
Symbiotic 9: String Analysis and Backward
Symbolic Execution with Loop Folding∗

(Competition Contribution)

Marek Chalupa B, Vincent Mihalkovič, Anna Řechtáčková,
Lukáš Zaoral, and Jan Strejček

Masaryk University, Brno, Czech Republic

Abstract. The development of Symbiotic 9 focused mainly on two
components. One is the symbolic executor Slowbeast, which newly
supports backward symbolic execution including its extension called loop
folding. This technique can infer inductive invariants from backward sym-
bolic execution states. Thanks to these invariants, Symbiotic 9 is able
to produce non-trivial correctness witnesses, which is a feature that is
missing in previous versions of Symbiotic. We have also extended for-
ward symbolic execution in Slowbeast with a basic support for par-
allel programs. The second component with significant improvements is
the instrumentation module. In particular, we have extended the static
analysis of accesses to arrays with features designed for programs that
manipulate C strings.
Symbiotic 9 is the Overall winner of SV-COMP 2022. Moreover, it won
also the categories MemSafety and SoftwareSystems, and placed third in
FalsificationOverall.

1 Verification Approach

Symbiotic 9 combines fast static analyses with code instrumentation and pro-
gram slicing [13] to speed up the code verification. In the SV-COMP configura-
tion of Symbiotic 9, the code verification is performed by symbolic executors,
namely by Slowbeast [8] and our fork of Klee [4].

As Symbiotic works internally with llvm [10], it first compiles the given C
program into llvm bitcode. The following steps depend on the verified property.

Verification of the Property unreach-call For this property, Symbiotic 9
directly slices the llvm bitcode to remove instructions that have no influence
on the reachability of error calls and then run Klee with the time limit of
333 seconds. Klee is very efficient and often decides the task within this time
limit. If Klee fails to decide, we parse its output and proceed according to the
case of the failure. If Klee failed because the program contains threads, we

∗ This work has been supported by the Czech Science Foundation grant GA19-24397S.
B Jury member and the corresponding author: chalupa@fi.muni.cz

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 462–467, 2022.
https://doi.org/10.1007/978-3-030-99527-0_32

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_32&domain=pdf


Table 1. The comparison of supported features of Klee (our fork and the upstream)
and Slowbeast (SV-COMP 2022 and SV-COMP 2021 versions). The marks 3/3/7

mean supported/partially supported/unsupported.

Klee Klee Slowbeast Slowbeast
upstream our fork SV-COMP 2021 SV-COMP 2022

Backward SE 7 7 7 3

Loop folding 7 7 3 3

Invariant generation 7 7 3 3

Symbolic floats 7 7 3 3

Symbolic pointers 3 3 7 3

Symbolic-sized allocations 7 3 7 3

Symbolic addresses 7 3 7 3

Parallel programs 7 7 7 3

Incremental solving 7 7 3 3

Caching solver calls 3 3 7 7

Lazy memory 7 7 3 3

run Slowbeast with forward symbolic execution (SE) and the threads support
turned on. If Klee failed for any other reason, we run Slowbeast with backward
symbolic execution with loop folding (BSELF) [8] described later. If BSELF also
fails (the current implementation supports only selected program features), we
run Slowbeast with forward symbolic execution.

Note that running forward symbolic execution first with Klee and then with
Slowbeast if Klee fails does make a good sense as Klee and Slowbeast sup-
port a different set of features. The main differences between these tools (and
the upstream Klee and the version of Slowbeast used in Symbiotic 8) are
summarized in Table 1. Row symbolic addresses indicates whether tools model
the non-determinism in the placement of allocated objects (this is useful, e.g.,
when comparing addresses of such objects). Row incremental solving indicates
whether tools can associate the state of an SMT solver to every symbolic execu-
tion state and incrementally add constraints instead of always solving formulas
from the scratch. Row caching solver calls indicates whether tools can remem-
ber results of solver calls and use them later to quickly decide some other solver
calls. Finally, row lazy memory indicates if the tool can create memory objects
on-demand when first accessing them, without their previous allocation (it as-
sumes that the accesses to memory are valid). This feature is crucial when we
want execute a program by parts, without starting from the entry point. The
meaning of the remaining rows should be clear or is explained later.

