
LTL to Büchi Automata Translation:
Fast and More Deterministic?

Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

{xbabiak, kretinsky, rehak, strejcek}@fi.muni.cz

Abstract. We introduce improvements in the algorithm by Gastin and
Oddoux translating LTL formulae into Büchi automata via very weak
alternating co-Büchi automata and generalized Büchi automata. Sev-
eral improvements are based on specific properties of any formula where
each branch of its syntax tree contains at least one eventually opera-
tor and at least one always operator. These changes usually result in
faster translations and smaller automata. Other improvements reduce
non-determinism in the produced automata. In fact, we modified all
the steps of the original algorithm and its implementation known as
LTL2BA. Experimental results show that our modifications are real im-
provements. Their implementations within an LTL2BA translation made
LTL2BA very competitive with the current version of SPOT, sometimes
outperforming it substantially.

1 Introduction

A translation of LTL formulae into equivalent Büchi automata plays an impor-
tant role in many algorithms for LTL model checking, LTL satisfiability checking
etc. For a long time, researchers aimed to find fast translations producing Büchi
automata with a small number of states. This goal has led to the developments
of several translation algorithms and many heuristics and optimizations includ-
ing input formula reductions and optimizations of produced Büchi automata,
see e.g. [3, 4, 9, 18, 11, 12, 10, 7].

As the time goes, the translation objectives and their importance are chang-
ing. In particular, [17] demonstrates that for higher performance of the subse-
quent steps of the model checking process, it is more important to minimize the
number of states with nondeterministic choice than the number of all states in
resulting automata. Note that there are LTL formulae, e.g. FGa, for which no
equivalent deterministic Büchi automaton exists. Further, model checking prac-
tice shows that one LTL formula is usually used in many different model checking
tasks. Hence, it pays to invest enough computation time to get high quality (more

? The authors are supported by The Czech Science Foundation, grants
102/09/H042 (Babiak), 201/09/1389 (Křet́ınský), P202/10/1469 (Řehák, Strejček),
P202/12/G061 (Křet́ınský, Řehák, Strejček), and P202/12/P612 (Řehák).

deterministic and/or minimal) automata as it may reduce computation time of
many model checking tasks.

The new objectives lead to the developments of algorithms focusing on quality
of produced automata. For example, [5] presents an effective algorithm translat-
ing LTL formulae of the fragment called obligation (see [14]) into weak deter-
ministic Büchi automata (WDBA). Moreover, WDBA can be minimized by the
algorithm of [13]. There is also a SAT-based algorithm searching for minimal
(nondeterministic) Büchi automata [8]. The main disadvantage of all the men-
tioned determinization and minimization algorithms is their long running time
which limits their use.

Our research returns to the roots: we focus on a fast translation producing
a relatively good output. This approach is justified by the following facts:

– The mentioned algorithms producing high quality automata often need, for
a given LTL formula, some equivalent automaton as an input.

– The mentioned algorithms are usually feasible for short formulae only or for
formulae with a simple structure.

– Given a fresh LTL formula, it can be useful to run vacuity checks, namely
satisfiability of the formula and its negation, to detect bugs in the formula. In
these checks, time of the LTL to automata translation can be more significant
than time needed for subsequent computations (see [16]). Hence, we need a
fast translator to support an early detection of bugs in formulae.

Considering the speed of an LTL to Büchi automata translation, LTL2BA [11]
and SPOT [7] are two leading tools. Based on extensive experiments on LTL
satisfiability checking, [16] even states:

The difference in performance between SPOT and LTL2BA, on one
hand, and the rest of explicit tools is quite dramatic.

Each of the two tools is based on different algorithms.
In LTL2BA, the translation proceeds in three basic steps:

1. A given LTL formula is translated into a very weak alternating automaton
(VWAA) with a co-Büchi accepting condition.

2. The alternating automaton is then translated into a transition-based gener-
alized Büchi automaton (TGBA), i.e. a generalized Büchi automaton with
sets of accepting transitions instead of accepting states.

3. The generalized automaton is transformed (degeneralized) into a Büchi au-
tomaton (BA).

Each of the three automata is simplified during the translation.
SPOT translates a given LTL formula to a TGBA using a tableau method

presented in [3]. The TGBA is then translated to a BA. Note that the model
checking algorithm natively implemented in SPOT works directly with TGBAs.
Prior to a translation, both LTL2BA and SPOT try to decrease the number of
temporal operators in a given input formula by applications of reduction rules.

While the LTL to automata translation in SPOT is under the gradual devel-
opment following the current trends (see [6] for improvements made in the last
four years), LTL2BA underwent only one minor update in 2007 since its creation
in 2001. In particular, SPOT reflects the changes in objectives. Therefore, SPOT
usually produces more deterministic and smaller automata than LTL2BA, while
LTL2BA is often a bit faster.

