
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Symbiotic 6: Generating Test-Cases by Slicing and Symbolic
Execution

Marek Chalupa, Martina Vitovská, Tomáš Jašek, Michael Šimáček, Jan Strejček

Masaryk University, Brno, Czech Republic
Corresponding author: Marek Chalupa (chalupa@fi.muni.cz)
Jury member: Martina Vitovská (vitoma@mail.muni.cz)

The date of receipt and acceptance will be inserted by the editor

Abstract. Symbiotic is a bug-finding and verification
tool that integrates light-weight static analyses and in-
strumentation with program slicing and symbolic execu-
tion. The techniques are suitably combined according to
a given goal. The paper describes a particular configu-
ration competing in Test-Comp 2019. We also provide
a brief analysis of Symbiotic’s results achieved in the
competition. As our tool uses a fork of the open-source
symbolic executor Klee, we focus on comparison with
mainstream Klee that also participated in the compe-
tition this year.

1 Test-Generation Approach

Symbiotic [9,3] is an open-source bug-finding and ver-
ification tool combining configurable code instrumenta-
tion (supported by static analyses) [10,2], program slic-
ing, and symbolic execution. The instrumentation mod-
ifies a given program by adding error locations that are
reachable if and only if the original program contains
a selected kind of errors like signed-integer overflow or
invalid pointer dereference. Program slicing reduces the
instrumented program by removing irrelevant instruc-
tions. Finally, symbolic execution decides whether some
error location is reachable. As Test-Comp specifies er-
rors as reachable calls of VERIFIER error function, in-
strumentation is not applied in the competition configu-
ration. We briefly describe the remaining two techniques.

1.1 Program Slicing

Static (backward) program slicing [11] is a technique
that removes program instructions that have no influ-
ence on reachability or the effect of selected parts of the
program. These parts are called slicing criteria and the

reduced program is called a slice. In the case of Symbi-
otic’s particiaption in Test-Comp, the slicing criteria
are all calls to the VERIFIER error function.

Program slicing is commonly done using dependence
graphs [5,7]. A dependence graph is a directed graph
that contains instructions of the program as nodes, and
edges capturing dependencies between instructions. A
slice of the program is obtained by a backward search
from the nodes that represent the slicing critera, i.e., the
slice is formed by all nodes that are backward-reachable
from the slicing criteria nodes in the dependence graph.

1.2 Symbolic Execution

Symbolic execution [8] is a program analysis technique
that executes the program using symbols instead of con-
crete values. When a branching instruction is reached,
symbolic execution asks an SMT solver which branch it
should take. In the case that both branches can be taken,
symbolic execution forks and follows both branches. For
each program path, symbolic execution builds a path
condition, which is a collection of all constraints on the
symbols that must be satisfied to follow the path. When
symbolic execution reaches the end of a path, it uses
the corresponding path condition to generate a test-case
that makes the program follow this path.

1.3 Workflow

The general workflow of Symbiotic 6 for Test-
Comp 2019 is depicted in Figure 1. In the competition
configuration, Symbiotic operates in two modes accord-
ing to the provided property.

For the property coverage-branches (where the
goal is to generate tests to maximize the coverage), we
directly run symbolic execution to generate tests.

For the property coverage-error-call (where the
goal is to find a test-case that hits an error), we slice



2 Marek Chalupa et al.: Symbiotic 6: Generating Test-Cases by Slicing and Symbolic Execution

Inputs Outputs

C program LLVM

Slicing

Symbolic
Execution

Property

Replay
Error Path

Test-suite

Fig. 1. The workflow of Symbiotic for Test-Comp. Input is
compiled into llvm and symbolically executed. If the property is
coverage-error-call, slicing and error path replaying are enabled
(highlighted with dotted border). Finally, test-suite is generated
from the output of the symbolic execution.

the analyzed program with respect to calls of the func-
tion VERIFIER error. Consequently, if a feasible path
on which this function is called is found by symbolic
execution, we attempt to replay this path in the un-
sliced program. This is important because some calls
to VERIFIER nondet * functions may have been sliced
away and their return values would be missing in the
generated tests.

2 Software Architecture

All parts of Symbiotic use llvm framework [12] (in
Symbiotic 6 we use llvm version 4.0.1). Therefore the
first step is to compile the source code of the analyzed
program into llvm bitcode. This is done by the compiler
Clang.

To carry out symbolic execution, we use our fork of
the open-source symbolic executor Klee [1]. The fork
has several modifications compared to the mainstream
Klee, where the most important are:

1. support of symbolic-sized allocations via segment-
offset pointer representation, and

2. the ability to replay a test-case from the sliced bit-
code on the unsliced bitcode.

Also, we use Z3 [4] as the SMT solver. This is mainly
because STP [6], the default solver used by Klee, does
not support some features needed by our symbolic-size
allocations extension.

