
C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *Evaluated

*
TA
C
A
S
*

Ar
tifact * SV

-C
O
M
P

Symbiotic 8: Beyond Symbolic Execution∗

(Competition Contribution)

Marek Chalupa1 B, Tomáš Jašek1, Jakub Novák1,
Anna Řechtáčková1, Veronika Šoková2 , and

Jan Strejček1

1 Masaryk University, Brno, Czech Republic
2 Brno University of Technology, FIT, Brno, Czech Republic

Abstract. Symbiotic 8 extends the traditional combination of static
analyses, instrumentation, program slicing, and symbolic execution with
one substantial novelty, namely a technique mixing symbolic execution
with k-induction. This technique can prove the correctness of programs
with possibly unbounded loops, which cannot be done by classic sym-
bolic execution. Symbiotic 8 delivers also several other improvements.
In particular, we have modified our fork of the symbolic executor Klee
to support the comparison of symbolic pointers. Further, we have tuned
the shape analysis tool Predator (integrated already in Symbiotic 7)
to perform better on llvm bitcode. We have also developed a light-weight
analysis of relations between variables that can prove the absence of out-
of-bound accesses to arrays.

1 Verification Approach

Symbiotic is a program analysis framework that combines fast static analyses
with code instrumentation and program slicing to speed up the code verification
which is then performed by symbolic executor Klee [3] (or, alternatively, by
another supported verification tool). The main improvement in Symbiotic 8 is
a new verification technique combining symbolic execution with k-induction [8]
that we call KindSE.

Symbolic execution with k-induction (KindSE) KindSE applies the idea
of k-induction [8] to paths of the control flow graph. The approach can be roughly
described by the following three steps.

1. Set k to 1. Let P be the set of all paths in the control flow graph of length
k that end in an error location.

2. Use symbolic execution to execute every path π ∈ P . If the symbolic execu-
tion says that π is infeasible, remove π from P . If π is feasible and it starts
in the initial location, report that the program is incorrect.

∗ This work has been supported by the Czech Science Foundation grant GA20-07487S.
B Jury member and the corresponding author: chalupa@fi.muni.cz.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 453–457, 2021.
https://doi.org/10.1007/978-3-030-72013-1 31

https://doi.org/10.5281/zenodo.4483882
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_31&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0003-1980-7245
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-72013-1_31


454 M. Chalupa et al.

3. If P is empty, the control flow graph contains no feasible path of length k
(or more) leading to an error location and thus we report that the program
is correct. If P is not empty, we replace each path π ∈ P by paths of length
k + 1 that have π as its suffix, increase k by one, and go to step 2.

To improve the performance, we further extended the algorithm to summarize
loop iterations. If we process a program location that is a loop header, we start
unwinding the loop backwards. We over-approximate the states that we get
in every loop iteration to cover more than one iteration if possible. If we are
successful, the summarized loop states form an inductive invariant, which can
help to prove that no error location is reachable from the loop header in k steps.
Our loop summarization does not handle nested loops (in this case we fall-back
to the algorithm without loop summarization) and calls of functions. To fix the
latter restriction, we inline all procedures (if possible) before running KindSE.

KindSE is implemented in our prototype tool Slowbeast [1] which we inte-
grated into Symbiotic 8. The tool now supports only the unreach-call prop-
erty. Slowbeast can also work as a standard symbolic executor (without k-
induction), but it is noticeably slower than Klee and it has some limitations.
However, it supports symbolic floating point arithmetics, which Klee does not.

Workflow of Symbiotic 8 As the first step, a given program is translated to
llvm [6]. If the program contains a call to pthread create, Symbiotic returns
unknown as it cannot handle parallel programs. The rest of the workflow then
depends on the verified property, as indicated in Figure 1.

For unreach-call property, we call slicer to remove instructions that have
no influence on the property and run Klee. If Klee does not decide in 222
seconds, we run KindSE in Slowbeast. If it fails, we run Klee again and if it
also fails, we run Slowbeast as a standard symbolic executor. If some tool says

program
in llvm

instrumentationPredator

DG

value relations

range analysis

...

slicer

Klee

slicer

Klee (timeout 222s)
Slowbeast (KindSE)
Klee
Slowbeast (SE)unknown

error path replay
on unsliced program

true+
trivial
witness

false+
error

witness

plugins

other
properties

error
found

property
unreach-call

error
found

Fig. 1. The workflow of Symbiotic 8



Symbiotic 8: Beyond Symbolic Execution 455

that the specified call is unreachable, we return true with the trivial witness. If
we detect that the specified call is reachable, we try replaying the error path on
the unsliced program. If the replay confirms that the call is reachable, we return
false with the error witness generated from the replay.

For other properties, we instrument the program with the help of various
analyses. For example, when checking memory safety, we use Predator [5],
DG [4], and a values-relations analysis to detect potentially unsafe instructions.
If Predator says that all instructions are safe, we directly return true. Oth-
erwise, we slice the program with respect to potentially unsafe instructions and
call Klee. The rest of the process is identical to the previous case.

2 Software Architecture

All components of Symbiotic 8 use llvm 10 [6]. Scripts that call and control
the components according to a given configuration are written in Python.