Our contribution. We introduce several modifications of LTL2BA on both
algorithmic and implementation levels. We suggest changes in all the steps of
the translation algorithm. Our experimental results indicate that each modified
step has a mostly positive effect on the translation. The new translator, called
LTL3BA, is usually faster than the original LTL2BA and it produces smaller
and more deterministic automata. Moreover, comparison of LTL3BA and the
current version of SPOT (run without WDBA minimization that is very slow)
shows that the produced automata are of similar quality and LTL3BA is usually
faster.

Some modifications employ an observation that each LTL formula contain-
ing at least one always operator and at least one eventually operator on each
branch of its syntax tree (with possible exceptions of branches going to the left
subformula of any until or release operator) is prefix invariant. We call them al-
ternating formulae. Indeed, validity of each alternating formula on a given word
u depends purely on a suffix of u. In other words, it is not affected by any finite
prefix of u. We apply this observation to construct new rules for formula reduc-
tions. Further, the observation justifies some changes in constructions of VWAA
and TGBA. Intuitively, a state of a VWAA corresponds to a subformula that
has to be satisfied by the rest of an accepted word. If the corresponding subfor-
mula is an alternating formula, then the state can be temporarily suspended for
finitely many steps of the automaton.

Other changes in a VWAA construction are designed to lower nondetermin-
ism. This is also a motivation for new simplification rules applied on intermediate
automata. These rules remove some transitions of the automaton and hence re-
duce the number of nondeterministic choices in produced automata. The original
simplification rules can be seen as special cases of the new rules. An effective
implementation of this simplification required to change representation of tran-
sitions. Further, we add one ad-hoc modification speeding up the translation of
selected (sub)formulae. Finally, we modify a simplification rule merging some
states of resulting BA.

The rest of the paper is organized as follows. The next section recalls the def-
initions of LTL, VWAA, and TGBA, as presented in [11]. Section 3 focuses on
alternating formulae and its properties. Sections 4, 5, 6, and 7 present new rules
for formula reductions, modified translation of LTL to VWAA (including gener-
alized simplification of VWAA), modified translation of VWAA to TGBA, and
modified rule for simplification of BA, respectively. Finally, Section 8 is devoted
to experimental results. The last section summarizes the achieved improvements.

2 Preliminaries

Linear Temporal Logic (LTL) The syntax of LTL [15] is defined as follows

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where tt stands for true, a ranges over a countable set AP of atomic propositions,
X and U are temporal operators called next and until, respectively. The logic is
interpreted over infinite words over the alphabet Σ = 2AP ′

, where AP ′ ⊆ AP is
a finite subset. Given a word u = u(0)u(1)u(2) . . . ∈ Σω, by ui we denote the ith

suffix of u, i.e. ui = u(i)u(i+ 1)
The semantics of LTL formulae is defined inductively as follows:

u |= tt
u |= a iff a ∈ u(0)
u |= ¬ϕ iff u 6|= ϕ
u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1 |= ϕ
u |= ϕ1 Uϕ2 iff ∃i ≥ 0 . (ui |= ϕ2 and ∀ 0 ≤ j < i . uj |= ϕ1)

We say that a word u satisfies ϕ whenever u |= ϕ. Two formulae ϕ,ψ are
equivalent, written ϕ ≡ ψ, if for each alphabet Σ and each u ∈ Σω it holds
u |= ϕ ⇐⇒ u |= ψ. Given an alphabet Σ, a formula ϕ defines the language

LΣ(ϕ) = {u ∈ Σω | u |= ϕ}. We often write L(ϕ) instead of L2AP(ϕ)

(ϕ), where
AP(ϕ) denotes the set of atomic propositions occurring in the formula ϕ.

We extend the LTL with derived temporal operators:

– Fϕ called eventually and equivalent to ttUϕ,
– Gϕ called always and equivalent to ¬F¬ϕ, and
– ϕRψ called release and equivalent to ¬(¬ϕ U¬ψ).

In the following, temporal formula is a formula where the topmost operator is
neither conjunction, nor disjunction. A formula without any temporal operator
is called state formula. Note that a and tt are both temporal and state formulae.
An LTL formula is in positive normal form if no operator occurs in the scope of
any negation. Each LTL formula can be easily transformed to positive normal
form using De Morgan’s laws for operators ∨ and ∧, equivalences for derived
operators, and the following equivalences:

¬(ϕ1 Uϕ2) ≡ ¬ϕ1 R¬ϕ2 ¬(ϕ1 Rϕ2) ≡ ¬ϕ1 U¬ϕ2 ¬Xϕ ≡ X¬ϕ

Very Weak Alternating co-Büchi Automata (VWAA) A VWAA is a
tuple A = (Q,Σ, δ, I, F), where

– Q is a finite set of states, and we let Q′ = 2Q,
– Σ is a finite alphabet, and we let Σ′ = 2Σ ,
– δ : Q→ 2Σ

′×Q′
is a transition function,

– I ⊆ Q′ is a set of initial states,
– F ⊆ Q is a set of accepting states, and
– there exists a partial order on Q such that, for each state q ∈ Q, all the

states occurring in δ(q) are lower or equal to q.

