
Symbiotic 5: Boosted Instrumentation?

(Competition Contribution)

Marek Chalupa??, Martina Vitovská, and Jan Strejček

Masaryk University, Brno, Czech Republic

Abstract. The fifth version of Symbiotic significantly improves instru-
mentation capabilities that the tool uses to participate in the category
MemSafety. It leverages an extended pointer analysis re-designed for in-
strumenting programs with memory safety errors, and staged instrumen-
tation reducing the number of inserted function calls that track or check
the memory state. Apart from various bugfixes, we have ported Symbi-
otic (including the external symbolic executor Klee) to llvm 3.9 and
improved the generation of violation witnesses by providing values of
some variables.

1 Verification Approach

The basic approach of Symbiotic remains unchanged [7]: it uses instrumenta-
tion to reduce checking of specific properties (e.g. no-overflow or memory safety)
to checking reachability of error locations. Then we apply slicing which removes
the code that has no influence on reachability of these locations. Finally, we
symbolically execute the sliced code using Klee [1] to refute or confirm that an
error location is reachable.

For many years, our attention has been focused mainly on slicing [8,6,2]. Only
in 2016, we implemented a configurable instrumentation that enabled Symbi-
otic to check memory safety or, in general, any safety property. Consequently,
Symbiotic 4 [4] participated for the first time in the category MemSafety where
it won the bronze medal.

The instrumentation used in Symbiotic 4 to check memory safety inserts
calls to functions that track every block of allocated memory and calls to func-
tions that check validity of dereferences using the tracked information. A check is
not inserted if a static pointer analysis guarantees that the dereferenced pointer
points to a memory block that was allocated before. Later we have recognized a
flaw of this optimization: a standard pointer analysis ignores memory dealloca-
tions and, hence, it can tell that a pointer can point to memory blocks allocated
by specific program lines, but it does not tell whether these memory blocks are
still allocated. As a result, Symbiotic 4 sometimes does not insert a check even
if the dereference may be invalid and thus it may miss some bugs.

? The research is supported by the Czech Science Foundation grant GBP202/12/G061.
?? Jury member and corresponding author: xchalup4@fi.muni.cz.



0 50 100 150 200 250 300
n-th fastest benchmark

100

101

102
tim

e 
[s

]
basic
ePTA
staged

Fig. 1. Quantile plot of running times of the three considered configurations of Sym-
biotic 5. On the x-axis are the benchmarks sorted according to the corresponding
running times and on the logarithmic y-axis are the times.

In Symbiotic 5, we have fixed and significantly boosted the instrumentation
part. First, we have extended the above mentioned pointer analysis such that it
takes into account deallocations as well. Second, the instrumentation now works
in two stages. The first stage inserts the checks where extended pointer analysis
cannot guarantee the dereference safety. Moreover, compared to Symbiotic 4,
we use simpler checks if possible. For example, if a pointer analysis says that a
given pointer points into a known fixed-size memory block, we just insert a check
that the pointer’s offset is within the size of the block (without searching the
tracked information about the block). The second stage inserts calls to memory
tracking functions only to allocations of the memory blocks that can be accessed
by some dereference instrumented in the first stage. Hence, we track only the
information that may be possibly used in the checks.

To evaluate the boosted instrumentation, we run the following three configu-
rations of Symbiotic on 393 benchmarks of the SV-COMP 2017 meta category
MemSafety and of the category MemSafety-TerminCrafted :

– basic uses instrumentation without any pointer analysis,
– ePTA uses extended pointer analysis (i.e. it is a fixed version of the instru-

mentation in Symbiotic 4),
– staged uses extended pointer analysis and staged instrumentation.

Figure 1 clearly shows that the performance improvement brought by the ex-
tended pointer analysis itself is negligible compared to the performance improve-
ment delivered by the extended pointer analysis in combination with staged
instrumentation. For a precise description of the boosted instrumentation, ex-
perimental setup and results, we refer to [3].

Symbiotic 5 also changed the approach to error witness generation. Symbi-
otic 4 describes an errorneous run by a sequence of passed program locations.
The sequence is often very long and it turned out to be too restrictive for witness



checkers. Symbiotic 5 provides only the starting and target locations of the run
and return values of some VERIFIER nondet* calls. More precisely, we provide
return values of calls in main and such that they are called just once in the run.
The witnesses are now more often confirmed by witness checkers.

