement if (x > 42) and assume that some
program execution passed its true branch. During this program execution, we
saved the value of x - 42 to know the distance to entering the false branch.
When we decide to cover the false branch, we first repeatedly execute the pro-
gram on modified inputs to detect the bytes of the input that have some influence
on the distance value. This is called a sensitivity analysis and the detected bytes
are called sensitive. We then propose two analyses that use the sensitive bytes to
cover the uncovered branch. One analysis performs a dynamic gradient descent
on the sensitive bytes with the aim to minimize the absolute value of the distance
and to enter the false branch. Alternatively, if we already know another input
that entered the false branch of this statement in a different calling context,
we can try to use the value of its sensitive bytes instead of the sensitive bytes
of the current input. This analysis is called byteshare analysis. Now consider a
slightly different program where the branching statement has the form if (res)
where res is a Boolean variable assigned before by res = x > 42. Clearly, we
want to track the distance to changing the value of res. Hence, we in fact do not
track distances for branching conditions, but the distances for values of atomic
Boolean expressions. Roughly speaking, our approach aims to generate tests
such that each atomic Boolean expression in each calling context is evaluated
to true and to false in some program executions. Our fuzzing approach tracks
its progress with the use of atomic Boolean execution tree and we talk about
Boolean expression coverage.

The following section introduces the basic terminology used in the paper and
states our assumptions on the analysed programs. Section 3 then describes the
basic concepts of our approach, in particular the Boolean expression coverage,
the information we collect from each program execution and how we obtain this
information, the atomic Boolean execution tree, and the fuzzing algorithm. This
algorithm iteratively tries to close vertices of the tree by generating inputs in
which each of the vertices evaluates both to true and to false in order to
either increase the Boolean expression coverage or to discover new parts of the
tree. These inputs are generated by sensitivity analysis, byteshare analysis, and
gradient descent analysis presented in Section 4. The selection strategy of the
vertex to be closed is briefly explained in Section 5. Note that the page limit
does not allow describing all the technical details of the approach. They can be
found in the corresponding technical report [15].

We have implemented the presented fuzzing approach in a tool called Fizzer.
The architecture and some implementation aspects of the tool are described in
Section 6. Further, we have run Fizzer on all benchmarks of the Cover-Branches
category of the Competition on Software Testing (Test-Comp) 2023 [5]. We eval-
uated the tests generated by Fizzer using the competition infrastructure which
measures the achieved branch coverage. The results presented in Section 7 show

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 91

that our tool is competitive with the top-ranking tools of Test-Comp 2023,
namely FuSeBMC [2], VeriFuzz [21], and CoVeriTest [6]. Note that our
tool is a pure gray-box fuzzer while FuSeBMC and VeriFuzz combine dy-
namic analysis with static analyses like symbolic execution and bounded model
checking. CoVeriTest fully relies on static methods like predicate analysis with
the CEGAR loop and value analysis. Finally, Section 8 discusses some related
work and Section 9 sums up the presented results and outlines future work.

2 Preliminaries

The ideas presented in this paper can be adopted for various kinds of programs.
For ease of presentation, here we consider sequential C programs that get input
only via functions nondet_char(), nondet_int(), and nondet_float() which
return values of the corresponding type.

For simplicity, we assume that these are the only types that can be read from
the input and we define the set InputTypes = {char, int, float}. We define the
set of typed values TypedValues = {(v, t) | t ∈ InputTypes , v is a value of type t}
and denote the pairs (v, t) ∈ TypedValues as v : t, e.g., 3 : int is the value 3 of
type int. We also work with untyped inputs, which are arbitrary finite sequences
of bits 0 and 1. Untyped inputs are denoted by a standard language-theoretic
notation, e.g., 112 is a sequence of 12 elements 1.

An expression occurring in a program is called an atomic Boolean expression
(abe) if it has type bool and it is not a variable, not a call of a function whose
definition is a part of the program, and not a result of applying logical operators,
i.e., conjunction, disjunction, and negation. For example, the expression (x > 3)
&& foo(x,y) && cond, where foo is a function defined in the program and cond
is a variable, contains only one abe x > 3. By abe we always mean a particular
occurrence of the expression in the program.

We assume that the control flow is fully determined by the values of abes.
This property may not hold for programs with switch statements, function
calls via input-dependent function pointers, etc. However, such programs can be
transformed into equivalent ones satisfying our assumption.

By a calling context we mean the sequence of function calls that are currently
being evaluated. The outermost function call is the first element of the sequence
and the last one is the function whose body is executed at the moment. In other
words, the calling context roughly corresponds to the call stack.

We sometimes denote a sequence x1x2 . . . xn as ⟨x1, x2, . . . , xn⟩ or ⟨xi⟩1≤i≤n.

3 Overview of Our Fuzzing Approach

This section provides an overview of the key concepts that are used in our fuzzing
algorithm and presents the high-level view of the algorithm. The key heuristics
for input generation are explained later in Sections 4 and 5.

92 M. Jonáš et al.

void main() {
int x = nondet_int ();
if (x < 42) {

// branch 1
} else {

// branch 2
}

}

(a) Trivial case.

void main() {
int x = nondet_int ();
bool res1 = x < 42;
x++;
bool res2 = x < 42;
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(b) Depends on a non-
local comparison.

bool compare(int v) {
return v < 42;

}

void main() {
int x = nondet_int ();
bool res1 = compare(x);
x++;
bool res2 = compare(x);
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(c) Depends on a comparison
coming from a different scope.

Listing 1.1: Example C codes showing that the values that influence which branch
is taken can be both lexically far away from the branching statement and can
be behind several layers of indirection.