Note that the transition function δ uses Σ′ instead of Σ. This enables to merge
transitions that differ only by action labels. We sometimes use a propositional
formula α over AP to describe the element {a ∈ Σ | a satisfies α} of Σ′.

A run σ of VWAA A over a word w = w(0)w(1)w(2) . . . ∈ Σω is a labelled
directed acyclic graph (V,E, λ) such that:

– V is partitioned into
∞⋃
i=0

Vi with E ⊆
∞⋃
i=0

Vi × Vi+1,

– λ : V → Q is a labelling function,
– {λ(x) | x ∈ V0} ∈ I, and
– for each x ∈ Vi, there exist α ∈ Σ′, q ∈ Q and O ∈ Q′ such that w(i) ∈ α,
q = λ(x), O = {λ(y) | (x, y) ∈ E}, and (α,O) ∈ δ(q).

A run σ is accepting if each branch in σ contains only finitely many nodes labelled
by accepting states (co-Büchi acceptance condition). A word w is accepted if
there is an accepting run over w.

Transition Based Generalized Büchi Automata (TGBA) A TGBA is a
tuple G = (Q,Σ, δ, I,F), where

– Q is a finite set of states,
– Σ is a finite alphabet, and we let Σ′ = 2Σ

– δ : Q→ 2Σ
′×Q is a total transition function,

– I ⊆ Q is a set of initial states, and
– T = {T1, T2, . . . , Tm} where Tj ⊆ Q×Σ′×Q are sets of accepting transitions.

A run ρ of TGBA G over a word w = w(0)w(1)w(2) . . . ∈ Σω is a sequence
of states ρ = q0q1q2 . . . , where q0 ∈ I is an initial state and, for each i ≥ 0, there
exists α ∈ Σ′ such that w(i) ∈ α and (α, qi+1) ∈ δ(qi). A run ρ is accepting if for
each 1 ≤ j ≤ m it uses infinitely many transitions from Tj . A word w is accepted
if there is an accepting run over w.

3 Alternating Formulae

We define the class of alternating formulae together with the classes of pure
eventuality and pure universality formulae introduced in [9]. Let ϕ ranges over
general LTL formulae. The classes of pure eventuality formulae µ, pure univer-
sality formulae ν, and alternating formulae ξ are defined as:

µ ::= Fϕ | µ ∨ µ | µ ∧ µ | Xµ | ϕUµ | µRµ | Gµ

ν ::= Gϕ | ν ∨ ν | ν ∧ ν | Xν | ν U ν | ϕR ν | Fν

ξ ::= Gµ | Fν | ξ ∨ ξ | ξ ∧ ξ | Xξ | ϕU ξ | ϕR ξ | Fξ | Gξ

Note that there are alternating formulae, e.g.
(
aU (GFb)

)
∧
(
cR (GFd)

)
, that are

neither pure eventuality formulae, nor pure universality formulae. Properties of
the respective classes of formulae are summarized in the following lemmata.

Lemma 1. [9] Let µ be a pure eventuality formula and ν be a pure universality
formula. For all u ∈ Σ∗, w ∈ Σω it holds:

uw |= µ ⇐= w |= µ

uw |= ν =⇒ w |= ν

Lemma 2. Let ξ be an alternating formula. For all u ∈ Σ∗, w ∈ Σω it holds:

uw |= ξ ⇐⇒ w |= ξ

In other words, pure eventuality formulae define left-append closed languages,
pure universality formulae define suffix closed languages, and alternating formu-
lae define prefix-invariant languages. The proof of Lemma 2 can be found in the
full version of this paper [1].

Corollary 1. Every alternating formula ξ satisfies ξ ≡ Xξ.

Hence, in order to check whether w satisfies ξ it is possible to skip an arbitrary
long finite prefix of the word w.

We use this property in new rule for formula reduction. Further, it has
brought us to the notion of alternating formulae suspension during the transla-
tion of LTL to Büchi automata. We employ suspension on two different levels
of the translation: the construction of a VWAA from an input LTL formula and
the transformation of a VWAA into a TGBA.

4 Improvements in Reduction of LTL Formulae

Many rules reducing the number of temporal operators in an LTL formula have
been presented in [18] and [9]. In this section we present some new reduction
rules. For the rest of this section, ϕ,ψ range over LTL formulae and γ ranges
over alternating ones.

XϕRXψ ≡ X(ϕRψ) ϕU γ ≡ γ Fγ ≡ γ Xγ ≡ γ
Xϕ ∨ Xψ ≡ X(ϕ ∨ ψ) ϕR γ ≡ γ Gγ ≡ γ

The following equivalences are valid only on assumption that ϕ implies ψ.