Instrumentation module is written in C++. In Symbiotic 8, we have newly
integrated a values-relations analysis as a plugin into instrumentation. This anal-
ysis is able to prove valid some accesses into arrays. We have also improved llvm
frontend of Predator [5] to perform similarly well as the gcc frontend.

Program slicing module is written in C++ and is build around the library
DG [4]. This year, we sped up the slicer by using more efficient data structures in
pointer analysis and by using function summaries in data dependence analysis.

We use our own fork of Klee [3] that differs from the upstream Klee mainly
in using segment-offset pointer representation which allows for better handling of
symbolic pointers and symbolic-sized allocations. This year, we mended handling
of symbolic pointers and added support for comparison of symbolic addresses.

Tool Slowbeast [1] is written in Python. Both, Klee and Slowbeast use
Z3 [7] as the SMT solver.

3 Strengths and Weaknesses

Symbolic execution may be very efficient in finding bugs but suffers from the path
explosion problem which may prevent it from fully analyzing programs with high
level of branching. We alleviate this problem by using program slicing. However,
in the presence of unbounded loops or infinite execution paths, program slicing
does not help unless it removes the unbounded computation from the program.
Indeed, classical symbolic execution is unable to verify such programs at all.

To fight the inability of symbolic execution to verify unbounded programs,
we use KindSE. However, its implementation in Slowbeast is still not fully
matured and it handles only a very restricted set of programs.

Results of Symbiotic 8 in SV-COMP 2021 Symbiotic 8 won MemSafety
and SoftwareSystems categories [2]. In the MemSafety category, we lost many
points in the new MemSafety-Juliet subcategory. These benchmarks contain



456 M. Chalupa et al.

threads and Symbiotic immediately answered unknown due to the syntactic
check mentioned in Section 1. However, most of these benchmarks actually do
not spawn any thread and thus Symbiotic could analyze them. The victory in
SoftwareSystems category is mainly due to the dominance on the new uthash
benchmarks.

This year, over 500 correct answers produced by Symbiotic were not con-
firmed. Some of these cases must be accounted to the fact that Symbiotic gen-
erates only trivial correctness witnesses. However, there are also unconfirmed
answers because of missing witnesses, which turned out to be a bug in Slow-
beast integration. Unfortunately, these include all 99 benchmarks that were
newly proved correct by KindSE, from which 85 were in the ReachSafety-Loops
subcategory. We had also many unconfirmed witnesses for non-termination vio-
lation that still need to be investigated.

Symbiotic had 16 incorrect answers: 14 incorrect true in Termination cat-
egory and 2 incorrect false in ReachSafety-Floats. All of them were caused by
last-minute commits that were fixed shortly after the submission deadline. Be-
cause of these mistakes, Symbiotic ended up on the 4th place instead of on the
2nd in the Termination category.

In the Overall meta-category, Symbiotic traditionally took the 4th place as
every year since 2018.

4 Tool Setup and Project Contributors

The archive is available at https://doi.org/10.5281/zenodo.4483882. Run Sym-
biotic as:

bin/symbiotic --sv-comp --prp <prpfile> [--32] <source>

The option --prp sets the verified property and --32 tells Symbiotic to assume
32-bit architecture (64-bit architecture is assumed by default).

5 Software Project and Contributors

Symbiotic 8 for SV-COMP 2021 has been developed by Marek Chalupa, Tomáš
Jašek, Jan Novák, and Anna Řechtáčková under the supervision of Jan Strejček.
Veronika Šoková provided a valuable help with adjusting Predator modifica-
tions. Symbiotic is available under the MIT license. All the external components
that the tool uses are also available under open-source licenses that comply with
SV-COMP’s policy for the reproduction of results. The source code of Symbi-
otic can be found at:

https://github.com/staticafi/symbiotic

https://doi.org/10.5281/zenodo.4483882
https://github.com/staticafi/symbiotic


Symbiotic 8: Beyond Symbolic Execution 457

References

1. Slowbeast. https://gitlab.fi.muni.cz/xchalup4/slowbeast/ (2020)
2. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:

TACAS 2021. LNCS 12652, Springer (2021)
3. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In: OSDI. pp. 209–224. USENIX
Association (2008), http://www.usenix.org/events/osdi08/tech/full papers/cadar/
cadar.pdf

4. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: ATVA 2020. LNCS, vol.
12302, pp. 557–563. Springer (2020), https://doi.org/10.1007/978-3-030-59152-6 33

5. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for check-
ing manipulation of dynamic data structures using separation logic. In: CAV
2011. LNCS, vol. 6806, pp. 372–378. Springer (2011), https://doi.org/10.1007/
978-3-642-36742-7 49

6. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004. pp. 75–88. IEEE Computer Society (2004),
https://doi.org/10.1109/CGO.2004.1281665

7. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

8. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer (2000),
https://doi.org/10.1007/3-540-40922-X 8

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://gitlab.fi.muni.cz/xchalup4/slowbeast/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1007/978-3-642-36742-7_49
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-40922-X_8
http://creativecommons.org/licenses/by/4.0/

	Symbiotic 8: Beyond Symbolic Execution
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Project Contributors
	5 Software Project and Contributors
	References


