
Symbiotic-Witch: A Klee-Based
Violation Witness Checker?

(Competition Contribution)

Paulína Ayaziová, Marek Chalupa , and Jan Strejček �

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xayaziov,chalupa,strejcek}@fi.muni.cz

Abstract. Symbiotic-Witch is a new tool for checking violation wit-
nesses in the GraphML-based format used at SV-COMP since 2015.
Roughly speaking, Symbiotic-Witch symbolically executes a given pro-
gram with Klee and simultaneously tracks the set of nodes the witness
automaton can be in. Moreover, it reads the return values of nondeter-
ministic functions specified in the witness and uses them to prune the
symbolic execution. The violation witness is confirmed if the symbolic
execution reaches an error and the current set of witness nodes contains
a matching violation node.
Symbiotic-Witch currently supports violation witnesses of reachability
safety, memory safety, memory cleanup, and overflow properties.

1 Verification Approach

We present a new checker of violation witnesses called Symbiotic-Witch. The
checker first loads a given violation witness in the GraphML format [5] and a
given program. Then it performs symbolic execution [11] of the program and
simultaneously tracks the progress of the execution in the witness automaton.
More precisely, every state of symbolic execution is accompanied by the set of
witness automaton nodes that can be reached under the executed program path.
If the symbolic execution detects a violation of the considered property and the
tracked set of witness automata nodes contains a violation node, the witness is
confirmed.

Note that the original description of the witness format [5] does not provide
any formal semantics of the format. We interpret it in the way that if an edge
in a witness automaton matches an executed program instructions, then we can
follow the edge but we can also stay in its starting node. Hence, if we have the
set of witness automaton nodes reached under a certain program path, then
prolongation of this path can add some nodes to this set, but it never removes
any node from the set. A brief reading of an upcoming detailed description of
the format [4] reveals that it can be the case that an edge matching an executed
program instruction has to be taken. If this is indeed the case, we will adjust
? This work has been supported by the Czech Science Foundation grant GA19-24397S.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 468–473, 2022.
https://doi.org/10.1007/978-3-030-99527-0_33

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_33&domain=pdf


our tool, but the current implementation and the following texts consider the
former semantic.

Before Symbiotic-Witch starts the symbolic execution, we remove from
the witness automaton all nodes that are not on any path from the entry node
to a violation node. In general, witness automata are related to program exe-
cutions using node and edge attributes. Symbiotic-Witch currently supports
only some attributes of witness edges to map a program execution to a given
witness automaton. Namely, it uses the line number of executed instructions, the
information whether true or false branch is taken, and the information about
entering a function or returning from a function. Additionally, if the witness au-
tomaton contains a single path from the entry node to a violation node and there
is some information about return values of the __VERIFIER_nondet_* functions
on this path, then we use these values in the symbolic execution of the program.
Return values not provided in the witness are treated as symbolic values.

A more precise description of the approach can be found in the bachelor’s
thesis of P. Ayaziová [1].

2 Software Architecture

The approach has been implemented in a tool called Symbiotic-Witch, which
is basically a modification of the symbolic executor Klee [8]. More precisely,
it is derived from the clone of Klee used in Symbiotic, which employs the
SMT solver Z3 [13] and supports symbolic pointers, memory blocks of symbolic
sizes etc. For parsing of witnesses in the GraphML format, we use the library
RapidXML.

As Klee executes programs in llvm [12], a given C program has to be
translated to llvm first. We use Clang for this translation as explained in
Section 4.

The current version of Symbiotic-Witch runs on llvm version 10.0.0.

3 Strengths and Weaknesses

Existing violation witness checkers (excluding Dartagnan [10] designed for con-
current programs) can be roughly divided into two categories.

– CPA-witness2test [6], FShell-witness2test [6], and Nitwit [14] per-
form one program execution based on the information in the witness. If this
execution violates the specification, the witness is confirmed. This approach
is very efficient for witnesses fully describing one program execution that vi-
olates the property. However, if a witness describes more program executions
and only some of them violate the property, these tools can easily miss the
violating executions. In particular, if a witness does not specify some return
value of a __VERIFIER_nondet_* function, FShell-witness2test uses the
default value 0, Nitwit picks a random value, and CPA-witness2test
fails the witness confirmation.