ψU (ϕU γ) ≡ ψU γ ϕ ∧ (ψ ∧ γ) ≡ (ϕ ∧ γ)
(ψ R γ)Rϕ ≡ γ Rϕ ψ ∨ (ϕ ∨ γ) ≡ (ψ ∨ γ)

ϕU (γ R (ψU ρ)) ≡ γ R (ψU ρ)

Further, we have extended the set of rules deriving implications of the form
ϕ⇒ ψ. The upper formula is a precondition, the lower one is a conclusion.

Gϕ⇒ ψ

Gϕ⇒ Xψ

ϕ⇒ Fψ

Xϕ⇒ Fψ

ϕ⇒ ψ

Xϕ⇒ Xψ

5 Improvements in LTL to VWAA Translation

First, we recall the original translation of LTL to VWAA according to [11]. The
translation utilizes two auxiliary operators:

– Let Σ′ = 2Σ , and let Q′ = 2Q. Given J1, J2 ∈ 2Σ
′×Q′

, we define

J1 ⊗ J2 = {(α1 ∩ α2, O1 ∪O2) | (α1, O1) ∈ J1 and (α2, O2) ∈ J2}.

– Let ψ be an LTL formula in positive normal form. We define ψ by:
• ψ = {{ψ}} if ψ is a temporal formula,
• ψ1 ∧ ψ2 = {O1 ∪O2 | O1 ∈ ψ1 and O2 ∈ ψ2},
• ψ1 ∨ ψ2 = ψ1 ∪ ψ2.

Let ϕ be an LTL formula in positive normal form. An equivalent VWAA with
a co-Büchi acceptance condition is constructed as Aϕ = (Q,Σ, δ, I, F), where Q
is the set of temporal subformulae of ϕ, Σ = 2AP(ϕ), I = ϕ, F is the set of all
U-subformulae of ϕ, i.e formulae of the type ψ1 Uψ2, and δ is defined as follows:

δ(tt) = {(Σ, ∅)}
δ(p) = {(Σp, ∅)} where Σp = {a ∈ Σ | p ∈ a}

δ(¬p) = {(Σ¬p, ∅)} where Σ¬p = Σ rΣp
δ(Xψ) = {(Σ,O) | O ∈ ψ}

δ(ψ1 Uψ2) = ∆(ψ2) ∪
(
∆(ψ1)⊗ {(Σ, {ψ1 Uψ2})}

)
δ(ψ1 Rψ2) = ∆(ψ2)⊗

(
∆(ψ1) ∪ {(Σ, {ψ1 Rψ2})}

)
∆(ψ) = δ(ψ) if ψ is a temporal formula

∆(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)
∆(ψ1 ∧ ψ2) = ∆(ψ1)⊗∆(ψ2)

Using the partial order “is a subformula of” on states of Aϕ, one can easily prove
that Aϕ is very weak.

Improved Translation In order to implement the suspension of alternating
formulae, we modify the way the transition function δ handles the binary op-
erators U, R, ∨, and ∧. The original transition function δ reflects the following
identities:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2)) ϕ1 Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ X(ϕ1 Rϕ2))

However, if ϕ1 is an alternating formula we apply the relation ϕ1 ≡ Xϕ1 to
obtain the following identities:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (Xϕ1 ∧ X(ϕ1 Uϕ2)) ϕ1 Rϕ2 ≡ ϕ2 ∧ (Xϕ1 ∨ X(ϕ1 Rϕ2))

Using these identities, the formula ϕ1 is effectively suspended and checked one
step later. Similarly, in the case of disjunction or conjunction, each disjunct or
conjunct corresponding to an alternating formula is suspended for one step as
well. Correctness of these changes clearly follows from properties of alternating

formulae. Note that δ is defined over formulae in positive normal form only. The
translation treats each formula Fψ as ttUψ and each formula Gψ as (¬tt)Rψ.

We introduce further changes to the transition function δ in order to generate
automata which exhibits more determinism. In particular, we build a VWAA
with only one initial state. Similarly, each state corresponding to a formula of
a type Xϕ generates only one successor corresponding to ϕ. These changes can
add an extra initial state and an extra state for each X-subformula comparing
to the original construction. However, this drawback is often suppressed due to
the consecutive optimizations during the construction of a TGBA.

Now we present a modified construction of VWAA. Given an input LTL
formula ϕ in positive normal form, an equivalent VWAA with a co-Büchi accep-
tance condition is constructed as Aϕ = (Q,Σ, δ, I, F), where Q is the set of all
subformulae of ϕ, Σ and F are defined as in the original construction, I = {ϕ},
and δ is defined as follows:

δ(tt) = {(Σ, ∅)}
δ(p) = {(Σp, ∅)} where Σp = {a ∈ Σ | p ∈ a}

δ(¬p) = {(Σ¬p, ∅)} where Σ¬p = Σ\Σp
δ(Xψ) = {(Σ, {ψ})}

δ(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)
δ(ψ1 ∧ ψ2) = ∆(ψ1)⊗∆(ψ2)

δ(ψ1 Uψ2) =

{
∆(ψ2) ∪ ({(Σ, {ψ1})} ⊗ {(Σ, {ψ1 Uψ2})}) if ψ1 is alternating,
∆(ψ2) ∪ (∆(ψ1)⊗ {(Σ, {ψ1 Uψ2})}) otherwise.