3.1 Branch Coverage via Boolean Expression Coverage

The main idea of the proposed approach is to assign to each executed branching
statement a metric called distance reflecting how far the current program state is
from evaluating the branching expression to the opposite Boolean value. Thanks
to this metric, we can use gradient descent to generate inputs that either flip the
Boolean value or are close enough to the flipping point so that the actual flip
can be achieved by small mutations of the input.

It is easy to define the distance for branchings like if (x > 42): we set the
distance to x−42 and minimize the absolute value |x−42| to get close to the point
where the result of the branching expression changes. However, as Listing 1.1
shows, the situation can be far more complex. The comparison does not have
to occur in the branching expression itself, but it can be precomputed earlier in
the program, it can come from a function call or be read from an array, etc.

We sidestep this issue by assigning the distances to atomic Boolean expres-
sions and trying to flip their values rather than doing the same for branch-
ing expressions. In other words, we approach the goal of generating tests with
maximal branch coverage indirectly by maximizing Boolean expression coverage.
Intuitively, we try to generate a set of inputs such that every atomic Boolean
expression evaluates to true on some input and to false on some input. In fact,
we want to generate inputs leading to both Boolean values of each abe in each
possible calling context. The importance of the calling context is illustrated on
the abe v < 42 in the code of Listing 1.1c: we clearly want to distinguish the
case when the value of v < 42 is used to set the value of res1 from the case
when it is used to set the value of res2. The precise goal of our approach will
be formulated later using the terms atomic Boolean execution tree and covered
vertex of the tree introduced in Definitions 1 and 2, respectively.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 93

Every time an abe e is evaluated, its distance is computed by the expression

dist(e) =

{
value(l)− value(r), if e = l ▷◁ r where ▷◁ ∈ {=, ̸=, <,≤, >,≥},
value(e), otherwise.

In the first case, the value(l) and value(r) refer to the numerical values of l and
r, respectively, before the evaluation of e. In the second case, value(e) is defined
as 1 if e evaluates to true and it is defined as 0 if e evaluates to false.

Note that the branch coverage and the atomic Boolean expression coverage
do not precisely match. For example, we can achieve the full branch coverage of
the code in Listing 1.1b by two tests; with input values 40 : int and 41 : int.
However, the true branch of the first abe x < 42 is not covered by either of
these tests. Nevertheless, our experimental evaluation shows that maximizing the
atomic Boolean expression coverage also leads to test inputs with high branch
coverage.

3.2 Instrumentation and Execution

From each program execution, our approach needs to get the sequence of eval-
uated abes including their calling contexts, their Boolean values, and their dis-
tances. To obtain this information, the program is instrumented with the follow-
ing functions:

– To track the calling context, we assign a unique identifier id to each function
call (except nondet_* function calls) and insert __instr_call(id) before
the call and __instr_return() after the call. The inserted function calls
maintain the current stack of open function calls.

– To track all evaluated abes and their values, distances, and calling con-
texts, we assign a unique identifier id to each abe e and insert the call
__instr_abe(id, e, dist(e)) before the abe. The calling context is inter-
nally retrieved from the tracked stack of open function calls.

Listing 1.2 provides the instrumented programs from Listings 1.1b and 1.1c.
Besides the inserted function calls, we also alter the functions nondet_type()

to collect the information about the values and types read from the input stream
and when they were read.

In the following, we assume that there exists a function execute(P ′, input)
that gets an instrumented program P ′ and an untyped input input ∈ {0, 1}∗ and
returns the trace of the execution of P ′ on input .0ω, i.e., input extended with
infinitely many zero bits. The trace is a pair (usedInput , π) where

– usedInput is the sequence of TypedValues that were read by the program P ′

during the execution.
– π is the sequence ⟨(ei, ci, ri, di, ni)⟩1≤i≤k of tuples, where each tuple repre-

sents one evaluation of an abe: ei is the evaluated abe, ci is the calling
context in which it was evaluated, ri is the result of the evaluation, di is the
corresponding value of dist(ei), and ni is the number of bytes of the input
that have been read before the evaluation.

94 M. Jonáš et al.

void main() {
int x = nondet_int ();
__instr_abe (1, x < 42, x - 42);
bool res1 = x < 42;
x++;
__instr_abe (2, x < 42, x - 42);
bool res2 = x < 42;
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(a) Instrumentation of Listing 1.1b

bool compare(int v) {
__instr_abe (1, v < 42, v - 42);
return v < 42;

}

void main() {
int x = nondet_int ();
__instr_call (1);
bool res1 = compare(x);
__instr_return ();
x++;
__instr_call (2);
bool res2 = compare(x);
__instr_return ();
if (res1 || res2) {

// branch 1
} else {

// branch 2
}

}

(b) Instrumentation of Listing 1.1c

Listing 1.2: Instrumented programs from Listings 1.1b and 1.1c

Note that the trace is always finite as P ′ is executed with some limits on the
number of evaluated abes.

Example 1. Let P ′ be the instrumented program from Listing 1.2b. The function
execute(P ′, 032) returns the trace (⟨0 : int⟩, π), where

π =
〈
(v < 42, ⟨1⟩, true,−42, 4), (v < 42, ⟨2⟩, true,−41, 4)

〉
.

In other words, the execution read only a single int of value 0 from the input
and these 4 bytes were read before the first abe evaluation. Further, the abe
v < 42 with identifier 1 (for readability denoted directly by the expression) has
been evaluated twice: once in the calling context ⟨1⟩, value true, and distance
−42 and later with the calling context ⟨2⟩, value true, and distance −41.

3.3 Atomic Boolean Execution Tree

Each execution trace (usedInput , ⟨(ei, ci, ri, di, ni)⟩1≤i≤k) determines the sequence
r1r2 . . . rk of abe values. Our fuzzing approach tracks the information about all
such sequences seen so far by maintaining an atomic Boolean execution tree.