Symbiotic-Witch: A Klee-Based Violation Witness Checker 469



– CPAchecker [5], UltimateAutomizer [5], and MetaVal [7] create a
product of a given witness automaton and the original program and analyze
it. As a result, some execution paths of the original program can be ana-
lyzed repeatedly for different paths in the witness automaton. To suppress
this effect, these checkers usually ignore the possibility to stay in a witness
automaton node whenever there is a matching transition leaving the node.
Unfortunately, a valid witness can be unconfirmed due to this strategy.

We believe that our approach to checking violation witnesses removes all
mentioned disadvantages. Symbolic execution allows us to efficiently examine
many program executions corresponding to a given witness automaton, and pro-
gram executions are not analyzed repeatedly. The approach can easily handle
witnesses based on return values from the __VERIFIER_nondet_* functions as
well as those based on description of branching.

There is only one principal case when a valid witness is not confirmed by
Symbiotic-Witch (ignoring the cases when Symbiotic-Witch simply runs
out of resources). This case can arise when Symbiotic-Witch uses the infor-
mation about return values of __VERIFIER_nondet_* functions stored in the
witness. Symbiotic-Witch uses the information immediately when the sym-
bolic execution calls such a function and there is a matching edge in the witness
with a return value that has not been used yet (i.e., the starting node of the
edge is in the set of tracked witness nodes and the target node is not). This “ea-
ger approach” usually works very well, especially for witnesses containing return
values for all calls of __VERIFIER_nondet_* functions. However, there can be
witnesses where some return values are missing and a particular contained return
value should not be used for the first matching call of the __VERIFIER_nondet_*
function. Such witnesses can be valid, but Symbiotic-Witch can fail to confirm
them. As far as we know, such witnesses do not appear in SV-COMP and other
witness checkers would probably fail to confirm them as well.

On the negative side, our approach inherits the disadvantages and limitations
of symbolic execution and Klee. In particular, it can suffer the path explosion
problem on witnesses that do not provide return values of __VERIFIER_nondet_*
functions. Further, Symbiotic-Witch does not support parallel programs as
Klee does not support them.

Our current approach is suitable for cases when a witness can be checked
based on a finite program execution. That is why our tool supports violation
witnesses of safety properties. Table 1 shows the numbers of violation witnesses
confirmed in SV-COMP 2022 [2] by individual witness checkers in the categories
supported by Symbiotic-Witch.

We believe that symbolic execution can be also used for checking termination
violation witnesses and for checking correctness witnesses. We plan to extend
Symbiotic-Witch in these directions. We also plan to add a witness refinement
mode [5] already provided by CPAchecker and UltimateAutomizer. In this
mode, when a witness is confirmed, Symbiotic-Witch would produce another
witness describing a single program execution (by specifying return values for all
calls of __VERIFIER_nondet_* functions) that exhibits the property violation.

470 P. Ayaziová et al.



Table 1. The numbers of confirmed witnesses in relevant SV-COMP 2022 categories

ReachSafety MemSafety NoOverflows SoftwareSystems

number of witnesses 26 797 16 984 2 808 2 102

CPAchecker 14 908 12 594 2 334 621
CPA-witness2test 8 628 231 887 6
FShell-witness2test 14 168 954 1 436 33
MetaVal 0 116 1 982 0
Nitwit 15 507 - - 0
Symbiotic-Witch 11 176 8 394 2 609 179
UltimateAutomizer 8 592 4 197 2 468 26

4 Tool Setup and Configuration

For the use in SV-COMP 2022, we have integrated our witness checker (origi-
nally called Witch-Klee) with Symbiotic [9], which takes care of translation
of a given C program into llvm using Clang and then slightly modifies the
llvm program to improve the efficiency of witness checking.

The archive with Symbiotic-Witch can be downloaded from SV-COMP
archives. The witness checking process is invoked by

./symbiotic [–prp <prop>] [–32] –witness-check <wit.graphml> <prog.c>

where <wit.graphml> is a violation witness to be checked and <prog.c> is the
corresponding program. By default, the tool considers reachability safety prop-
erty and 64-bit architecture. The considered property can be changed by the –prp
option and <prop> instantiated to memsafety or memcleanup or no-overflow.
The 32-bit architecture is set by –32.

Our witness checker can be also downloaded directly from its repository men-
tioned below. The version used in SV-COMP 2022 is marked with the tag SV-
COMP22. It can be executed without Symbiotic via a shell script as

./witch.sh <prog.c> <wit.graphml>

which calls Clang to translate <prog.c> to llvm and then passes the llvm
program and the witness <wit.graphml> to the witness checker.

5 Software Project and Contributors

Symbiotic-Witch has been developed at Faculty of Informatics, Masaryk Uni-
versity by Paulína Ayaziová under the guidance of Marek Chalupa and Jan
Strejček. The tool is available under the MIT license and all used tools and
libraries (llvm, Klee, Z3, RapidXML, Symbiotic) are also available under
open-source licenses that comply with SV-COMP’s policy for the reproduction
of results. The source code of our witness checker can be found at:

https://github.com/ayazip/witch-klee

Symbiotic-Witch: A Klee-Based Violation Witness Checker 471

https://github.com/ayazip/witch-klee


Data Availability Statement. All data of SV-COMP 2022 are archived as described
in the competition report [2] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Symbiotic-Witch used in the competition is archived together with other
participating tools [3].

References

1. Ayaziová, P.: Klee-based error witness checker. Bachelor’s thesis, Masaryk Univer-
sity (2021), https://is.muni.cz/th/rnv19/?lang=en

2. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
Springer (2022)

3. Beyer, D.: Verifiers and validators of the 11th Intl. Competition on Software Verifi-
cation (SV-COMP 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5959149

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. (2022), to appear.

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Nitto, E.D., Harman,
M., Heymans, P. (eds.) Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015. pp. 721–733. ACM (2015), https://doi.org/10.1145/2786805.2786867

6. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: Dubois, C., Wolff, B. (eds.)
Tests and Proofs - 12th International Conference, TAP@STAF 2018, Toulouse,
France, June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10889, pp. 3–23. Springer (2018), https://doi.org/10.1007/978-3-319-92994-1_1

7. Beyer, D., Spiessl, M.: Metaval: Witness validation via verification. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 12225, pp. 165–177. Springer (2020), https://doi.
org/10.1007/978-3-030-53291-8_10

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf

9. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zaoral, L., Strejček, J.: Symbiotic
9: Parallelism and invariants (competition contribution). In: Proc. TACAS (2).
Springer (2022)

10. Haas, T., Meyer, R., de León, H.P.: Dartagnan: SMT-based violation witness
validation (competition contribution). In: Proc. TACAS (2). Springer (2022)

11. King, J.C.: Symbolic execution and program testing. Communications of ACM
19(7), 385–394 (1976), https://doi.org/10.1145/360248.360252

12. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society
(2004), https://doi.org/10.1109/CGO.2004.1281665

13. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3_24

472 P. Ayaziová et al.

https://sv-comp.sosy-lab.org/2022/
https://is.muni.cz/th/rnv19/?lang=en
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24


14. Švejda, J., Berger, P., Katoen, J.: Interpretation-based violation witness validation
for C: NITWIT. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12078, pp. 40–57. Springer (2020),
https://doi.org/10.1007/978-3-030-45190-5_3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Symbiotic-Witch: A Klee-Based Violation Witness Checker 473

https://doi.org/10.1007/978-3-030-45190-5_3
http://creativecommons.org/licenses/by/4.0/

	Symbiotic-Witch: A Klee-Based Violation Witness Checker 
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References