δ(ψ1 Rψ2) =

{
∆(ψ2)⊗ ({(Σ, {ψ1}), (Σ, {ψ1 Rψ2})}) if ψ1 is alternating,
∆(ψ2)⊗ (∆(ψ1) ∪ {(Σ, {ψ1 Rψ2})}) otherwise.

∆(ψ) =

{
{(Σ, {ψ})} if ψ is a temporal alternating formula,

δ(ψ) if ψ is a temporal formula that is not alternating.

∆(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)
∆(ψ1 ∧ ψ2) = ∆(ψ1)⊗∆(ψ2)

Motivation for our changes in the translation can be found in Figures 1
and 2. Each figure contains (a) the VWAA constructed by the original translation
and (b) the VWAA constructed by our translation with suspension. Figure 1
shows the effect of suspension of alternating subformula GFa in computation of
transitions leading from the initial state. It can be easily proved that whenever
one start with a formula reduced according to Section 4, then each suspension
of an alternating temporal subformula leads just to reduction of transitions in
the resulting VWAA, i.e., no state is added. On the other hand, if an alternating
non-temporal subformula ψ is suspended or the new definition of δ(Xψ) is used,
then the resulting VWAA can contain one more reachable state corresponding to
the formula ψ. However, other states may become unreachable and, in particular,
the automaton can also have more deterministic states as illustrated by Figure 2.

Optimization of VWAA In the original algorithm, the VWAA is optimized
before it is translated to a TGBA. In particular, if there are two transitions

(a)

��'& %$! "#�� ���� ��1 : (GFa)U b

��

MM
tt

��

QQ
a

��

b //

'& %$! "#2 : GFa

a

MM
tt

��

QQ

'& %$! "#�� ���� ��3 : Fa

tt

CC a
//

(b)

��'& %$! "#�� ���� ��1 : (GFa)U bMM
tt

��

b //

'& %$! "#2 : GFa

a

MM
tt

��

QQ

'& %$! "#�� ���� ��3 : Fa

tt

CC a
//

(c)

��'& %$! "#�� ���� ��1 : (GFa)U bMM
¬b

��

b //

'& %$! "#2 : GFa

a

MM
¬a

��

QQ

'& %$! "#�� ���� ��3 : Fa

¬a

CC a
//

Fig. 1. VWAA for (GFa)U b generated by (a) the translation of [11], (b) our translation
with suspension, and (c) our translation with suspension and further determinization.

(a)
��'& %$! "#1 : X(a ∨ b)

tt

��������
tt

��<<<<<<

'& %$! "#2 : a

a

��

'& %$! "#3 : b

b

��

(b)
��'& %$! "#1 : X(a ∨ b)