Definition 1 (atomic Boolean execution tree, abet). An atomic Boolean
execution tree (abet) is a nonempty prefix-closed finite set T ⊆ {true, false}∗.
Elements of T are vertices, ε is the root, and elements v.true, v.false are chil-
dren of v. We assume that each vertex is either a leaf or it has two children, i.e.,
for each v ∈ T it holds v.true ∈ T ⇐⇒ v.false ∈ T .

Our method starts with the tree T = {ε}. Whenever we obtain a trace
(usedInput , ⟨(ei, ci, ri, di, ni)⟩1≤i≤k), we update T to contain the sequence r1 . . . rk

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 95

ε

expr : v < 42
ctx : [1]
trc: ([0 : int], π)false

expr : ⊥

true

expr : v < 42
ctx : [2]
trc: ([0 : int], π)true.false

expr : ⊥
true.true
expr : end

false true

false true

Fig. 1: An example of an abet.

and all its prefixes. Further, with each newly added vertex we also add its sibling.
We say that the trace visits a vertex v if v is a prefix of r1r2 . . . rk.

As we mentioned in the preliminaries, we assume that the next evaluated
abe of each program is fully determined by the values of abes evaluated before
it. This means that each inner vertex v ∈ T determines the corresponding abe
and its calling context. The abe and the calling context corresponding to v are
denoted by expr(v) and ctx (v). We extend the notation expr(v) also to leaves.
We set expr(v) = end if we have seen a trace with the sequence v of abe values.
If this is not the case and v is in T only because of its sibling (or as the only node
in the initial tree {ε}), we set expr(v) = ⊥. Note that a leaf v with expr(v) = ⊥
can become a leaf with expr(v) = end or even an inner node if we later obtain
a trace that visits v. Similarly, a leaf v with expr(v) = end can become an inner
node. This happens for example when v originally represents a trace that ends
with an error (e.g., division by zero) and later we found a longer trace visiting
v that avoids the error.

Finally, to each inner vertex v ∈ T we associate some trace that visits it. The
trace is denoted as trc(v).

An example of an abet can be found in Figure 1. It represents the tree
for the instrumented program from Listing 1.2b after obtaining the first trace
(⟨0 : int⟩, π) given in Example 1.

Definition 2 (Covered vertex). An inner vertex v ∈ T is said to be covered
if there are inner vertices vt, vf ∈ T satisfying expr(v) = expr(vt) = expr(vf),
ctx (v) = ctx (vt) = ctx (vf), expr(vt.true) ̸= ⊥, and expr(vf .false) ̸= ⊥. An
inner vertex that is not covered is called uncovered.

Definition 3 (Open/closed vertex). An inner vertex v ∈ T is said to be
open if expr(v.true) = ⊥ or expr(v.false) = ⊥. An inner vertex that is not
open is called closed.

3.4 Fuzzing Algorithm

A high-level description of the fuzzing algorithm is given in Algorithm 1. The
algorithm starts with instrumentation of the given program P (line 1) and ini-

96 M. Jonáš et al.

Algorithm 1 Fuzzing algorithm
1: create instrumented program P ′ from P (see Section 3.2)
2: T ← {ε}
3: (usedInput , π) ← execute(P ′, ε)
4: processTrace(usedInput , π)
5: while some inner vertex of T is not covered do
6: select an unprocessed open vertex v from T (see Section 5)
7: if no v is selected then end test generation
8: try to close v in T using an input generation analysis (see Section 4)

tialization of the abet T (line 2). Then it executes the instrumented program
on the stream of zero bits (line 3) to obtain an initial trace (usedInput , π) where
π is of the form ⟨(ei, ci, ri, di, ni)⟩1≤i≤k.

On line 4, the trace is processed by processTrace(usedInput , π). This func-
tion updates T with the sequence r1r2 . . . rk as described in Section 3.3. For
each inner vertex v ∈ T visited by the current trace and not visited by any trace
before, we set trc(v) to the current trace. Further, for each vertex v ∈ T visited
by the current trace and another trace before, we compute the value

∑|v|+1
i=1 d2i

and if it is smaller than the corresponding value for trc(v), we set trc(v) to the
current trace. Our practical experiments showed that keeping the trace with
the smaller sum of squares of di leads to better results than minimizing only
the current distance |d|v|+1|. Finally, the function processTrace(usedInput , π)
saves usedInput to the output test suite if it is in trc(v) of some vertex v at this
moment. Otherwise, the trace is completely discarded.

The main fuzzing loop (line 5) iterates until all vertices in T are covered. In
each iteration, we select an unprocessed open vertex v ∈ T (line 6). A vertex is
processed if it has been analyzed by all input generation analyses. If we fail to
select v, the fuzzing algorithm terminates (line 7). Otherwise, we try to close v
by some input generation analysis (line 8). The selection process and the input
generation analyses are described in Sections 5 and 4, respectively.

4 Input Generation

We propose three methods to generate new inputs with the aim to close the
selected vertex: sensitivity analysis, byteshare analysis, and gradient descent.
When a vertex is selected, we execute the first of these analyses that has not
been executed yet for the vertex. The order is important, as byteshare and gra-
dient descent analyses need the information about sensitive bytes, and byteshare
analysis is significantly cheaper than the gradient descent analysis.

In all the analyses, v is the vertex we want to close, we assume without loss
of generality that expr(v.true) = ⊥, and we define l = |v| + 1, i.e., the depth
of v. The goal of all analyses is to generate an input for which the resulting trace
visits v and continues to v.true. In all the analyses, trc(v) = (usedInput , π)
denotes the current trace assigned to the vertex v, with the typed values read

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 97

by the trace usedInput = ⟨ini : ti⟩1≤i≤n and the sequence of abe evaluations
π = ⟨(ei, ci, ri, di, ni)⟩1≤i≤k. Moreover, whenever any of the analyses executes
P ′, the resulting execution trace is processed by processTrace function.