If an error is found by either tool, it is replayed on the unsliced code. If the
replay succeeds, we generate a violation witness. If no error is found and the anal-
ysis was complete, we generate a correctness witness. If the program correctness
was proved by Slowbeast with BSELF, we generate a witness containing the
computed invariants, otherwise we generate a trivial correctness witness as we
have no invariants at hand. In all other cases, Symbiotic 9 answers unknown.

Symbiotic 9: String Analysis and BSELF 463



Verification of Other Properties For verification of other properties than
unreach-call, Symbiotic 9 uses the same workflow as Symbiotic 8 [7]. In
brief, the instrumentation module marks program instructions that can po-
tentially violate the considered property. The module employs suitable fast
static analyses to identify these instructions (e.g., when checking the property
no-overflow, it uses a range analysis to discover the instructions that may per-
form a signed integer overflow). The bitcode with marked instructions is sliced
such that the arguments and the reachability of these instructions are preserved.
The sliced bitcode is passed to Klee. If it discovers a property violation and
then replays it on the unsliced code, we produce a violation witness. If Klee
completes its analysis without any property violation found, we produce a trivial
correctness witness. In all other cases, Symbiotic 9 returns unknown.

Backward Symbolic Execution with Loop Folding (BSELF) [8] Slow-
beast newly implements backward symbolic execution (BSE) [9], which explores
the program backward from target locations towards the initial location and
incrementally computes weakest preconditions for the explored program paths.
BSE is a valuable technique on its own as it precisely corresponds to k-induction
on control-flow paths [8]. Loop folding is a technique that aims to infer induc-
tive invariants during BSE. Roughly speaking, when BSE starts from an error
location and reaches a loop header, loop folding creates an initial invariant can-
didate that is disjoint with the current weakest precondition (i.e., the states that
can reach the error location). If the invariant candidate is actually an invariant,
we know that the error location is not reachable via the explored path. Oth-
erwise, a pre-image of the invariant candidate along a loop path is computed,
over-approximated, and added to the candidate. This process is repeated until an
invariant is found or until it fails for some reason, e.g., when it discovers that the
error location is actually reachable. Loop folding can infer complex disjunctive
invariants and since it uses the error states, it is also property-driven.

String Analysis and Other Improvements The second major improvement
in Symbiotic 9 is in the instrumentation for the property valid-memsafety. We
have improved the analysis for the identification of out-of-bounds array accesses.

In Symbiotic 8, this analysis only determined whether an array access done
via the index variable is in bounds [14]. The analysis in Symbiotic 9 also handles
more general patterns where the array contains a concrete value (0 in the case
of C strings) and the index pointer is incremented by one until it points to this
concrete value, and where the pointer is incremented a fixed number of times.

Further, we have extended the forward symbolic execution in Slowbeast to
handle parallel programs. For now, the symbolic execution is highly inefficient
as it examines each interleaving of globally visible events. We plan to implement
some reductions in the future. Slowbeast has been also extended to generate
witnesses as this functionality was missing. Notably, it can generate non-trivial
correctness witnesses using the invariants computed by BSELF. Previous ver-
sions of Symbiotic generate only trivial correctness witnesses.

464 Chalupa et al.



Slicing has been also improved. It now applies a fast and coarse slicing be-
fore the main slicing. The coarse slicing detects all basic blocks from which no
slicing criterion (i.e., an instruction whose reachability and arguments should
be preserved) is syntactically reachable and replaces them by calls to abort.

2 Strengths and Weaknesses

Forward symbolic execution is unable to fully analyze unbounded loops or in-
finite execution paths. Hence, unless program slicing removes the unbounded
computation from the program, forward symbolic execution cannot verify it.
However, backward symbolic execution and BSELF can fully analyze at least
some unbounded programs [8]. Still, both these methods are computationally
complex as the number of paths they must search may be enormous and their
exploration may involve many non-trivial calls to the SMT solver. Therefore,
these methods do not scale to real-world programs.

A strong aspect of Symbiotic is the very interplay of fast static analyses
in the instrumentation, program slicing, and forward and backward symbolic
execution. Fast static analyses are able to deem correct many parts of the code
(with respect to the verified property). These parts of the code are then usu-
ally removed by slicing and only the possibly unsafe parts of the program (and
their dependencies) get into a symbolic executor. In this sense, Symbiotic does
incremental or conditional [3] verification.