tt

��'& %$! "#2 : a ∨ b
a

~~~~~~~~~
b

  @@@@@@@

(c)
��'& %$ ! "#1 : X(a ∨ b)

tt

��'& %$ ! "#2 : a ∨ b
a∨b
��

Fig. 2. VWAA for X(a∨ b) generated by (a) the translation of [11], (b) our translation
with suspension, and (c) the translation with suspension and further determinization.

t1 = (q, α1, O1) and t2 = (q, α2, O2) satisfying α2 ⊆ α1 and O1 ⊆ O2, then t2 is
removed as it is implied by t1.

We suggest a generalization of this principle: if O1 ( O2 then replace the
label α2 in t2 by α2∧¬α1. If O1 = O2, replace both transitions by the transition
(q, α1 ∨ α2, O1). Note that if α2 ⇒ α1, i.e. α2 ⊆ α1, then α2 ∧ ¬α1 ≡ ¬tt
and transition t2 can be removed as before. Our generalized optimization rule
increase determinism of the produced VWAA as illustrated by automata (c) of
Figures 1 and 2.

6 Improvements in VWAA to TGBA Translation

First, we recall the translation of VWAA to TGBA introduced in [11]. Let Aϕ =
(Q,Σ, δ, I, F ) be a VWAA with a co-Büchi acceptance condition. We define
GA = (Q′, Σ, δ′, I, T ) to be a TGBA where:



– Q′ = 2Q, i.e. a state is a set of states of Aϕ and represents their conjunction,

– δ′′({q1, q2, . . . , qn}) =
n⊗
i=1

δ(qi) is the non-optimized transition function,

– δ′ is the optimized transition function defined as the set of 4-minimal tran-
sitions of δ′′ where the relation 4 is defined by t1 4 t2 iff t1 = (O,α1, O1),
t2 = (O,α2, O2), α2 ⊆ α1, O1 ⊆ O2, and ∀Tf ∈ T , t2 ∈ Tf ⇒ t1 ∈ Tf , and

– T = {Tf | f ∈ F} where
Tf = {(O,α,O′) | f 6∈ O′ or ∃(β,O′′) ∈ δ(f), α ⊆ β and f 6∈ O′′ ⊆ O′}.

Improved Translation Our algorithm for a VWAA to TGBA translation dif-
fers from the original one only in definition of δ, where we also integrate the idea
of suspension of alternating formulae. Recall that each state qi of a VWAA is
a subformula of an input LTL formula and each state of a TGBA is identified
with a conjunction of states of a VWAA. Let O = {q1, . . . , qn} be a state of a
TGBA. Then transitions leading from O in a TGBA correspond to combinations
of transitions leading from q1, . . . , qn in a VWAA. If qi is an alternating formula
and thus it satisfies qi ≡ Xqi, we can effectively decrease the number of transition
combinations that need to be considered during computation of δ′(O) provided
we suspend a full processing of qi to the succeeding states of the TGBA. More
precisely, for the purpose of computation of δ′(O), we set δ(qi) = {(Σ, {qi})}. To
construct a TGBA equivalent to the VWAA, we have to ensure that qi will not
be suspended forever during any accepting run of the TGBA. Hence, we enable
suspension only in the states that are not on any accepting cycle in a TGBA.

Let M be the minimal set containing all VWAA states of the form ψ R ρ and
all subformulae of their right operands ρ. One can easily observe each TGBA
state lying on some accepting cycle is a subset of M . The VWAA states out-
side M , called progress formulae, push TGBA computations towards accepting
cycles. Suspension is enabled in a TGBA state only if it contains a progress for-
mula. However, if all progress formulae in a TGBA state are alternating, their
suspension is not allowed (as suspended progress formulae would not enforce any
progress).

Formally, for each TGBA state O = {q1, . . . , qn} we define δ′′(O) as follows:

δ′′(O) =

n⊗
i=1

δO(qi), where

δO(qi) =



{(Σ, {qi})} if O contains a progress non-alternating formula
and qi is an alternating formula,
or O contains a progress formula
and qi is an alternating non-progress formula,

δ(qi) otherwise.

We have obtained better results when we restrict the definition of progress for-
mulae to temporal progress formulae.

Note that the original translation of VWAA to TGBA uses a correct but
nonstandard definition of accepting sets Tf . In fact, our modification is correct



'& %$ ! "#1 : GFa

a

��
hh

tt

>>
'& %$ ! "#�� ���� ��3 : Fa

tt

��
a

$$IIII99

%%'& %$ ! "#�� ���� ��2 : Fb

tt

EE b

%%LLLL

Fig. 3. A VWAA Aψ corresponding to
GFa ∧ Fb.

//'& %$ ! "#{1, 2}

tt:∅

�� b:{2,3} //'& %$ ! "#{1}

a:{2,3}

��

tt:{2}

QQ

Fig. 4. A TGBA Gψ corresponding to
the VWAA of Figure 3.

(a) //'& %$ ! "#{1, 2}

a:{3}

��

tt:∅
��

b:{2}

''NNNNNNNNNN
a∧b:{2,3} //'& %$ ! "#{1}

'& %$ ! "#{1, 2, 3} '& %$ ! "#{1, 3}

(b) //'& %$ ! "#{1, 2}

tt:∅

�� b:{2,3} //'& %$ ! "#{1}

Fig. 5. Transitions leading from state {1, 2} in the TGBA constructed from the VWAA
of Figure 3 by (a) the translation of [11] and by (b) our translation with suspension.

only if we change the definition of these sets to the natural one (see [1] for a
explanation). Intuitively, for each accepting state f of the VWAA with a co-
Büchi acceptance, we compute a set Tf of all TGBA transitions that do not
contain any VWAA transition looping in f . Formally, T = {Tf | f ∈ F} where

Tf = {(O,α,O′) | f 6∈ O or (∃(β,O′′) ∈ δ(f),∃(γ,O′′′) ∈
⊗

f ′∈Or{f} δ(f
′)

such that f 6∈ O′′, α = β ∧ γ, and O′ = O′′ ∪O′′′)}.

To demonstrate the effect of suspension during the construction of a TGBA,
consider the VWAA Aψ for the formula ψ = GFa ∧ Fb depicted in Figure 3.
The construction of an equivalent TGBA Gψ starts in the initial state {1, 2}
that corresponds to a conjunction of states 1 and 2 of Aψ. Figure 5 depicts
the transitions of Gψ leading from the initial state when constructed by (a) the
original translation of [11] and by (b) our translation with suspension. Note