4.1 Sensitivity Analysis

The goal of the analysis is twofold. First, it detects so-called sensitive bytes of
vertex v, denoted as sbytes(v). Let us denote as bi,j the j-th byte in the i-th
typed value ini. We check whether bi,j is sensitive by mutating each bit of the
byte bi,j separately and executing the program P ′ on each one-bit mutation. If
the resulting trace with π′ = ⟨(e′i, c′i, r′i, d′i, n′

i)⟩1≤i≤k′ still visits v and the value
of the distance function in the node v changes, i.e., d′l ̸= dl, the whole byte is
considered sensitive and is added to sbytes(v). We also try changing the whole
value ini to several selected special values, e.g., the smallest and the greatest
value of the type ti and special floating-point values, if ti is float.

Second, during the computation of sensitive bytes, we also extend the tree
with each executed trace. The sensitivity analysis therefore also effectively works
as a local neighborhood search around the previous input of the vertex v.

Observe that when computing sensitive bytes of the vertex v, we can simul-
taneously use the resulting traces to determine the sensitive bytes of all prede-
cessors of v. We use this observation as an optimization in the implementation
to reduce the number of sensitivity analysis executions.

4.2 Byteshare Analysis

Let u be an inner vertex of the current tree T with the same abe as v (the
contexts may differ), with a non-empty set of the sensitive bytes, and whose suc-
cessor u.true is not a leaf. For each such vertex u, the analysis combines inputs
from trc(u.true) and trc(v) into a new input. More precisely, the new input is
the same as trc(v), but for each j ∈ {1, 2, . . . ,min(|sbytes(v)|, |sbytes(u)|)}, we
replace the value of the j-th sensitive byte of v by the value of the j-th sensitive
byte of u in trc(u.true). The idea behind this construction is that we keep the
new input similar to the original input of trc(v) so that the execution trace will
likely visit v, but we replace the sensitive bytes of v by those of u.true, which
might steer the execution to the desired child.

Note that sbytes(v) and sbytes(u) may be completely different bytes. The
size of the sets may also differ. Since we lack information for building a mapping
between sbytes(v) and sbytes(u), we simply map the bytes based on their order.

4.3 Gradient Descent with Multi-sampling and Locking

We extend the notion of sensitivity to the typed inputs. An element of the
sequence usedInputs is called sensitive in v if it contains at least one byte sensitive
in v. The gradient descent analysis tries to minimize the absolute value of the
distance for v by changing only the sensitive typed inputs of the vertex v. We

98 M. Jonáš et al.

Algorithm 2 Gradient descent for vertex v from seed x and distance f(x)

1: while v is open and the number of steps is below the predefined bound do
2: for all i ∈ {1, . . . ,m} do
3: compute ∇if(x) as |ComputeDistance(x1,...,xi−1,xi+∆xi,xi+1,...,xm)|−|f(x)|

∆xi

4: lock each ∇if(x) which is not finite
5: while ||∇f(x)||2 is finite and non-zero do
6: λ ← |f(x)| / ||∇f(x)||2
7: if λ is zero or not finite then return
8: V ′ ← ∅
9: for all e ∈ {0,−1, 1,−2, 2,−3, 3} do

10: x′ ← x− 10eλ∇f(x)
11: V ′ ← V ′ ∪ {(x′, ComputeDistance(x′))}
12: let (x′, f(x′)) ∈ V ′ be the pair with the smallest finite |f(x′)|
13: if |f(x′)| < |f(x)| then
14: x ← x′, f(x) ← f(x′)
15: break
16: else
17: lock all extreme coordinates ∇if(x)
18: if no coordiate was locked then return

fix the values of the inputs that were not identified as sensitive as they likely do
not influence the value of the distance. In particular, we minimize the function
f(x) that receives an input vector of m values that correspond to sensitive
inputs of the vertex v. The value of the function f(x) is computed by a function
ComputeDistance(x) that:

1. Creates the input sequence input ′ by replacing the sensitive inputs of the
original input from trc(v) by the values specified in x.

2. Executes the program on input ′ and obtains the trace (usedInput ′, π′), where
π′ = ⟨(e′i, c′i, r′i, d′i, n′

i)⟩1≤i≤k′ .
3. If the trace π′ does not visit v, returns ∞.
4. Otherwise returns the obtained distance value at the vertex v, i.e., d′l.

The search for the desired values of x is motivated by the following idea. If
x is chosen from a small neighborhood around the global minimum of |f(x)|,
the value f(x) has roughly the same chance of being positive as negative. I.e.,
there is roughly the same chance of expr(v) being evaluated to true as false.
Therefore, we repeatedly run the gradient descent from randomly chosen seeds
x to approach towards the minimum. Along the way, we perform sampling in
the descent direction. This sampling also helps escaping from local minima by
trying more values of the function f(x).

Our gradient descent starting from one random seed x is formally described
in Algorithm 2. We repeatedly perform gradient descent steps from the initial
seed x until we generate an input that closes the open vertex v or reach the
predefined bound on gradient descent steps. In the loop at line 2, we numerically
compute coordinates ∇if(x), one for each variable xi, of the gradient vector

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 99

∇f(x). The coordinates are computed using forward differences, where ∆xi > 0
is the smallest change of that variable. Since the algorithm works only with finite
values, all non-finite coordinates ∇if(x) are locked, i.e., they are set to zero and
we do not move in these coordinates in the gradient step.