Results of Symbiotic 9 in SV-COMP 2022 In SV-COMP 2022 [1], Sym-
biotic 9 won categories MemSafety, SoftwareSystems, and Overall, and got the
3rd place in FalsificationOverall. Moreover, it produced 1529 correct answers
that were not confirmed, which is the highest number in SV-COMP 2022. 1073
unconfirmed answers are in MemSafety-Juliet, where we produced some incorrect
witnesses due to a bug. Another 258 unconfirmed answers are in Termination.
Symbiotic 9 produced only 3 incorrect answers caused by a bug in the replay
mode of Slowbeast.

3 Software Project and Contributors

All components of Symbiotic 9 use llvm 10 [10]. Slicer and instrumentation
module are written in C++ and extensively use the library DG [5]. Klee is
implemented in C++ and Slowbeast [12] is written in Python. Both symbolic
executors use Z3 [11] as the SMT solver. Control scripts are written in Python.

Symbiotic 9 and all its components and external libraries are available under
open-source licenses that comply with SV-COMP’s policy for the reproduction
of results. Symbiotic 9 participated in all categories of SV-COMP 2022 except
the categories with Java programs.

Symbiotic 9 has been developed by Marek Chalupa, Vincent Mihalkovič,
Anna Řechtáčková, and Lukáš Zaoral under the supervision of Jan Strejček.

Symbiotic 9: String Analysis and BSELF 465



Data Availability Statement. All data of SV-COMP 2022 are archived as described

in the competition report [1] and available on the competition web site. This includes

the verification tasks, results, witnesses, scripts, and instructions for reproduction.

The version of Symbiotic used in the competition is archived together with other

participating tools [2] and also in its own artifact [6] at Zenodo.

References

1. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
Springer (2022)

2. Beyer, D.: Verifiers and validators of the 11th Intl. Competition on Software Verifi-
cation (SV-COMP 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5959149

3. Beyer, D., Jakobs, M.: Fred: Conditional model checking via reducers and
folders. In: SEFM 2020. LNCS, vol. 12310, pp. 113–132. Springer (2020).
https://doi.org/10.1007/978-3-030-58768-0 7

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI. pp. 209–
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/full
papers/cadar/cadar.pdf

5. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: ATVA 2020.
LNCS, vol. 12302, pp. 557–563. Springer (2020), https://doi.org/10.1007/
978-3-030-59152-6 33

6. Chalupa, M.: Symbiotic 9: String analysis and backward symbolic execution with
loop folding (artifact). Zenodo (2022). https://doi.org/10.5281/zenodo.5947909

7. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.: Sym-
biotic 8: Beyond symbolic execution - (competition contribution). In: TACAS 2021.
LNCS, vol. 12652, pp. 453–457. Springer (2021). https://doi.org/10.1007/978-3-
030-72013-1 31

8. Chalupa, M., Strejček, J.: Backward symbolic execution with loop folding. In: SAS
2021. LNCS, vol. 12913, pp. 49–76. Springer (2021). https://doi.org/10.1007/978-
3-030-88806-0 3

9. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach
to weakest preconditions. In: PLDI 2009. pp. 363–374. ACM (2009).
https://doi.org/10.1145/1542476.1542517

10. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society
(2004), https://doi.org/10.1109/CGO.2004.1281665

11. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

12. Slowbeast repository. https://gitlab.com/mchalupa/slowbeast (2021)
13. Weiser, M.: Program slicing. In: Proceedings of ICSE. pp. 439–449. IEEE (1981)
14. Řechtáčková, A.: Improving out-of-bound access checking in Symbiotic (2020),

https://is.muni.cz/th/tmq7m/, bachelor thesis, accessed 2022-02-02

466 Chalupa et al.

https://sv-comp.sosy-lab.org/2022/
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.1007/978-3-030-58768-0_7
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.5281/zenodo.5947909
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://gitlab.com/mchalupa/slowbeast
https://is.muni.cz/th/tmq7m/


Symbiotic 9: String Analysis and BSELF 467

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

http://creativecommons.org/licenses/by/4.0/

	Symbiotic 9: String Analysis and Backward Symbolic Execution with Loop Folding
	1 Verification Approach
	2 Strengths and Weaknesses
	3 Software Project and Contributors
	References