After compilation of the source code into the bit-
code, we perform some extra steps that are not indi-
cated in Figure 1. We replace Test-Comp functions
VERIFIER nondet * with the corresponding built-in

functions of Klee. Further, we optimize the code using
the standard llvm optimization passes. These optimiza-
tions can significantly reduce the number of program in-
structions and thus speed up the remaining steps of the
process. We also detect trivial infinite loops, i.e., loops
corresponding to

while (1) {}

in C and replace them with calls to abort. The replace-
ment prevents symbolic execution from infinite iteration
over such loops. If slicing is employed, we apply one more
step before it: we replace non-trivial infinite loops corre-
sponding to

while (1) {/* loop body */}

with loops corresponding to

int x = 1;

while (x) {/* loop body */}

that have a formal exit node. The existence of loop exit
nodes is important for the computation of control depen-
dencies during program slicing [5]. If slicing is employed,
the optimization passes and the replacement of trivial
loops are applied once again on the sliced code.

Before giving the bitcode to Klee, we also replace
undefined functions with symbolic stubs and make exter-
nal globals internal (and initialize them to be symbolic).

After the symbolic execution finishes, we generate
the metadata.xml file and copy the generated tests into
the final destination (test-suite directory).

3 Strengths and Weaknesses

Although symbolic execution is very good in generating
test-cases, it is computationally expensive. In particular,
it struggles with programs that contain many branching
instructions or loops with the number of iterations de-
pendend on the input. Symbolic execution can fork when
processing a branching instruction or such a loop header,
and the number of considered execution paths may grow
rapidly. This phenomenon is known as path explosion.

In Test-Comp, our weakest point appeared to be
the test-generation from the results of the symbolic ex-
ecution. We currently generate the test suite after the
symbolic execution finishes, therefore on crash, out-of-
memory or timeout, we usually failed to generate any
test although the symbolic execution generated some
tests internally. Further, we have generated plenty of
test-cases that the test validator was not able to process
(it seems that some input values are missing in these
test-cases). We plan to fix both these issues in the next
version of Symbiotic.



Marek Chalupa et al.: Symbiotic 6: Generating Test-Cases by Slicing and Symbolic Execution 3

3.1 Comparison to the Mainstream Klee

The mainstream Klee also participated in Test-Comp
this year, therefore it is interesting to compare the results
of Symbiotic with “pure” Klee.

One of the main differences in the results of these
tools is that the mainstream Klee usually scored some
points when it timeout-ed or crashed, whereas we scored
0 points in such cases (as explained above).

For coverage-error-call property, there should be
differences between our tool and the mainstream Klee
as we use slicing. There are some benchmarks where this
is true, however, not many. This is probably because the
benchmark set consists of rather simple programs where
the error is easy to find even without slicing.

4 Tool Setup and Configuration

– Download: https://gitlab.com/sosy-lab/

test-comp/archives-2019/raw/master/2019/

symbiotic.zip

– Participation Statement: Symbiotic 6 participates
in all categories.

– Execution: Run bin/symbiotic OPTS <source>,
where available OPTS include:
--test-comp which sets the Test-Comp configura-

tion,
--prp=file which sets the property specification file

to use,
--32 which sets the 32-bit environment,
--help which shows the full list of possible options.

The generated test-cases are stored in the directory
test-suite.

5 Software Project and Contributors

Symbiotic up to version 6 has been developed mainly
by Jiri Slaby, Marek Trt́ık, Marek Chalupa, Martina Vi-
tovská, Tomáš Jašek, and Michael Šimáček under the
supervision of Jan Strejček. The tool and its compo-
nents are available under MIT License. The project is
hosted by the Faculty of Informatics, Masaryk Univer-
sity. llvm, Klee, and Z3 are also available under open-
source licenses. The project web page is:

https://github.com/staticafi/symbiotic

Acknowledgments

The research is supported by The Czech Science Foun-
dation grant GA18-02177S.

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI, pages 209–224.
USENIX Association, 2008.

2. M. Chalupa, J. Strejček, and M. Vitovská. Joint forces
for memory safety checking revisited. To appear in
STTT, 2019.

3. M. Chalupa, M. Vitovská, and J. Strejček. Symbiotic
5: Boosted instrumentation - (competition contribution).
In D. Beyer and M. Huisman, editors, TACAS, volume
10806 of LNCS, pages 442–446. Springer, 2018.

4. L. De Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340. Springer-Verlag, 2008.

5. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-
gram dependence graph and its use in optimization. In
International Symposium on Programming, volume 167
of LNCS, pages 125–132. Springer, 1984.

6. V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In CAV, volume 4590 of LNCS, pages
519–531. Springer, 2007.

7. S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program.
Lang. Syst., 12(1):26–60, 1990.

8. J. C. King. Symbolic execution and program testing.
Communications of ACM, 19(7):385–394, 1976.

9. J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: Synergy of
instrumentation, slicing, and symbolic execution - (com-
petition contribution). In TACAS, volume 7795 of LNCS,
pages 630–632. Springer, 2013.

10. M. Vitovská, M. Chalupa, and J. Strejček. SBT-
instrumentation: A tool for configurable instrumentation
of LLVM bitcode. CoRR, abs/1810.12617, 2018.

11. M. Weiser. Program slicing. In ICSE, pages 439–449.
IEEE, 1981.

12. LLVM. http://llvm.org/.

https://gitlab.com/sosy-lab/test-comp/archives-2019/raw/master/2019/symbiotic.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/raw/master/2019/symbiotic.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/raw/master/2019/symbiotic.zip
https://github.com/staticafi/symbiotic
http://llvm.org/

	Test-Generation Approach
	Software Architecture
	Strengths and Weaknesses
	Tool Setup and Configuration
	Software Project and Contributors