The loop at line 5 performs a single gradient step. It first computes the value
of learning rate λ at line 6, which has the property that the linear approximation
of the function f at x is zero at the input x− λ∇f(x). Next we compute a set
V ′ of samples x′ (see the loop at line 9), each representing a candidate for
the gradient step. Observe that the samples are separated by multipliers 10e

ranging over several orders of magnitude. These are the samples we mentioned
earlier, which can both explore the small neighborhood of the global minimum
and escape from local minima. Only the sample x′ with the smallest |f(x′)| is
considered in the gradient step (see line 12). If none of the samples decreases
the value of the function, we are stuck in a local minimum and try to escape
it by locking more coordinates of the gradient. Namely, we identify and lock
coordinates with high absolute values compared to others as they dominate
the descent direction. By their locking, we can dramatically change the descent
direction and potentially move towards the global minimum. If all coordinates are
locked, i.e., set to zero, ||∇f(x)||2 =

∑
i(∇if(x))

2 will be zero and the gradient
descent terminates.

The gradient descent algorithm is repeatedly called with randomly chosen
seed inputs x and the starting distance f(x) = ComputeDistance(x), until the
target vertex is closed1 or we exceed the predefined bound on the number of
seeds to try. We skip all the seeds x for which ComputeDistance(x) is infinite.
More details of the algorithm can be found in the technical report [15].

5 Target Vertex Selection

We now briefly describe how we select vertices that are targeted by the analyses
from the previous section. First, the heuristic tries to select a suitable uncovered
vertex that has not been processed yet. Second, if all uncovered vertices have
been processed, it means that none of the analyses was able to cover them. In this
case, we try to select an open unprocessed vertex and try to close it. The detailed
description of the selection process is available in the technical report [15].

5.1 Selecting an Uncovered Vertex

Primarily, we want to target uncovered vertices. Before that, we want to explore
program executions with diverse numbers of loop iterations. To this end, we
would like to identify all loop head vertices in the abet, which can be expensive.
Therefore, we perform loop head detection lazily on the fly. We maintain a
worklist of loop heads H and if it is not empty, we remove its random vertex

1 In fact, Algorithm 2 is immediately terminated when the target vertex is closed by
any execution of ComputeDistance.

100 M. Jonáš et al.

and select it as the target. Only if the worklist H is empty, we select a suitable
vertex v in the tree based on vertex selection heuristics and detect loop heads
on the path to the vertex v. If there are loop heads on the path to v, we put
some of them to H based on the loop head selection heuristics and randomly
take one of them as the target vertex. If there are no loop heads on the path to
v or the loop heads on the path to v have been processed, we select v itself as
the target vertex. We now describe the heuristics that we use for selection the
suitable vertex v and for selection of loop heads on the path to v.

Vertex Selection Heuristics The selection relies on the classification of the
uncovered vertices into three categories: input-sensitive vertices with sbytes(v) ̸=
∅, input-insensitive vertices with sbytes(v) = ∅, and vertices with unknown sensi-
tivity, on which the sensitivity analysis has not been performed yet. Additionally,
we call a vertex likely input-insensitive (lii), if it has unknown sensitivity and
there is an input-insensitive vertex with the same abe and calling context in the
current abet.

The input-insensitive vertices often arise in practice. For example, when pro-
cessing the loop for (int i = 0; i < 1000; ++i), all the abet vertices with
the abe i < 1000 will be input-insensitive as the number of iterations does not
depend on the input. Moreover, both byteshare and gradient descent analyses are
useless on input-insensitive vertices, so we prefer not processing the lii vertices
to avoid useless sensitivity computations. However lii vertices cannot be ignored
completely as they can be in fact input-sensitive. For this reason, we first try se-
lecting uncovered vertices that are either input-sensitive, or that have unknown
sensitivity but are not lii. We sort such vertices lexicographically according to
the following criteria and select the best vertex v.

1. Input-sensitive vertices are preferred to vertices with unknown sensitivity as
we want to exploit the computed information about sensitive bytes.

2. Vertices with fewer sensitive bytes are preferred, as the analyses are more
expensive with more sensitive bytes.

3. Vertices with the number of input bytes closer to the half of the maximal
number of input bytes of all abet vertices are preferred, as it helps to explore
loop iterations that are deep enough to be interesting and at the same time
to keep the number of input bytes reasonably small.

4. Vertices closer to the root of the execution tree are preferred, as they are
easier to process.

If no such vertex exists, we fall back to choosing an lii vertex. We use the
distance function to select a promising lii vertex in the following way. We select
the uncovered vertex v if it is lii and all identified input-insensitive vertices with
the same abe and context have greater absolute value of the distance function. If
there are more such vertices v, we first prefer the ones with the smallest absolute
value of the distance function and then according to the criteria similar to the
previous ones.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 101

Loop Head Selection Heuristics To fill the worklist H, we detect all loop
heads on the path to v. The identified loop heads are grouped to buckets of ex-
ponentially increasing size according to the number of bytes read from the input.
This ensures that we do not process too many loop heads to make the search im-
practical, but we still explore loop heads with diverse depths of loop iterations.
We then pick from each bucket the vertex that lexicographically minimizes the
number of input bytes and the depth and add it to the worklist H.

5.2 Selecting an Open Vertex

If the previous algorithm failed to select a vertex, it means that all uncovered
vertices are processed. We try to make progress by selecting a vertex that is
covered but still open. The rationale is that by exploring the open vertex, albeit
otherwise covered, we hope to extend the abet with new vertices where the
analyses can continue further and some open vertices might become covered.

In particular, we choose an open input-independent vertex with a small value
of the distance function and identify an earlier loop head on the path to the root
as in the previous subsection. We then perform a random abet traversal from
the loop head and select the first open unprocessed vertex for which the search
tries to visit to its unvisited child. If this search fails as well, then the analysis
cannot make any further progress, returns null and the fuzzing loop terminates.

6 Implementation

We implemented the approach in an experimental tool called Fizzer. The tool
is implemented in C++, consists of around 11,000 lines of code (in 125 files),
and the only external tool it depends on is the clang compiler and its libraries.
The tool is open-source and available under zlib license either as an artifact at
Zenodo [13] or at the repository [14].