that the state 1 corresponding to the alternating formula GFa is suspended in
the TGBA state {1, 2} as the state 2 corresponds to a non-alternating progress
formula Fb. In both cases, the TGBA has two sets of accepting transitions, T2
and T3. Each transition in the TGBA is labelled by a propositional formula over
AP and by a subset of {2, 3} indicating to which sets of T2, T3 the transition
belongs.

Comparing to the original VWAA to TGBA translation without any opti-
mizations, the application of suspension leads to automata with fewer states.



However, if we enable the optimizations suggested in [11], the original transla-
tion often constructs automata with the same number of states as our translation
with suspension. For example, in the TGBA constructed from the VWAA of Fig-
ure 3, the optimizations merge states {1, 2, 3} and {1, 3} with {1, 2} and {1},
respectively. In this particular case, both approaches lead to the same automaton
Gψ as shown in Figure 4. However, this is not the case in general. Using suspen-
sion, automata with either more or less states can be constructed. However, the
translation with suspension is usually slightly faster.

In addition, we detect that both the original and the improved algorithms
spend a lot of time when computing transitions of TGBA states equivalent to a
formula of the form ρ = Gα0 ∧

∧
1≤i≤n GFαi where n ≥ 0 and α0, α1, . . . , αn are

formulae without any temporal operator. As such TGBA states are very frequent
in practice, we use an optimization that detects these TGBA states and directly
constructs the optimal transitions.

7 Optimization of BA

We slightly modify one optimization rule suggested in [11]. It is applied on
a resulting BA. The rule says that states q1 and q2 of a BA can be merged if
δ(q1) = δ(q2) and q1 ∈ F ⇐⇒ q2 ∈ F . This rule typically fails to merge the states
with a self loop. We suggest to add a new rule where the condition δ(q1) = δ(q2)
is replaced by δ(q1)[q1/r] = δ(q2)[q2/r], where r is a fresh artificial state and
δ(q)[q/r] is a δ(q) with all occurrences of q as a target node replaced by r.

8 Implementation and Experimental Result

We have implemented all the modifications suggested in the previous sections
(and formula reduction rules suggested in [9]) in order to evaluate their effect.
The implementation is based on LTL2BA and therefore called LTL3BA. Be-
sides the changed algorithms, we also made some other, implementation related
changes. In particular, we represent transition labels by BDDs and transitions
are represented by C++ STL containers.

In this section, we compare LTL3BA with LTL2BA (v1.1) and SPOT (v0.7.1).
For the comparison of results, we use lbtt testbench tool [19] to measure, for
each translator, the number of states and transitions1 of resulting automata,
and the time of the computation. Further, we extend lbtt to count the number
of produced deterministic automata. To be able to compare the results, we set
SPOT (option -N) to output automata in the form of never claim for SPIN as
that is the output of LTL2BA as well. All experiments were done on a server
with 8 processors Intelr Xeonr X7560, 448 GiB RAM and a 64-bit version of
GNU/Linux.

1 To solve the problem with different representation of transitions in automata pro-
duced by different tools, we count all transitions leading from a state q to a state r
as one.



Translator Benchmark1 Benchmark2

States Trans. Time det. BA States Trans. Time det. BA

SPOT 1 561 5 729 7.47 55 14 697 95 645 68.46 221

SPOT+WDBA 1 587 5 880 10.81 88 13 097 77 346 5 916.45 373
(14 408) (94 248) (5 919.43) (373)

LTL2BA 2 118 9 000 0.81 25 24 648 232 400 18.57 84

LTL3BA(1) 1 621 5 865 1.26 27 17 107 129 774 22.25 92

LTL3BA(1,2) 1 631 6 094 1.41 54 15 936 115 624 9.04 237

LTL3BA(1,2,3) 1 565 5 615 1.41 54 14 113 91 159 8.53 240

LTL3BA(1,2,3,4) 1 507 5 348 1.38 54 13 244 85 511 8.30 240

Table 1. Comparison of translators on two sets of random formulae. Time is in seconds,
’det. BA’ is the number of deterministic automata produced by the translator. Note
that, using WDBA minimization, SPOT failed to translate 6 formulae of Benchmark2
within the one hour limit. In order to see the effect of WDBA minimization to other
formulae, we state in braces the original results increased by the values obtained when
these 6 formulae were translated withut WDBA minimization.

First we compare the translators on two sets, Benchmark1 and Benchmark2,
of random formulae generated by lbtt. Benchmark1 contains 100 formulae of
the length 15–20 and their negations. Benchmark2 contains 500 formulae of the
length 15–30 and their negations. The exact lbtt parameters used to generate
the formulae are in [1]. Table 1 presents the cumulative results of translations
of all formulae in the two sets. The table also illustrates the gradual effect of
modifications of each step of the translation (1,2,3,4 refers to modifications intro-
duced in Sections 4, 5, 6, and 7 in the respective order; e.g. LTL3BA(1) uses the
original algorithm with our formula reduction while LTL3BA(1,2,3,4) refers to
the translation with all the suggested modifications). Finally, the table contains
the results for SPOT with WDBA minimization, which has the longest running
time but provides the best results. The automata produced by LTL3BA are in