2 Software Architecture

All components of Symbiotic are built on top of llvm 3.9 [9]. We use the
clang compiler to compile the analyzed sources into llvm bitcode. Symbiotic
consists of scripts written in Python that distribute work to three basic modules,
all written in C++:

Instrumentation module This module inserts function calls to instructions
according to a given configuration in JSON. The instrumented functions
are implemented in C and compiled to llvm automatically by Symbiotic
before the instrumentation process. We use this configurable instrumentation
for instrumenting the memory safety property only. For instrumenting the
no-overflow property, we use clang’s sanitizer as it works sufficiently well
in this case.

Slicing module This module implements an interprocedural version of the slic-
ing algorithm based on dependence graphs [5] altogether with analyses that
are needed to compute dependencies between instructions, i.e. pointer anal-
yses (including the extended pointer analysis as described in Section 1 that
is used by the instrumentation) and analyses of reaching definitions.

Verification backend For deciding reachability of error locations, we currently
use our clone of the open-source symbolic executor Klee [1], that was ported
to llvm 3.9 and modified to support error witness generation.

Before and after slicing, we optimize the code using available llvm’s opti-
mizations. The rest of bitcode transformations that we use and whose nature
is mostly technical (e.g. replacement of calls inserted by clang’s sanitizer to
VERIFIER error calls) are implemented as llvm passes. All the components

that transform bitcode take a bitcode as an input and give a valid bitcode as
an output. This makes Symbiotic highly modular: any part (module) can be
easily replaced or used as a stand-alone tool.

3 Strengths and Weaknesses

The main strength of the approach is its universality and modularity. The instru-
mentation can reduce any safety property to reachability checks and therefore no
special monitors need to be incorporated into the verification backend. Indeed,
any tool that can decide reachability of error locations can be plugged-in.

The main disadvantage of the current configuration is that symbolic execu-
tion does not satisfactory handle programs with unbounded loops. Moreover,
Klee cannot generate invariants for loops.



4 Tool Setup and Configuration

– Download: https://github.com/staticafi/symbiotic/releases/download/5.

0.1/symbiotic-5.0.1.zip

– Installation: Unpack the archive.
– Participation Statement: Symbiotic 5 participates in all categories.
– Execution: Run bin/symbiotic OPTS <source>, where available OPTS in-

clude:
• --prp=file, which sets the property specification file to use,
• --witness=file, which sets the output file for the witness,
• --32, which sets the 32-bit environment,
• --help, which shows the full list of possible options.

5 Software Project and Contributors

Symbiotic 5 has been developed by M. Chalupa and M. Vitovská under su-
pervision of J. Strejček. The tool and its components are available under GNU
GPLv2 and MIT Licenses. The project is hosted by the Faculty of Informat-
ics, Masaryk University. llvm and Klee are also available under open-source
licenses. The project web page is: https://github.com/staticafi/symbiotic

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, pages 209–224.
USENIX Association, 2008.

2. M. Chalupa, M. Jonáš, J. Slaby, J. Strejček, and M. Vitovská. Symbiotic 3: New
slicer and error-witness generation - (competition contribution). In TACAS, volume
8413 of LNCS, pages 946–949. Springer, 2016.

3. M. Chalupa, J. Strejček, and M. Vitovská. Joint forces for memory safety checking.
Submitted to SPIN 2018.

4. M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. Symbiotic 4: Beyond
reachability - (competition contribution). In TACAS, volume 10206 of LNCS, pages
385–389, 2017.

5. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. In International Symposium on Programming, volume
167 of LNCS, pages 125–132. Springer, 1984.

6. J. Slaby and J. Strejček. Symbiotic 2: More precise slicing - (competition contribu-
tion). In TACAS, volume 8413 of LNCS, pages 415–417. Springer, 2014.

7. J. Slaby, J. Strejček, and M. Trt́ık. Checking properties described by state machines:
On synergy of instrumentation, slicing, and symbolic execution. In FMICS, volume
7437 of LNCS, pages 207–221. Springer, 2012.

8. J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: Synergy of instrumentation, slicing,
and symbolic execution - (competition contribution). In TACAS, volume 7795 of
LNCS, pages 630–632. Springer, 2013.

9. LLVM. http://llvm.org/.

https://github.com/staticafi/symbiotic/releases/download/5.0.1/symbiotic-5.0.1.zip
https://github.com/staticafi/symbiotic/releases/download/5.0.1/symbiotic-5.0.1.zip
https://github.com/staticafi/symbiotic
http://llvm.org/

	Symbiotic 5: Boosted Instrumentation