Given a C program to be analyzed, Fizzer first compiles it into llvm bit-
code using the clang compiler. The bitcode is then instrumented using our
instrumenter, which first applies a standard llvm pass to replace all switch
instructions by sequences of if-else statements2 and then finds and instru-
ments all abes and function calls. Observe that we ignore br instructions, i.e.,
we do not care about the actual control flow. After the instrumentation, we link
the instrumented llvm bitcode with our implementations of nondet_type() and
__instr_*() functions into the final executable program, called target, which
will be repeatedly executed by the main Fizzer process.

Whenever Fizzer wants to execute the target with some input, it spawns
a new process with the target executable. During the execution of target,
the instrumented code tracks the current call context, collects data about the
executed abes, and stores them to the shared memory, which is accessible by the
parent Fizzer process. The separation of Fizzer and target to independent
processes allows handling crashes of the target.
2 We should also replace calls via function pointers by sequences of if-else state-

ments. This pass is not implemented yet.

102 M. Jonáš et al.

7 Evaluation

Experimental setup. For evaluation of the implemented tool Fizzer, we use
all branch-coverage benchmarks from Test-Comp 2023, the 5th Competition on
Software Testing [5]. The benchmark set consists of 2933 benchmarks divided
into 16 families. For the presentation purposes, “ReachSafety” and “SoftwareSys-
tems” substrings in the family names are shortened to “rs” and “ss”, respectively,
in the rest of this section. For comparison, we used three best-scoring tools3 from
Test-Comp 2023, namely FuSeBMC [2], VeriFuzz [21], and CoVeriTest [6],
in the versions in which they entered Test-Comp 2023. To obtain reproducible
results, we asked the organizer of Test-Comp to evaluate Fizzer on the official
infrastructure of Test-Comp and compare the obtained results with the official
results of Test-Comp 2023. We stress out that this means that the results were
produced by an independent third party and thus are independently reproducible.
The resource limits of the competition are 15 minutes of cpu time and 15 GB
of ram. A detailed description of the infrastructure and the setting used for the
experimental evaluation we refer to the competition report [5].

Results. The average branch coverage for each tool and each benchmark family
is shown in Table 1. The table shows that the approach proposed in this paper
and implemented in the tool Fizzer is competitive with FuSeBMC – the winner
of Test-Comp 2023 – in most of the benchmark families except rs-Combinations,
rs-ECA, and rs-Sequentialized. It is also competitive with the other state-of-
the-art tools on all of the benchmark families. Although the table shows that
Fizzer is the best on average in benchmark families rs-ControlFlow and ss-
SQLite-MemSafety, we do not consider these particular results significant due
to the small size of these families.

Figure 2 provides a comparison of the branch coverage achieved by Fizzer
and the other considered tools on individual benchmarks. It can be seen that
while on most of the benchmarks, Fizzer provides the same or worse coverage
than FuSeBMC, there are some benchmarks where it provides better coverage.
It is also comparable with VeriFuzz and provides better branch coverage than
CoVeriTest on a large number of benchmarks.

Out of all 2933 evaluated programs, there are 145 programs where Fizzer
provides better coverage than any other of the compared tools. For comparison,
CoVeriTest provides the best coverage for 129 programs, FuSeBMC for 318,
and VeriFuzz for 180. The distribution of these benchmarks to the individual
benchmark families can be found in Table 2.

Finally, note that Fizzer participated in Test-Comp 2024 and placed third
in the category Cover-Branches after FuSeBMC and FuSeBMC-AI.4

3 We do not compare against FuSeBMC IA [1], the runner-up in Test-Comp 2023,
as we want to compare only with the best variant of each individual tool, not all
their variants.

4 https://test-comp.sosy-lab.org/2024/results/results-verified/

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 103

https://test-comp.sosy-lab.org/2024/results/results-verified/

Table 1: Average branch-coverage of the tests generated by the individual tools
for individual benchmark families and for all benchmarks. The results are in
percents. The best result of each benchmark family is printed typeset in bold.

Fa
m

ily

Fa
m

ily
si

ze

C
o
V

er
iT

es
t

F
iz

ze
r

F
u
S
eB

M
C

V
er

iF
u
zz

rs-Arrays 292 71.2 84.6 86.5 81.6
rs-BitVectors 61 78.8 77.3 79.5 73.8
rs-Combinations 671 34.8 42.0 50.7 37.6
rs-ControlFlow 11 4.0 14.1 13.7 13.5
rs-ECA 29 18.3 25.1 32.3 34.9
rs-Floats 197 46.9 48.2 50.8 49.8
rs-Heap 110 68.9 72.5 72.7 70.6
rs-Loops 661 79.6 80.3 82.1 81.4
rs-ProductLines 263 29.0 28.8 29.2 29.2
rs-Recursive 51 78.4 84.2 85.8 76.0
rs-Sequentialized 91 80.4 66.5 87.8 88.4
rs-XCSP 114 99.8 88.5 91.7 92.6
ss-BusyBox-MemSafety 62 16.9 32.9 33.2 0.0
ss-DeviceDriversLinux64-rs 287 20.6 20.5 20.6 19.7
ss-SQLite-MemSafety 1 0.0 3.7 3.4 3.5
Termination-MainHeap 32 95.6 95.3 95.1 90.9

All 2933 54.3 57.3 61.0 56.2

8 Related Work

The sensitivity analysis is a form of taint analysis, which is a technique popular
in fuzzing [17,8,22,9,4,10,12,23,25,7,19,26]. The most frequent approach to taint
analysis is propagating the taint information explicitly from taint sources (e.g.,
sources of input) through the program instructions [17,8,22,9,4,10,12,23,25]. Most
of the approaches propagate taint information dynamically. However, some of
them compute it statically [23], with use of control flow information [25], or
using concrete and symbolic execution [7]. There are two papers [19,26] that
compute the tainted bytes by identifying input bytes that lead to different pro-
gram executions. This is most similar to our approach. But our approach also
tries extreme values of typed inputs and performs more precise one-bit muta-
tions, which are then extended to byte boundaries, while the mentioned papers
[19,26] only mutate whole bytes.