sum slightly better than the automata produced by SPOT. Further, LTL3BA
seems to be much faster.

Further, we compare the execution time of translators running on paramet-
ric formulae from [11] and [16]. We use SPOT with the recommended option
-r4, i.e. with the input formula reduction as the only optimization. To get a
comparable settings of LTL3BA, we switched off the generalized optimization of
VWAA. We gradually increase the parameter of the formulae until a translator
fails to finish the translation in one hour limit. The results are partly depicted
in Figure 6 (the rest is in [1]).

The graphs show that, in general, LTL3BA is slightly slower than LTL2BA
and faster than SPOT on small formulae. With increasing parameter, LTL3BA
outperforms LTL2BA (with exception of S(n) where LTL2BA fails before its
running time reaches the limit), while SPOT sometimes remains slower, but
sometimes eventually outperform LTL3BA.

For more experimental results (including the benchmark of [2]) see [1].



 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25

Spot 0.7.1
LTL2BA
LTL3BA

θn = ¬((GFp1 ∧ . . . ∧ GFpn) → G(q → Fr))

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  2  4  6  8  10  12

Spot 0.7.1
LTL2BA
LTL3BA

R(n) =
Vn
i=1(GFpi ∨ FGpi+1)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  10  100  1000

Spot 0.7.1
LTL2BA
LTL3BA

U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000

Spot 0.7.1
LTL2BA
LTL3BA

S(n) =
Vn
i=1 Gpi

Fig. 6. Time consumption for parametric formulae constructed within an hour (the
vertical axes are logarithmic and represent time in seconds, while the horizontal axes
are linear or logarithmic and represent the parameter n).

9 Conclusion

We have focused on LTL to BA translations with the stress on their speed-
up while maintaining outputs of a good quality. We have introduced several
modifications of LTL2BA on both algorithmic and implementation levels. Among
others, we have identified an LTL subclass of “alternating” formulae, validity of
which does not depends on any finite prefix of the word.

Our experimental results indicate that our modifications have a mostly pos-
itive effect on each step of the translation. The new translator called LTL3BA
is usually faster than the original LTL2BA and it produces smaller and more
deterministic automata. Moreover, comparison of LTL3BA and the current ver-
sion of SPOT (run without WDBA minimization that is very slow) shows that
the produced automata are of similar quality and LTL3BA is usually faster.

LTL3BA has served as an experimental tool to demonstrate that our modifi-
cations are improvements and their applicability to other LTL to BA translations
is a subject of further research.



Acknowledgments. The authors would like to thank three anonymous refrees and
Alexandre Duret-Lutz for valuable comments.

References

1. T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi Automata
Translation: Fast and More Deterministic. CoRR, abs/1201.0682, 2012.

2. J. Cichoń, A. Czubak, and A. Jasiński. Minimal Büchi automata for certain classes
of LTL formulas. In DEPCOS-RELCOMEX’09, pages 17–24. IEEE, 2009.

3. J.-M. Couvreur. On-the fly verification of temporal logic. In FM’99, volume 1708
of LNCS, pages 253–271. Springer, 1998.

4. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In CAV’99, volume 1633 of LNCS, pages 249–260. Springer,
1998.

5. C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction for
restricted classes of ω-automata. In ATVA’07, volume 4762 of LNCS, pages 223–
236. Springer, 2007.

6. A. Duret-Lutz. LTL translation improvements in Spot. In VECoS’11, eWiC.
British Computer Society, 2011. To appear.

7. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library
using transition-based generalized Büchi automata. In MASCOTS 2004, pages
76–83. IEEE, 2004.

8. R. Ehlers and B. Finkbeiner. On the virtue of patience: Minimizing Büchi au-
tomata. In SPIN 2010, volume 6349 of LNCS, pages 129–145. Springer, 2010.

9. K. Etessami and G. J. Holzmann. Optimizing Büchi Automata. In CONCUR’00,
volume 1877 of LNCS, pages 153–167. Springer, 2000.

10. C. Fritz. Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata. In CIAA’03, volume 2759 of LNCS, pages
35–48. Springer, 2003.

11. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In CAV’01,
volume 2102 of LNCS, pages 53–65. Springer, 2001.

12. D. Giannakopoulou and F. Lerda. From States to Transitions: Improving Transla-
tion of LTL Formulae to Büchi Automata. In FORTE’02, volume 2529 of LNCS,
pages 308–326. Springer, 2002.

13. C. Löding. Efficient minimization of deterministic weak omega-automata. Infor-
mation Processing Letters, 79(3):105–109, 2001.

14. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC’90, pages
377–410. ACM press, 1990.

15. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE, 1977.
16. K. Y. Rozier and M. Y. Vardi. LTL Satisfiability Checking. In SPIN 2007, volume

4595 of LNCS, pages 149–167. Springer, 2007.
17. R. Sebastiani and S. Tonetta. ”More Deterministic” vs. ”Smaller” Büchi Automata

for Efficient LTL Model Checking. In CHARME 2003, volume 2860 of LNCS, pages
126–140. Springer, 2003.

18. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In
CAV’00, volume 1855 of LNCS, pages 248–263. Springer, 2000.

19. H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi au-
tomata. STTT, 4(1):57–70, 2002.