Gradient descent is used in fuzzing [8,26,9,16,24] in different forms. For in-
stance, there is a paper [8] that uses forward and backward method of finite
differences for computation of the partial derivatives. Additional constraints ap-
pearing in the control flow have been also considered [9]. Another approach [16]

104 M. Jonáš et al.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Coverage FuSeBMC

C
ov

er
ag

e
F

iz
ze

r

0.00 0.25 0.50 0.75 1.00
Coverage VeriFuzz

0.00 0.25 0.50 0.75 1.00
Coverage CoveriTest

Fig. 2: Scatter plots comparing branch coverage achieved by Fizzer and the
other considered tools.

exponentially decreases the learning rate λ as the gradient descent progresses.
Our approach differs especially in taking multiple samples along the gradient
direction in each descent step. The samples span several orders of magnitude
along the line, which can both provide samples in the small region close to
the global minimum and help escaping from local minima. We further compute
the learning rate λ from the linear approximation of the function. Thanks to
multi-sampling, this simplification is sufficient in practice. Lastly, our approach
is extended with locking coordinates, which can contribute to escaping from local
minima by avoiding extreme directions.

Our approach further uses a unique coverage goal. Other fuzzers monitor
actual control flow of the program execution (to measure, e.g., branch coverage),
while we ignore it completely. We instead monitor values of all abes and aim
for their coverage. The byteshare analysis is also a novel approach inspired by
genetic algorithms. The random search we apply to select the target vertex is
novel among fuzzers, but it was used in the context of concolic execution [20].

The experimental evaluation of the paper compares the proposed approach
with the best test-generation tools participating in Test-Comp 2023. All of these
combine several analyses. Namely, FuSeBMC [2,3] combines bounded model-
checking (bmc), symbolic execution, and two fuzzers (afl [27] and a selective
fuzzer) and FuSeBMC IA [1] extends it further with interval analysis. Ver-
iFuzz [21] is built on top of afl and an engine based on Coverage Guided
Fuzzing, combined with the bounded model checker cbmc and the prism frame-
work. CoVeriTest [6] combines several model checkers.

9 Conclusion

We presented a novel approach to gray-box fuzzing, which aims to generate
tests that cover both possible values of each atomic Boolean expression. To
reach this goal, our approach uses a dynamic computation to identify the bytes
that influence the value of a given Boolean expression. Further, it employs two

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 105

Table 2: The numbers of benchmarks in individual benchmarks families where a
given tool achieved better branch coverage than the other considered tools.

Fa
m

ily

C
o
V

er
iT

es
t

F
iz

ze
r

F
u
S
eB

M
C

V
er

iF
u
zz

ReachSafety-Arrays 0 12 18 4
ReachSafety-BitVectors 0 3 1 2
ReachSafety-Combinations 96 23 243 139
ReachSafety-ControlFlow 2 1 1 1
ReachSafety-ECA 1 1 6 15
ReachSafety-Floats 0 16 1 0
ReachSafety-Heap 1 8 0 2
ReachSafety-Loops 0 6 6 0
ReachSafety-ProductLines 0 33 0 3
ReachSafety-Recursive 0 1 4 0
ReachSafety-Sequentialized 0 2 16 14
ReachSafety-XCSP 14 0 0 0
SoftwareSystems-BusyBox-MemSafety 4 27 19 0
SoftwareSystems-DeviceDriversLinux64-ReachSafety 9 11 3 0
SoftwareSystems-SQLite-MemSafety 0 1 0 0
Termination-MainHeap 2 0 0 0

All 129 145 318 180

analyses to find the value of these bytes to get the desired value of the Boolean
expression. One of these analyses is based on gradient descent.

We implemented the proposed approach in an experimental tool called Fizzer.
An independent evaluation shows that, despite being a pure gray-box fuzzer, it
is competitive with the state-of-the-art tools competing in Test-Comp 2023.

In future, we plan to add the support for calls via function pointers and
gradient descent tailored for floating-point values. We will also investigate an
extensible architecture that allows running different external analyses on the
vertices of the execution tree. In particular, this would allow running techniques
such as symbolic execution on vertices that cannot be covered by gradient descent
alone, which could improve the performance of our tool even further.

Acknowledgement

The authors would like to thank Dirk Beyer for running the experiments on the
original Test-Comp infrastructure and for his technical assistance.

106 M. Jonáš et al.

References

1. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R., Cordeiro, L.C.:
FuSeBMC_IA: Interval analysis and methods for test case generation (competi-
tion contribution). In: Lambers, L., Uchitel, S. (eds.) Fundamental Approaches to
Software Engineering - 26th International Conference, FASE 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 13991, pp. 324–329. Springer (2023). https://doi.org/10.1007/
978-3-031-30826-0_18, https://doi.org/10.1007/978-3-031-30826-0_18

2. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC: An
energy-efficient test generator for finding security vulnerabilities in C programs.
In: Loulergue, F., Wotawa, F. (eds.) Tests and Proofs - 15th International Con-
ference, TAP 2021, Held as Part of STAF 2021, Virtual Event, June 21-22, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12740, pp. 85–105. Springer
(2021). https://doi.org/10.1007/978-3-030-79379-1_6, https://doi.org/10.
1007/978-3-030-79379-1_6

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC v4: Smart
seed generation for hybrid fuzzing. In: Johnsen, E.B., Wimmer, M. (eds.) Funda-
mental Approaches to Software Engineering. pp. 336–340. Springer International
Publishing, Cham (2022)

4. Bekrar, S., Bekrar, C., Groz, R., Mounier, L.: A taint based approach for smart
fuzzing. In: Proceedings of the 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation. p. 818–825. ICST ’12, IEEE Com-
puter Society, USA (2012). https://doi.org/10.1109/ICST.2012.182, https:
//doi.org/10.1109/ICST.2012.182

5. Beyer, D.: Software testing: 5th comparative evaluation: Test-Comp 2023. In: Lam-
bers, L., Uchitel, S. (eds.) Fundamental Approaches to Software Engineering - 26th
International Conference, FASE 2023, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13991, pp. 309–
323. Springer (2023). https://doi.org/10.1007/978-3-031-30826-0_17, https:
//doi.org/10.1007/978-3-031-30826-0_17

6. Beyer, D., Jakobs, M.: Cooperative verifier-based testing with CoVeriTest. Int. J.
Softw. Tools Technol. Transf. 23(3), 313–333 (2021). https://doi.org/10.1007/
s10009-020-00587-8, https://doi.org/10.1007/s10009-020-00587-8

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015
IEEE Symposium on Security and Privacy. pp. 725–741 (2015). https://doi.org/
10.1109/SP.2015.50

8. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 711–725 (2018). https://doi.org/
10.1109/SP.2018.00046

9. Chen, P., Liu, J., Chen, H.: Matryoshka: Fuzzing deeply nested branches. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 499–513. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3363225,
https://doi.org/10.1145/3319535.3363225

10. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: Pro-
ceedings of the 31st International Conference on Software Engineering. p. 474–484.
ICSE ’09, IEEE Computer Society, USA (2009). https://doi.org/10.1109/ICSE.
2009.5070546, https://doi.org/10.1109/ICSE.2009.5070546

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 107

https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546

11. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Communications of the ACM 55(3), 40–44 (2012)

12. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In: Proceedings of the 22nd
USENIX Conference on Security. p. 49–64. SEC’13, USENIX Association, USA
(2013)

13. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: Artifact for TACAS 2024
evaluation (Dec 2023). https://doi.org/10.5281/zenodo.10440311

14. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: Git repository (2023), https:
//github.com/staticafi/sbt-fizzer

15. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Gray-box fuzzing via gradient descent
and Boolean expression coverage. Tech. rep., Masaryk University, Brno (2024),
https://arxiv.org/abs/2401.12643

16. Kim, Y., Yoon, J.: Maxafl: Maximizing code coverage with a gradient-based
optimization technique. Electronics 10(1) (2021). https://doi.org/10.3390/
electronics10010011, https://www.mdpi.com/2079-9292/10/1/11

17. Liang, G., Liao, L., Xu, X., Du, J., Li, G., Zhao, H.: Effective fuzzing based on dy-
namic taint analysis. In: 2013 Ninth International Conference on Computational In-
telligence and Security. pp. 615–619 (2013). https://doi.org/10.1109/CIS.2013.
135

18. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: State of the art. IEEE
Transactions on Reliability 67(3), 1199–1218 (2018). https://doi.org/10.1109/
TR.2018.2834476

19. Liang, J., Wang, M., Zhou, C., Wu, Z., Jiang, Y., Liu, J., Liu, Z., Sun, J.: PATA:
Fuzzing with path aware taint analysis. In: 2022 IEEE Symposium on Security and
Privacy (SP). pp. 1–17 (2022). https://doi.org/10.1109/SP46214.2022.9833594

20. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: Best-first concolic
testing. In: Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. p. 54–65. ASE ’20, Association for Comput-
ing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3324884.
3416629, https://doi.org/10.1145/3324884.3416629

21. Metta, R., Yeduru, P., Karmarkar, H., Medicherla, R.K.: VeriFuzz 1.4: Checking
for (non-)termination (competition contribution). In: Sankaranarayanan, S., Shary-
gina, N. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
- 29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April
22-27, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994,
pp. 594–599. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_
42, https://doi.org/10.1007/978-3-031-30820-8_42

22. Paduraru, C., Melemciuc, M.C., Ghimis, B.: Fuzz testing with dynamic taint anal-
ysis based tools for faster code coverage. In: Proceedings of the 14th International
Conference on Software Technologies. p. 82–93. ICSOFT 2019, SCITEPRESS -
Science and Technology Publications, Lda, Setubal, PRT (2019). https://doi.
org/10.5220/0007921300820093, https://doi.org/10.5220/0007921300820093

23. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:
Application-aware evolutionary fuzzing. In: NDSS. vol. 17, pp. 1–14 (2017)

24. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: Neuzz: Efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP). pp. 803–817. IEEE (2019)

108 M. Jonáš et al.

https://doi.org/10.5281/zenodo.10440311
https://doi.org/10.5281/zenodo.10440311
https://github.com/staticafi/sbt-fizzer
https://github.com/staticafi/sbt-fizzer
https://arxiv.org/abs/2401.12643
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://doi.org/10.3390/electronics10010011
https://www.mdpi.com/2079-9292/10/1/11
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093
https://doi.org/10.5220/0007921300820093

25. Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: 2010 IEEE Sym-
posium on Security and Privacy. pp. 497–512 (2010). https://doi.org/10.1109/
SP.2010.37

26. You, W., Liu, X., Ma, S., Perry, D., Zhang, X., Liang, B.: SLF: Fuzzing without
valid seed inputs. In: Proceedings of the 41st International Conference on Soft-
ware Engineering. p. 712–723. ICSE ’19, IEEE Press (2019). https://doi.org/
10.1109/ICSE.2019.00080, https://doi.org/10.1109/ICSE.2019.00080

27. Zalewski, M.: American fuzzy lop (2013), http://lcamtuf.coredump.cx/afl/.

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage 109

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
http://lcamtuf.coredump.cx/afl/.
http://creativecommons.org/licenses/by/4.0/

	Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage

