
Noname manuscript No.
(will be inserted by the editor)

Joint Forces for Memory Safety Checking Revisited

Marek Chalupa · Jan Strejček · Martina

Vitovská

the date of receipt and acceptance should be inserted later

Abstract We present an improved version of the memory safety verification ap-
proach implemented in Symbiotic 5, the winner of the MemSafety category at the
Competition on Software Verification (SV-COMP) 2018. The approach can verify
programs for standard errors in memory usage like invalid pointer dereference or
memory leaking. It is based on instrumentation, static pointer analysis extended
to consider memory deallocations, static program slicing, and symbolic execution.
The improved version brings higher precision of the extended pointer analysis and
further optimizations in instrumentation. It is implemented in the current ver-
sion of Symbiotic, which contains also some improvements in program slicing and
symbolic execution. We explain the approach in theory, describe implementation
of selected components, and provide experimental results showing the impact of
particular components.

1 Introduction

At SPIN 2018, we presented a successful approach [7] for checking memory safety

of imperative programs. More precisely, the approach checks sequential (no multi-
threading or exceptions) imperative programs for the following types of errors:

invalid dereference – an operation reading from or writing to a byte in the memory
that is not allocated (includes, for example, null pointer dereference and use-
after-free),

invalid deallocation – an operation deallocating a memory block via a non-null
pointer that does not point at the beginning of a memory block allocated on
the heap (includes, for example, double free),

memory leak – a situation when a program returns from the main function without
prior deallocation of all memory blocks allocated on the heap.

The approach combines static pointer analysis, instrumentation, static program
slicing, and symbolic execution. It is implemented in Symbiotic 5 [8], a tool for

Masaryk University, Brno, Czech Republic
E-mail: {chalupa, strejcek, xvitovs1}@fi.muni.cz



2 Marek Chalupa et al.

verification of sequential C programs. With this approach, Symbiotic 5 won the
MemSafety category of the recognized Competition on Software Verification (SV-
COMP) 2018.

All techniques employed in the approach are well known and routinely used for
verification of various program properties including memory safety. The particular
combination of techniques is in the context of memory safety checking to our best
knowledge original, although some similar combinations appeared before and we
mention them later in related work. What we consider as the main contribution
of this research is the specific way we use the results of pointer analysis to reduce
instrumentation, which in turn enables program slicing to remove more program
instructions than with use of basic instrumentation. Indeed, our experiments show
that slicing applied after reduced instrumentation produces roughly half-sized pro-
grams compared to slicing with basic instrumentation. The smaller size of sliced
programs brings significant increase in performance of the whole verification ap-
proach.

In this paper, we present an improved version of the approach, which includes
in particular a more precise pointer analysis and a more efficient instrumentation.
The changes are explicitly mentioned in the paper. The improved version of the
approach is implemented in the current version of Symbiotic, which also brings
slight improvements in slicing and symbolic execution. The experimental results
presented in this paper are therefore completely new. While the conference pa-
per [7] focuses mainly on theoretical description of the approach and experimental
results, in this paper we also discuss more closely the implementation of individual
components except the symbolic executor Klee [5], which is the only part of Sym-

biotic not written by us. Note that the code for instrumentation, static pointer
analysis, and static program slicing is designed to be easily reusable.

In general, our verification approach combines a static data-flow analysis with
compile-time instrumentation. Static data-flow analyses for memory safety check-
ing [15,19,46] proved to be fast and efficient. However, they usually work with
under- or over-approximation and thus tend to produce false alarms or miss some
errors if they are applied as a stand-alone verification technique. Instrumentation,
typically used for runtime monitoring, extends the program with code that tracks
the memory allocated by the program and that checks correctness of memory ac-
cesses and absence of memory leaks. If a check fails, the instrumented program
reaches an error location. Our approach combines a static data-flow analysis with
instrumentation and static program slicing to get a small instrumented program
that contains a reachable error location if and only if the original program con-
tained a memory safety error. Finally, we run a reachability analysis on the in-
strumented and sliced program to reveal possible errors in memory manipulation
contained in the original program. The last step is typically the most expensive
part of our approach.

The basic workflow of our approach is shown in Figure 1. First, the program is
instrumented. In principle, the inserted code tracks allocated memory and checks
that memory accesses and deallocations touch only the allocated memory. With
the help of a data-flow analysis, namely an extended form of pointer analysis,
we optimize the instrumentation process to reduce the amount and complexity
of inserted code. The optimizations can be divided into the following two classes



Joint Forces for Memory Safety Checking Revisited 3

program

staged
instrumentation

extended
pointer analysis

static
program slicing

symbolic execution



– no error
– error found:

– invalid dereference
– invalid deallocation
– memory leak

– other (unknown, timeout, . . . )

instrumentation needed?

yes/no

Fig. 1 The general workflow of our approach.

reflecting whether they reduce inserted checks (RC) or the code tracking allocated
memory (RT):

(RC) These optimizations reduce the number and complexity of inserted checks.
First of all, we do not insert a check before a pointer dereference if the pointer
analysis guarantees that the operation is safe. For example, when the pointer
analysis says that a given pointer always refers to the beginning of a global
variable and a dereference via this pointer does not use more bytes than the
size of the global variable, we know that the dereference is safe and we do not
insert any check before it. Further, it may happen that the pointer analysis
says that a pointer refers to some of the allocated memory blocks, but it cannot
guarantee safety of the pointer dereference as it is not sure that the dereference
is within bounds of the pointed block. In this case, we can sometimes use a
simpler check than the general one. Finally, if the pointer analysis finds that a
dereference is definitely invalid, we insert code jumping to an error location.

(RT) We reduce the code for tracking allocated memory such that it will track
only information about the memory blocks that can be potentially used by
some of the inserted checks.

These optimizations require a pointer analysis with slightly nonstandard proper-
ties. Since typical pointer analyses do not care whether a memory block was freed
or its lifetime has ended, a standard pointer analysis could mark some parts of
programs as safe even when they are not (e.g., dereferencing a freed memory). For
this reason, we extend a pointer analysis such that it takes into account also in-
structions freeing heap-allocated memory and the lifetime of local variables. Due to
(RT), we perform the instrumentation in two stages. During the first stage we in-
sert checks and remember which memory blocks are relevant for these checks. The
second stage inserts the code that tracks information about the relevant blocks.

In the next step, the instrumented program is statically sliced in order to
remove the parts that are irrelevant for the reachability of inserted error locations.
Finally, we use symbolic execution to perform the reachability analysis.

In our approach, we instrument the program with a real working code instead
of inserting calls to place-holder functions interpreted by a verifier tool. In this way,
the program is extended in a tool-independent manner and any tool working with
the same program representation can be used to perform the reachability analysis.



4 Marek Chalupa et al.

Moreover, the instrumented program can be even compiled and run (provided the
original program was executable). The disadvantage is that the reachability anal-
ysis tools that have problems with precise handling of complicated heap-allocated
data structures may struggle with handling the inserted functions since these typi-
cally use structures like linked lists or search trees for tracking the state of allocated
memory blocks.

The presented verification approach is implemented in the tool Symbiotic,
which builds upon the llvm framework [28,30]. Hence, each analyzed C program
is compiled into llvm before the instrumentation starts. llvm is an intermediate
representation language on the level of instructions that is suitable for verification
for its simplicity. Examples contained in this paper are also in llvm, which is
slightly simplified to improve readability. For the needs of presentation, we explain
a few of the llvm instructions:

– alloca instruction allocates memory of the given size on the stack and returns
its address,

– load reads a value from the address given as its operand,
– store writes a given value to the memory on the address given as the second

operand,
– call instruction is used to call a given function. Function malloc allocates

memory of the given size on the heap and returns its address. Function free

deallocates memory on the given address allocated on the heap.

When there is any other instruction used in the paper, its semantics is described
at a relevant place in the text.

In its theoretical part, the paper focuses mainly on the instrumentation and
the extension of pointer analysis, as we use a standard static program slicing based
on dependency graphs [17] and a standard symbolic execution [26] implemented in
Klee [5]. More precisely, Section 2 describes the basic version of code instrumenta-
tion for checking memory safety that does not use any pointer analysis. Section 3
then introduces the extended pointer analysis and explains the instrumentation
optimizations (RC) and (RT). The implementation of individual components em-
ployed by the approach (except the symbolic executor Klee [5]) is discussed in Sec-
tion 4. In particular, we introduce a tool for configurable instrumentation of llvm

bitcode supporting instrumentation in stages, a library providing several different
pointer analyses of llvm bitcode, and an llvm bitcode slicer. Section 5 presents
experimental results comparing Symbiotic with state-of-the-art tools for memory
safety checking and illustrating the contribution of instrumentation optimizations
and program slicing to the overall performance. Section 6 summarizes advantages
and disadvantages of our approach. Related work is discussed in Section 7.

2 Basic Instrumentation

The basic version of instrumentation inserts code that tracks all allocated memory
blocks (including global and stack variables) and checks correctness of all mem-
ory accesses and deallocations just before their execution. Similarly as Jones and
Kelly [25], for every allocated block of memory we maintain a record with its
address and size. The records are stored in three linked lists:



Joint Forces for Memory Safety Checking Revisited 5

– HeapList for blocks allocated on the heap,
– StackList for blocks allocated on the stack,
– GlobalsList for global variables.

Additionally, we maintain DeallocatedList for blocks on the heap that were already
deallocated. This list can be safely omitted as it serves only to provide better error
descriptions. More precisely, the information in this list enables us to distinguish
double free from generic invalid deallocation, or use-after-free from vague invalid
dereference error. In the following, we focus on the core functionality of inserted
code and thus our presentation does not mention the maintenance and utilization
of DeallocatedList .

To maintain the lists that track the state of the memory, we call the function
remember heap(addr , size) or remember stack(addr , size) after each memory alloca-
tion on the heap or stack, respectively. Also, we call remember global(addr , size)

at the beginning of the main function for each global variable. As recently allo-
cated blocks tend to be accessed more often than the older blocks, we add new
records to the beginning of the lists. Before every deallocation, we call function
handle free(addr) that checks that addr is either null or it refers to the begin-
ning of a memory block allocated on the heap. If the answer is positive, it removes
the corresponding record from HeapList . If the check fails, we jump to an error
location and report invalid deallocation. Allocations on the stack are destroyed
when the corresponding function finishes. To reflect this behavior, we use functions
fun entry() and fun exit(). Whenever we enter a function, we call fun entry()

that adds a mark at the beginning of StackList . Before returning from a function,
we call fun exit() that removes the latest mark and all the records added to Stack-

List after this mark. Further, before every instruction loading or storing n bytes
from/to the address addr we call function check pointer(addr , n) to check that
the memory operation is safe. This function goes through the lists and looks for
a record of the memory block containing the accessed n bytes. If there is no such
record (which includes the case when some record contains only part of the n ac-
cessed bytes), we jump to an error location and report invalid dereference. Finally,
we insert check leaks() before each return from the main function to check that
HeapList is empty. If the list contains some record, we jump to an error location
and report the memory leak corresponding to the record.

In contrast to the instrumentation presented in the conference paper [7],
the current version also supports allocations on the stack that are local to a
scope other than the scope of a function. In llvm, such explicit scope of mem-
ory is delimited by the functions llvm.lifetime.start and llvm.lifetime.end

with arguments pointing to the relevant memory. Instead of allocating more
memory blocks with non-overlapping lifetimes, llvm can allocate one memory
block and use llvm.lifetime.start and llvm.lifetime.end repeatedly on this
block. Hence, after every call of llvm.lifetime.end we remove the corresponding
record from the StackList by calling function remove stack. Further, after every
llvm.lifetime.start we call remember stack that checks whether StackList con-
tains the corresponding record and if not, it adds it.

During runtime, there can be situations when a pointer is incorrectly shifted to
a different valid object in memory (e.g., when two arrays are allocated on the stack
one next to the other, a pointer may overflow from the first one to the second one).
In this case, the checking function finds a record for the object pointed to by the



6 Marek Chalupa et al.

1. %p = alloca i32*
call remember stack(%p, 8)
call check pointer(%p, 8)

2. store null to %p
3. %addr = call malloc(20)

call remember heap(%addr, 20)
call check pointer(%p, 8)

4. store %addr to %p
call handle free(%addr)

5. call free(%addr);
call check pointer(%p, 8)

6. %tmp = load %p
call check pointer(%tmp, 4)

7. store i32 1 to %tmp

%p = alloca i32*
call remember stack(%p, 8)

store null to %p
%addr = call malloc(20)
call remember heap(%addr, 20)

store %addr to %p
call handle free(%addr)
call free(%addr);

%tmp = load %p
call check fail()
store i32 1 to %tmp

Fig. 2 Instrumentation of a code with an invalid pointer dereference on line 7. The code on the
left is instrumented by the basic instrumentation while the code on the right is instrumented
using the optimizations (RC) described in Section 3. We assume that the width of a pointer
is 8 bytes and the width of an integer (in llvm denoted as the type i32) is 4 bytes.

pointer and it does not raise any error even though the pointer points outside of
its base object. To overcome this problem, some approaches instrument also every
pointer arithmetic operation [13,25,41]. We do not instrument pointer arithmetic
operations as we do not execute the code but pass it to a verification tool that
keeps strict distinction between objects in memory. Therefore, a pointer derived
from an object cannot overflow to a different object.

An example of a basic instrumentation is provided in Figure 2 (left). Allocations
on lines 1 and 3 are instrumented with calls to remember stack and remember heap,
respectively. The variable %addr keeps the address of the memory allocated by
the call to malloc on line 3. Subsequently, this address is stored to the memory
pointed to by %p. The memory pointed to by %addr is then freed on line 5 and
handle free is called before this event. Function check pointer is called before
each load and store instruction. The call of check pointer before line 7 reveals
use-after-free error as the value loaded from the address %p on line 6 is the address
of the memory allocated on line 3 and freed on line 5.

The presented basic instrumentation correctly transforms real memory safety
errors into reachable error locations in the following sense.

Theorem 1 A given program has a run containing an invalid dereference error if and

only if the program after basic instrumentation has a run reaching an error location

and reporting the invalid dereference error. The same holds for invalid deallocations

and memory leaks.

Proof (Sketch) The statements for invalid dereferences and deallocations follow
from several facts. First, instrumentation does not change the order in which the
original program instructions are executed. Moreover, the inserted code does not
modify the data manipulated by the original instructions. Hence, every run of the
original program exactly corresponds to a run of the instrumented program (which
in addition executes some inserted code), and vice versa. However, the inserted
code can stop a run by jumping to an error location if some inserted check fails.

Second, the information stored in HeapList , StackList , and GlobalsList is valid in
the sense that it represents exactly the memory blocks that are currently allocated.



Joint Forces for Memory Safety Checking Revisited 7

More precisely, if some instruction of the original program creates or destroys a
memory block, this change is reflected in the lists before the next original instruc-
tion is executed.

Finally, the basic instrumentation inserts a check in front of every original in-
struction performing a pointer dereference or a deallocation. As these checks work
with valid information in the lists and check exactly the correctness of the upcom-
ing dereference or deallocation, a run jumps to an error location and reports the
invalid dereference or deallocation if and only if the upcoming pointer dereference
or deallocation would be invalid.

The statement for memory leaks also comes from the fact that the information
in the lists is valid, the check for memory leaks is called at every return from
the main function, and it checks whether some block allocated on the heap is not
explicitly deallocated, which is exactly memory leaking. ut

The main disadvantage of the basic instrumentation is that it tracks all memory
allocations and instruments all dereferences and deallocations. The amount of
inserted function calls is therefore usually very large. As these calls use variables
of the original program as arguments, many instructions of the original code can
have a potential effect on the reachability of inserted error locations and thus
cannot be removed by slicing.

3 Optimized Instrumentation

All suggested instrumentation optimizations rely on an extended pointer analysis.
Hence, we first recall the standard pointer analysis and describe its extension.

3.1 Extended Pointer Analysis

Roughly speaking, a standard pointer analysis computes a points-to set for each
pointer variable. A points-to set of a pointer variable contains all memory locations

to which the variable may point to. Here, a memory location is an abstraction
of a concrete object located in memory during runtime. A frequent choice used
also by our analysis is to abstract these objects by instructions that allocated
them. For example, the object allocated on line 3 in Figure 2 is represented by
the memory location 3:malloc(20) reflecting the line number and the allocation
function. Note that one memory location can represent several objects in the case
that the program can execute the allocation instruction multiple times. This can
happen, for example, when the allocation is within a program loop or in a recursive
function. Besides memory locations, points-to sets can also contain two special
elements: null if the pointer’s value may be null, and unknown if the analysis fails
to establish information about some referenced memory location.

The precision of pointer analysis can be tuned in several directions. A pointer
analysis is called flow-sensitive [21] if it takes into consideration the flow of data in
the program and computes specific points-to information for every control location
in the program. On the contrary, flow-insensitive analyses ignore the execution or-
der of instructions and compute summary information about pointers that holds
at any control location in the program. For instance, in Figure 2 a flow-insensitive



8 Marek Chalupa et al.

analysis would tell us that %tmp may point either to null or to the memory lo-
cation 3:malloc(20) due to the assignments on lines 2 and 4. The flow-sensitive
analysis can tell us that %tmp may point only to 3:malloc(20). In the context of
standard programming languages, one has to specify a control location when ask-
ing a flow-sensitive pointer analysis for the points-to set of some pointer variable.
When working with llvm, we do not do that as llvm maintains variables (also
called register in this context) in SSA form [12] where each variable is set by a
single instruction only. When we refer to a points-to set of a pointer variable, we
thus mean the points-to set immediately after the instruction setting the variable.
A pointer analysis is called field-sensitive if it differentiates between individual ele-
ments of arrays and structures. We achieve field-sensitivity by refining information
in points-to sets with offsets (e.g., a pointer variable p points to memory location
A at offset 4).

Standard pointer analyses ignore information whether a memory block was
freed or whether the lifetime of a local variable has ended because of the end of its
scope. Even though such events do not change pointer values, they are crucial if we
want to use pointer analysis to optimize the instrumentation process. Consider the
dereference on line 7 in Figure 2. Usual flow- and field-sensitive pointer analysis
tells us that the pointer %tmp points to the location 3:malloc(20) at offset 0 and
thus writing 4 bytes to that memory seems to be safe. However, it is not as this
memory has been already freed on line 5.

There exist sophisticated forms of pointer analysis that can model the heap
and the stack and provide information about deallocation and ceased lifetime of
memory objects (e.g., shape analysis [21,38,16]), but these are relatively expensive
for our use case. Instead, we extended a simple flow- and field-sensitive inclusion-
based [1,22] pointer analysis so that it can track whether a pointer variable can
possibly point to an invalidated memory (i.e., a memory that was explicitly freed
or its lifetime ended).

For every pointer variable p, the extended pointer analysis computes a points-to
set

ptset(p) ⊆ (Mem ×Offset) ∪ {null, unknown, invalidated},

where Mem is the set of memory locations, Offset = N0 ∪ {?} is the set of non-
negative integers extended with the special element ‘?’ denoting an unknown offset,
and invalidated is the new special memory location representing memory that has
been deallocated or destroyed as its lifetime ended. We also assume that ptset(p) 6=
∅ for any pointer variable p. Should it be the case, we set ptset(p) = {unknown}.

To compute points-to sets for pointer variables, our analysis actually computes
points-to set ptset(M,C) for each memory location M storing a pointer and each
control location C of the program. The computation of these points-to sets pro-
ceeds as a standard data-flow analysis: ptset(M,C) is derived from sets ptset(M,C′)
for control locations C′ immediately preceding the control location C and from the
effect of the instruction corresponding to C. Computation of all these points-to
sets at all control locations repeats until a fixpoint is reached.

Pointer analyses often use only weak updates, which means that ptset(M,C) is
set to be the union of all ptset(M,C′) for C′ preceding C enlarged according to the
effect of the instruction associated with C. The rationale for weak update is that M
can represent more than one memory object during runtime and the analysis does
not know which of the objects is changed by the current instruction. However, if an



Joint Forces for Memory Safety Checking Revisited 9

instruction changes a memory location that represents a single memory object, we
can apply strong update which computes the points-to set just from the effect of the
instruction (i.e., strong update overrides the information from preceding control
locations). We say that a memory location is single-instance if it never represents
two or more allocated memory objects at the same time. In particular, every
allocation function or instruction that is executed at most once during every run
corresponds to a single-instance memory location. Our extended pointer analysis
aims to identify single-instance memory locations and applies strong updates when
possible.

For the measurements presented in the conference paper [7], we used an ex-
tended pointer analysis that applies strong update only for pointer assignments.
Now we apply strong update in two additional cases.

a) When a single-instance memory location representing an object on the stack
is destroyed because of the end of its scope, we replace this memory location
by invalidated in all points-to sets associated to the current control location.
Note that we cannot do this when the memory location is not single-instance
(e.g., when it represents some local variable of a recursive function) as only the
newest object represented by the memory location is destroyed. In this case,
we apply weak update that adds invalidated to all points-to sets containing
the memory object.

b) If the function free is applied to a pointer whose points-to set contains a
single-instance memory location as the only element, we know that the ob-
ject represented by this memory location is deallocated. Thus, we replace the
memory location by invalidated in all points-to sets associated to the current
control location.

The new applications of strong update improve the precision of the extended
pointer analysis. For example, consider the call free(%addr) on line 5 of Figure 2.
As the points-to set of %addr contains only the single-instance memory location
3:malloc(20), we replace this memory location by invalidated in all points-to
sets. In particular, the points-to set of 1:alloca i32* contains just invalidated

after this deallocation, while it would contain both invalidated and 3:malloc(20)

if we apply weak update only. Thanks to the improved precision, the extended
pointer analysis immediately implies that the dereference on line 7 performs an
invalid dereference as %tmp points to invalidated memory.

3.2 Reduction of Checks (RC)

The function check pointer(addr , n) used by our instrumentation approach to
check validity of memory accesses is not cheap. It searches the lists of records
(StackList , HeapList , and GlobalsList) for the one that represents the memory block
where addr points to. Hence, it has linear complexity with respect to the number
of records in the lists. Here we present improvements that can completely omit
some unnecessary checks and replace some of the remaining checks with simpler
ones.

The extended pointer analysis can often guarantee that each possible memory
dereference performed by a particular instruction is safe. Let us assume that an
instruction reads or writes n bytes from/to the memory referenced by a pointer



10 Marek Chalupa et al.

1. %array = alloca [10 x i32]
call remember stack(%array, 10*4)

2. %m = call input()
3. %tmp = getelementptr %array, %m

call check bounds(%tmp, 4, %array, 0, 40, 0, 40)
4. store 1 to %tmp

Fig. 3 A code instrumented with check bounds. Recall the assumption that the width of an
integer (i32) is 4 bytes.

variable p. The extended pointer analysis guarantees its safety if ptset(p) contains
neither null nor unknown nor invalidated, and for every (A, offset) ∈ ptset(p) it
holds that every object represented by the memory location A contains at least
offset + n bytes. Formally, we know that the access is safe if

– ptset(p) ∩ {unknown, null, invalidated} = ∅ and
– for each (A, offset) ∈ ptset(p) it holds that offset 6= ? and offset + n ≤ size(A),

where size(A) denotes the size of the memory objects represented by A if it is
known at compile time, otherwise it denotes 0 (and thus the condition does not
hold as n ≥ 1). Hence, before instrumenting a memory access with a check, we
query the extended pointer analysis. If the analysis says that the memory access
is safe, the check is not inserted. For example, in Figure 2 the dereferences of the
variable %p on lines 2, 4, and 6 are safe and thus need not be instrumented with
any check.

If the extended pointer analysis does not guarantee safety of a memory access,
we need to instrument the access. However, in many cases, we can call some of the
following functions which are cheaper than the generic check pointer function:

– check fail

– check bounds

– check heap

– check stack

– check globals

Now we describe the semantics of these functions and situations when they replace
the generic check.

We start with the function check fail. The extended pointer analysis may
also detect that a memory access via a pointer variable p has to be invalid as
ptset(p) ⊆ {invalidated, null}. Note that the instruction performing an invalid
access may be unreachable and thus we do not report the invalid dereference
immediately. Instead of calling the generic check, we insert a call to check fail()

that jumps to an error location. For example, this happens for the dereference on
line 7 in Figure 2, where the pointer analysis tells us that %tmp may point only to
invalidated memory.

The function check bounds is more involved. Let us again assume that there is
an instruction accessing n bytes in the memory via a pointer variable p1 and such
that the extended pointer analysis cannot guarantee its safety. Further, assume
that the value of p1 has been computed as a pointer p0 shifted by some number
of bytes. Figure 3 provides a simple code where such situation arises. In this
example, an array of ten integers is allocated on line 1. The function input()



Joint Forces for Memory Safety Checking Revisited 11

A

B

C

D

min− min+

max− max+

?

p0 p1 p1+n

min− min+

max− max+

?

p0 p1 p1+n

Fig. 4 The figure on the left depicts the case that ptset(p0) = {(A, 6), (B, 3), (C, 8), (D, 3)}
and the sizes of memory locations A,B,C,D are 12, 11, 12, 7, respectively. Assume that the
pointer analysis cannot guarantee safety of an instruction accessing n bytes at the address
given by p1, but we know that p1 is derived from p0. Instead of check pointer(p1, n), we can
insert check bounds(p1, n, p0,min−,min+,max−,max+). The figure on the right depicts the
special case where min− = max− and min+ = max+.

called on line 2 reads user input. The instruction %tmp = getelementptr %array,

%m on line 3 returns the address of the m-th element of the array, i.e., the address
%array increased by 4m bytes. Line 4 stores integer 1 on this address. The extended
pointer analysis cannot determine the offset of this address as it depends on the
user input, and thus a check needs to be called before line 4 is executed. However,
in situations like this we may be able to insert a call to the simpler check bounds

function instead of the complex check pointer.

We use the function check bounds instead of the generic check if p0 can point
only to memory blocks of sizes known at compile time and all potential offsets
of p0 are also known. Formally, we insert an optimized check before a potentially
unsafe dereference of p1 if

– ptset(p0) ∩ {unknown, null, invalidated} = ∅ and
– for each (A, offset) ∈ ptset(p0) it holds that offset 6= ? and size(A) is known at

compile time.

Under these conditions, we can easily compute lower and upper bounds on the
number of bytes allocated to the left and to the right of p0 as illustrated by the
example in Figure 4 (left). The bounds are computed as follows:

min− = min{offset | (A, offset) ∈ ptset(p0)}
max− = max{offset | (A, offset) ∈ ptset(p0)}
min+ = min{size(A)− offset | (A, offset) ∈ ptset(p0)}
max+ = max{size(A)− offset | (A, offset) ∈ ptset(p0)}

Now we can insert the call of check bounds(p1, n, p0,min−,min+,max−,max+)

to check validity of the memory access to n bytes pointed by p1. The function
computes the difference o = p1 − p0 and checks whether the access is

– within the lower bounds, i.e., −min− ≤ o and o + n ≤ min+, and thus safe, or
– exceeds the upper bounds, i.e., o < −max− or o+n > max+, and thus invalid.



12 Marek Chalupa et al.

1. %n = call input()
2. %array = call malloc(%n)

call remember heap(%array,%n)
3. %tmp = getelementptr %array, 10

call check heap(%tmp, 4)
4. store 1 to %tmp

Fig. 5 A code instrumented with check heap which searches only HeapList .

If none of the two checks succeeds, the generic check pointer(p1, n) is called.
Notice that when min− = max− and min+ = max+, which is the case depicted
in Figure 4 (right), one of the two checks against bounds always succeeds and
the generic check is never called. This is also the case of Figure 3, where pointer
analysis determines that %array points to the beginning (i.e., at offset 0) of the
block of size 40. Therefore min− = max− = 0 and min+ = max+ = 40 and the
call to check bounds(%tmp, 4, %array, 0, 40, 0, 40) is inserted.

The function check heap is inserted when check fail or check bounds are not
applicable, but the extended pointer analysis guarantees that the dereferenced
pointer p points to the heap, i.e.,

– unknown 6∈ ptset(p) and
– for each (A, offset) ∈ ptset(p), A represents memory allocated on the heap.

The function check heap directly searches just HeapList instead of searching all
the lists. A typical application is shown in Figure 5. Line 2 allocates an array of
n bytes on the heap. The instruction %tmp = getelementptr %array, 10 on line 3
returns the address of the 10th element of the array. Line 4 stores integer 1 on this
address. As the extended pointer analysis cannot determine the size of %array,
check bounds cannot be used. However, the analysis has the information that we
are dereferencing a pointer that points to the heap. Therefore, a call to check heap

is inserted instead of the usual check pointer.

Analogously, we use the function check stack or check globals if the pointer
analysis implies that p points to stack or to some global variable, respectively.

Note that the original version of our approach [7] uses check bounds as the only
simpler check. Moreover, the original approach actually uses a simpler version of
check bounds applicable only if min− = max− and min+ = max+, which is the
situation depicted in Figure 4 (right).

3.3 Reduction of Memory Tracking Code (RT)

Although the previous optimizations simplify or eliminate checks of dereference
safety, the approach still tracks all memory blocks. However, it is sufficient to
track only memory blocks that are relevant for some check. For example, the code
in Figure 2 (right) remembers records for both allocations on lines 1 and 3, but no
record corresponding to the allocation on line 1 is ever used: handle free(%addr)

searches only HeapList and the extended pointer analysis tells us that the derefer-
ence of %tmp on line 7 is invalid. Hence, the call to remember stack inserted after
line 1 can be safely omitted.



Joint Forces for Memory Safety Checking Revisited 13

In general, we always track all blocks allocated on the heap as they are rel-
evant for checking memory leaks. Further, we track all memory blocks if the
points-to set of some dereferenced pointer contains the element unknown mean-
ing that the pointer can point anywhere. Otherwise, we do not track global vari-
ables and memory objects allocated on stack that are not relevant for any in-
serted check. An object is relevant for check pointer(addr , n) if ptset(addr) con-
tains a memory location corresponding to the object. The same principle ap-
plies to check stack and check globals. Recall that check heap searches only
blocks allocated on the heap and these are all tracked anyway. The situation for
check bounds(p1, n, p0,min−,min+,max−,max+) is more interesting as we do not
need to track all blocks in ptset(p1). We can safely ignore the blocks corresponding
to a memory location A if (A, offset) ∈ ptset(p0) holds only for one offset and this
offset satisfies offset = min− and size(A)−offset = min+. Indeed, checking validity
of the dereference of p1 against the tracked information would have exactly the
same effect as the check against the lower bounds min− and min+, which is done
as the first step of check bounds. For example, the blocks corresponding to the
memory location D in Figure 4 (left) are not relevant for the check bounds exactly
for this reason. The same holds for all blocks in Figure 4 (right).

In fact, our instrumentation process has two stages.

1. In the first stage, checks are inserted as described before. Additionally, for
every inserted call to check pointer, check stack, and check globals we re-
member the memory locations contained in the points-to set of their first
argument, which is the pointer variable being dereferenced. We also remem-
ber unknown if it is contained in the points-to set. For every inserted call to
check bounds(p1, n, p0,min−,min+,max−,max+), we remember all memory
locations A such that (A, offset) ∈ ptset(p1) and offset > min− or size(A) −
offset > min+. In the first stage, we also insert all calls to remember heap,
handle free, fun entry, fun exit, and remove stack.

2. The second stage inserts calls to remember global and remember stack if the
memory location representing the allocated global variable or block on stack
has been remembered in the first stage or if unknown has been remembered in
the first stage. Further, we insert the call to check leaks at the end of main

function only if some call to remember heap was inserted in the first stage.

In Figures 2 (right) and 3, the instrumentation with (RT) optimization would not
insert any call to remember stack.

3.4 Correctness

The instrumentation optimized either with the (RC) reduction or both (RC) and
(RT) reductions still correctly transforms memory safety errors to reachable error
locations assuming that it gets valid points-to sets. A points-to set of a pointer
variable p is valid if it satisfies the following conditions during all runs of the
program:

– If p was derived from the address of a (still) allocated block, the ptset(p) con-
tains (A, offset) or (A, ?) or unknown, where A is the memory location repre-
senting the block and offset is the relative offset to the base address of the
allocated block.



14 Marek Chalupa et al.

– If p does point into a block of deallocated memory or memory that was never
allocated, then ptset(p) contains invalidated or unknown.

– If p has the value null, then ptset(p) contains null or unknown.
– If the value of p was loaded from previously uninitialized memory, then ptset(p)

contains unknown.

We decided to put validity of points-to sets as a precondition rather than proving
it because we describe pointer analyses only on an intutive level.

Theorem 2 Assume that we are given a program and a valid ptset(p) for each pointer

variable of the program. The program has a run containing an invalid dereference error

if and only if the program after instrumentation optimized with (RC) reduction has a

run reaching an error location and reporting the invalid dereference error. The same

holds for invalid deallocations and memory leaks.

Proof (Sketch) The instrumentation optimized with (RC) reduction behaves like
the basic instrumentation with the difference that it omits some checks and uses
simpler checks before some dereferences. However, a check is omitted only before
a dereference whose validity is guaranteed by the (valid) point-to set of the deref-
erenced variable. Further, every inserted simpler check has the same effect as the
generic check pointer if the relevant points-to set is valid.

The statements for deallocations and memory leaks follow directly from The-
orem 1 as (RC) reduction changes only instrumentation of dereferences. ut

Theorem 3 Assume that we are given a program and a valid ptset(p) for each pointer

variable of the program. The program has a run containing an invalid dereference error

if and only if the program after instrumentation optimized with (RC) and (RT) reduc-

tions has a run reaching an error location and reporting the invalid dereference error.

The same holds for invalid deallocations and memory leaks.

Proof (Sketch) The checks of dereference validity are inserted in the same way as
by the instrumentation optimized with (RC) reduction. The change introduced
by (RT) reduction is that we do not track global variables and memory blocks
allocated on the stack that are not relevant for any of these checks according
to the corresponding points-to sets. The statement for invalid dereferences thus
follows from Theorem 2 and the assumption that points-to sets are valid.

Regarding deallocations and memory leaks, the only relevant change intro-
duced by (RT) reduction is that we do not insert chect leaks to programs that
do not allocate memory on the heap. Hence, validity of the statements for deallo-
cations and memory leaks follows from Theorem 2. ut

In general, inserting fewer calls to functions that create records has a positive
effect on the speed of reachability analysis since StackList and GlobalsList are
shorter. All the described extensions together can significantly reduce the amount
of inserted code. This has also a positive effect on the portion of code possibly
removed by static program slicing before the reachability analysis.

4 Implementation

The described approach is implemented in Symbiotic tool, revision tag sttt1.
The tool consists of three main parts, namely instrumentation tool, slicer, and the

1 https://github.com/staticafi/symbiotic/releases/tag/sttt

https://github.com/staticafi/symbiotic/releases/tag/sttt


Joint Forces for Memory Safety Checking Revisited 15

external state-of-the-art open-source symbolic executor Klee [5] licensed under
the University of Illinois license. The instrumentation and slicing modules rely
on our library called dg that provides dependence graph construction and various
pointer analyses including the extended pointer analysis described in Section 3.

The C program to be verified is first translated to llvm [30] using clang [11].
The translated program is then instrumented by the instrumentation tool and
optimized with selected optimizations provided by the llvm framework. Further,
the program is sliced and the llvm optimizations are applied again. Finally, Klee

is executed on the sliced and optimized code to check reachability of the inserted
error locations.

All parts of Symbiotic except Klee are licensed under the MIT open-source
license and can be reached via:

https://github.com/staticafi/symbiotic

Now we describe the dg library, the instrumentation tool, and the slicer in more
details. All these components are implemented in C++.

4.1 The dg Library

The dg library incorporates various algorithms for program analysis and depen-
dence graphs building [17]. The library includes configurable pointer analyses and
precise reaching definitions analyses written in a generic way and instantiated for
llvm bitcode. The extended pointer analysis described in Section 3.1 is also a part
of the dg library.

Similar to Hind et al. [22], pointer analyses in dg use sparse evaluation graphs

when computing information about pointers. Intuitively, sparse evaluation graph is
a subgraph of the control flow graph that contains only nodes relevant to pointer
analysis and edges representing paths between these nodes. The pointer analy-
sis builds the sparse evaluation graph for each function of the analyzed program
and connects these graphs to one interprocedural sparse evaluation graph (ISEG)
by adding edges from call-sites to entries of the called functions and from exits
of functions to the corresponding return-sites. As a side effect, recursive calls or
repeated calls of the same function get transformed into loops in ISEG. Note that
a memory location must be single-instance if the corresponding allocation instruc-
tion does not belong to any program’s loop and is not in a function that can be
called repeatedly. Hence, each allocation node that is not on a cycle in ISEG has
to represent a single-instance memory location.

4.2 Instrumentation Tool

Instead of implementing a single-purpose instrumentation for memory
safety checking, we developed a configurable instrumentation tool called
sbt-instrumentation [45]. The basic schema of sbt-instrumentation is depicted
in Figure 6. Besides the llvm bitcode to be instrumented, the tool needs to be
supplied with two files created by a user: a file with definitions of so called in-

strumentation functions whose calls will be inserted into the code, and a JSON

https://github.com/staticafi/symbiotic


16 Marek Chalupa et al.

program in llvm

instrumentation

1. stage
2. stage
...

instrumented
program in llvm

instrumentation
rules in JSON

definitions of
instrumentation

functions in llvm

plugins

Fig. 6 The schema of the configurable instrumentation tool sbt-instrumentation.

file with instrumentation rules that define how the llvm bitcode should be in-
strumented with calls of instrumentation functions. In practice, the fact that our
tool can insert just calls to instrumentation functions is not a restriction as these
functions can contain arbitrary code.

An instrumentation rule consists of two parts saying when it should be applied
and what its effect is. The first part of an instrumentation rule is specified by

– functions in which the rule is applied (typically main or all functions),
– a sequence of instructions that should be matched, and
– conditions under which the rule is applied.

The second part describes

– the instrumentation function call that should be inserted,
– where it should be inserted (before or after the matched sequence), and
– information-gathering effects of the rule, namely setting flags and remembering

values or variables used by the matched instructions in an auxiliary list.

Moreover, there are two other kinds of rules, namely rules for instrumentation
of global variable declarations and rules instrumenting entry and exit points of
functions.

Each rule can be guarded by conditions of several kinds. A condition can claim
that

– a given flag has a particular value,
– a given value or a variable has been remembered earlier (or not),
– an external plugin returns a particular answer on a given query constructed

with parts of matched instructions.

A rule with conditions is applied only if all conditions are satisfied. For example, in
memory safety checking we use the extended pointer analysis as a plugin in order
to instrument only dereferences that are not safe and to insert simpler checks if
possible.

The instrumentation proceeds in one or more stages, each stage defined by a set
of instrumentation rules. In each stage, the tool goes through all instructions of the



Joint Forces for Memory Safety Checking Revisited 17

{
”findInstructions”: [
{

”returnValue”: ”∗”,
”instruction”: ”load”,
”operands”: [”<op>”]

}
],
”newInstruction”: {

”returnValue”: ”∗”,
”instruction”: ”call”,
”operands”: [”check fail”]

},
”where”: ”before”,
”conditions”: [{”query”:[”isInvalid”, ”<op>”], ”expectedResults”:[”true”]}],
”in”: ”∗”

},

Fig. 7 Example of an instrumentation rule that inserts a call to check fail before every load
instruction, given that the load is definitely invalid.

given llvm bitcode and it looks for instructions matching any instrumentation rule
of the current stage. If a match is found, conditions of the instrumentation rule
are evaluated. This is where plugins can be queried. If conditions are satisfied,
the rule is applied, i.e., a new code is inserted according to the rule and some
information can be gathered for a later use. An example of an instrumentation
process that gathers such information and uses it in the next stage is given in
Section 3.3. Indeed, the (RT) reduction is enabled by the information about the
inserted checks that is gathered in the first stage of the optimized instrumentation.

We give an example of an instrumentation rule in Figure 7. This rule in-
structs the instrumentation to insert a call to the function check fail before any
load that is definitely invalid. In details, the rule comprises several parts. The
findInstructions field defines a sequence of instructions to be instrumented. In
this case, we are looking for sequences of the length one consisting of a single
load instruction. When a load instruction is found, its operand is denoted by the
variable <op> (and the loaded value is ignored). The newInstruction field defines
the new instruction that will be inserted if the given sequence is matched. Here
a call to the function check fail with no arguments will be constructed. As the
only operand of the call instruction is the function itself, the call will have no
arguments, i.e., the new instruction is going to be call check fail(). The where

field determines that the new instruction will be inserted before every matched
load instruction and the in field states that the rule will be applied in every func-
tion (thus the * sign). However, the rule takes effect only if the condition given by
the conditions field is satisfied. Hence the call will be inserted only if an external
plugin answers true to the query isInvalid. In this case, the returned answer is
true only if the points-to set of <op> is a subset of {null, invalidated}.

After the last instrumentation stage, the instrumented program is linked with
the instrumentation functions. The result of the instrumentation process is again
an llvm bitcode.

The sbt-instrumentation tool is distributed as a part of Symbiotic and comes
with two predefined configurations used for program analysis, namely a configura-



18 Marek Chalupa et al.

tion for checking memory safety as described in Section 3, and a configuration for
checking signed integer overflows. The latter configuration inserts a check before
every binary operation over signed integers that may potentially overflow. The
decision whether an operation may overflow is based on the results of a range
analysis [40].

The sbt-instrumentation tool together with the predefined configurations for
checking memory safety and integer overflows can be found at:

https://github.com/staticafi/sbt-instrumentation

It uses an open-source parser for the JSON format JsonCpp2. The repository also
contains scripts for downloading libraries that are necessary for plugins used by
the predefined configurations.

4.3 Slicer

Since we have not found any suitable program slicer for llvm bitcode, we created
a tool called sbt-slicer on top of the dg library. Instead of using the traditional
two-pass algorithm introduced in Horwitz et al. [24], we use a variant of the basic
slicing algorithm based on dependence graphs [17] extended for inter-procedural
slicing. In this algorithm, dependence graphs for procedures are connected with
inter-procedural edges and the slice is obtained by one backward search.

When computing the dependence graph of the program to be sliced, data
dependencies are derived from results of byte-precise reaching definition analysis.
This analysis follows the classical data-flow approach and uses information about
pointers provided by a field-sensitive and flow-insensitive inclusion-based pointer
analysis [1]. The slicer can be also configured to use flow-sensitive pointer analysis,
but the computation is more expensive and, according to our experience, it does
not bring any positive effect on performance of Symbiotic.

Control dependencies are computed using the algorithm by Ferrante et al. [17].
This traditional algorithm assumes that every program path terminates, which
may lead to incorrect slices in the presence of non-terminating loops: a non-
terminating loop may be sliced away and hence a previously unreachable code
may become reachable. Although we have not experienced this problem in our
experiments, it may lead to reporting false alarms. We currently work on the
implementation of a termination-sensitive control dependence algorithm.

By default, Symbiotic considers slicing criteria to be the calls to the function
assert fail that comes from the expansion of the standard macro assert, and

the function VERIFIER error that is the official marker of an error location in
SV-COMP. In general, the slicer can use calls to arbitrary selected functions as
slicing criteria.

The tool sbt-slicer can be found at:

https://github.com/staticafi/sbt-slicer

2 https://github.com/open-source-parsers/jsoncpp

https://github.com/staticafi/sbt-instrumentation
https://github.com/staticafi/sbt-slicer
https://github.com/open-source-parsers/jsoncpp


Joint Forces for Memory Safety Checking Revisited 19

5 Experimental Evaluation

This section is divided into two parts. First, we evaluate the impact of instrumen-
tation optimizations (RC) and (RT) and slicing on the performance of Symbiotic.
The second part provides a closer comparison of Symbiotic with the other two
medallists in the MemSafety category of SV-COMP 2018, namely the tools Preda-

torHP [23], and UKojak [37].

In both parts, we use 390 memory safety benchmarks from SV-COMP 20183,
namely 326 benchmarks from the MemSafety category and another 64 benchmarks
of the subcategory TerminCrafted, which was not included in the official compe-
tition. The benchmark set consists of 140 unsafe and 250 safe benchmarks. The
unsafe benchmarks contain exactly one error according to the official SV-COMP
rules. All experiments were performed on machines with Intel(R) Core(TM) i7-3770

CPU running at 3.40 GHz. The CPU time limit for each benchmark was set to
300 seconds and the memory limit was 4 GB. We used the utility Benchexec [4] for
reliable measurement of consumed resources.

5.1 Contribution of Instrumentation Optimizations and Slicing

We evaluated 6 setups of the approach presented in this paper. More precisely, we
consider three different configurations of instrumentation referred as basic, (RC),
and (RC)+(RT), each with and without slicing. The basic instrumentation is the
one described in Section 2. The configuration (RC) uses only the optimizations
presented in Subsection 3.2, while the configuration (RC)+(RT) applies also the
optimization presented in Subsection 3.3. We do not consider the configuration
(RT) as the (RT) optimization would have hardly any effect without the (RC)
optimizations.

The results are presented in Table 1 and Figure 8. The numbers of inserted calls
in the table show that the extended pointer analysis itself can guarantee safety
of approximately 86% of all dereferences. There is a small improvement over the
conference paper [7] where the extended pointer analysis applying strong updates
only for pointer assignments guaranteed about 85% of all dereferences safe. The
pointer analysis itself can decide that all dereferences in a benchmark are safe
in 103 cases. Further, nearly 42% of the dereferences that are not guaranteed
to be safe can be instrumented with a simpler check instead of the expensive
check pointer. The optimization (RT) reduces the number of inserted memory-
tracking calls to around 5%.

The numbers of instructions show that (RT) not only reduces the instrumented
program size, but also substantially improves efficiency of program slicing. Al-
together, all instrumentation improvements and slicing reduce the total size of
programs to almost precisely 50% comparing to the basic instrumentation with
slicing, and to approximately 23% comparing to the basic instrumentation without
slicing.

Obviously, the most important information is the numbers of solved bench-
marks. We can see that all setups detected almost all unsafe benchmarks. This

3 https://github.com/sosy-lab/sv-benchmarks/, revision tag svcomp2018 with an addi-
tional commit 514e387c that fixes a bug in one of the benchmarks.

https://github.com/sosy-lab/sv-benchmarks/


20 Marek Chalupa et al.

Table 1 For each instrumentation configuration, the table shows the total numbers of inserted
calls to selected instrumentation functions, the sum of inserted calls to all checks (Σ check *),
and the sum of inserted calls to all tracking functions (Σ remember *). Further, it shows the
total numbers of instructions in instrumented benchmarks (as sent to Klee) with and without
slicing, together with their ratio in the column relative size. Finally, the table shows the
numbers of solved benchmarks with and without slicing.

basic (RC) (RC)+(RT)

inserted
calls

check pointer 33219 2622 2622

check fail 0 67 67

check bounds 0 425 425

check heap 0 226 226

check stack 0 638 638

check globals 0 520 520

check leaks 389 389 212

Σ check * 33608 4887 4710

remember heap 371 371 371

remember stack 11721 11721 251

remember globals 2032 2032 149

Σ remember * 14124 14124 771

number of
instructions

without slicing 712428 689449 616485

with slicing 333939 303367 166515

relative size 47% 44% 27%

solved
benchmarks

without
slicing

safe 75 78 81

unsafe 137 138 138

total 212 216 219

with
slicing

safe 75 84 128

unsafe 136 137 138

total 211 221 266

confirms the generic observation that for verification tools, finding a bug is usually
easier than verifying the correctness of the program. The configurations basic and
(RC) solved one more unsafe benchmark without slicing than with slicing. This is
because the slicer runs out of memory on this benchmark.

The situation is different for safe benchmarks. All considered setups verified
between 75 and 84 safe benchmarks except (RC)+(RT) with slicing, which verified
128 benchmarks. This performance gap is also well illustrated by Figure 8. The
lines clearly show that even though the instrumentation improvements help on
their own in the end, it is the combination of (RC), (RT), and program slicing
that helps considerably.4

4 The reader may notice a difference to the conference paper in the number of solved safe
benchmarks. This difference is caused by removing a heuristic we have previously added to
Klee and that turned out to be incorrect in some cases (although not on the SV-COMP
benchmarks).



Joint Forces for Memory Safety Checking Revisited 21

0 50 100 150 200 250
n-th fastest benchmark

100

101

102

CP
U 

tim
e 

[s
]

basic, without slicing
basic, with slicing
(RC), without slicing
(RC), with slicing
(RC)+(RT), without slicing
(RC)+(RT), with slicing

Fig. 8 Quantile plot of running times of the considered setups (excluding timeouts and errors).
The plot depicts the number of benchmarks (x-axis) that the tool is able to solve in the given
configuration with the given time limit (y-axis) for one benchmark.

5.2 Comparison of Symbiotic, PredatorHP, and UKojak

Now we take a closer look at the performance of the top three tools in Mem-

Safety category of SV-COMP 2018, namely Symbiotic, PredatorHP [23], and
UKojak [37]. We used exactly the versions of PredatorHP and UKojak that
participated in the competition.

Table 2 shows the numbers of solved safe and unsafe benchmarks in each sub-
category of MemSafety and cumulative CPU time in seconds. The row CPU time

(solved benchmarks) gives the running time on all benchmarks that the tool solved,
whereas the row CPU time (solved by all) provides the running time on bench-
marks that were solved by all three tools. None of the tools reported any incorrect
answer. Moreover, all unsafe benchmarks solved by UKojak were also solved by
Symbiotic. PredatorHP solved one unsafe benchmark that Symbiotic was not
able to solve (timeouted). The table shows that PredatorHP is better in solv-
ing safe instances of Heap and LinkedLists subcategories and UKojak is better in
solving safe benchmarks from Arrays and TerminCrafted subcategories. Let us note
that while Symbiotic and UKojak are general purpose verification tools, Preda-
torHP is a highly specialized tool for shape analysis of C programs that operate
with pointers and linked lists. In particular, it uses an abstraction allowing to
represent unbounded heap-allocated structures, which is something that at least
Symbiotic cannot handle.

Further, Figure 9 provides scatter plots comparing performance of Symbiotic

against the other two tools on individual benchmarks. On the left, one can im-
mediately see that running times of UKojak are usually longer than these of
Symbiotic. The fact that UKojak is written in Java and starting up the Java
Virtual Machine takes time can explain a fixed delay, but not the entire speed
difference. Moreover, there are 140 benchmarks solved by Symbiotic and unsolved
by UKojak, compared to only 38 benchmarks where the situation is the other way
around.

The plot on the right shows that PredatorHP outperforms Symbiotic on
simple benchmarks solved by both tools within one second where slicing and code
optimizations are redundant. Further, there are 36 benchmarks that Symbiotic

was not able to solve and which were successfully solved by PredatorHP. On the



22 Marek Chalupa et al.

Table 2 Numbers of benchmarks in individual subcategories solved by the three considered
tools. The last two rows shows the total CPU time in seconds that the tool spent on all solved
benchmarks and the total CPU time that the tool spent on benchmarks that were solved by
all tools, respectively.

Symbiotic PredatorHP UKojak

subcategory
number of

solved
safe

solved
safe

solved
safe

benchmarks unsafe unsafe unsafe

Arrays 69 21
1

7
0

39
22

20 7 17

Heap 180 146
56

145
63

40
20

90 82 20

LinkedLists 51 27
3

43
19

1
0

24 24 1

Other 26 26
23

17
15

23
23

3 2 0

TerminCrafted 64 46
45

46
45

61
60

1 1 1

total 390 266
128

258
142

164
125

138 116 39

CPU time (solved benchmarks) 266 1349 4181
CPU time (solved by all) 36 410 2284

other hand, Symbiotic decided 44 benchmarks that were not decided by Preda-

torHP. For many of these benchmarks, PredatorHP gave up very quickly as its
static analysis finished but was not able to decide. Moreover, many benchmarks
were solved by Symbiotic within a second whereas PredatorHP computed much
longer. To sum up, it seems that the benefits of Symbiotic and PredatorHP are
complementary to a large extent.

Finally, Figure 10 depicts the quantile plot of running times of the three tools.
Again, the plot shows that UKojak is much slower than the other two tools.

6 Advantages and Disadvantages of Our Approach

Our approach brings a tuned combination of static analysis, instrumentation, and
program slicing that can greatly reduce the analysed program. One advantage of
our approach is that the instrumented and reduced program can be processed by
various verification methods or tools. The experiments presented in the previous
section show that the achieved reduction has a signficant positive impact on the
performance of symbolic execution and we expect that it may have similar effect
on performance of other verification methods or tools.

Another advantage of our approach is that it transforms the problem of check-
ing memory safety into the reachability problem. Therefore, any tool that can
decide reachability can be used to verify the instrumented and reduced program.



Joint Forces for Memory Safety Checking Revisited 23

0 100 101 102

Symbiotic
0

100

101

102

UK
oj

ak

0 100 101 102

Symbiotic
0

100

101

102

Pr
ed

at
or

HP
Fig. 9 Scatter plots comparing Symbiotic with UKojak (left) and with PredatorHP (right)
by their running times (in seconds) on individual benchmarks. The symbols × represent bench-
marks solved by both tools, ◦ are benchmarks solved by Symbiotic but not by the other tool,
� are benchmarks solved by the other tool but not by Symbiotic, and 4 are benchmarks that
were solved by neither of the tools.

0 50 100 150 200 250
n-th fastest benchmark

10 1

100

101

102

CP
U 

tim
e 

[s
]

UKojak
PredatorHP
Symbiotic

Fig. 10 Quantile plot of running times of the considered tools (excluding timeouts and errors).
The plot depicts the number of benchmarks (x-axis) that the particular tool is able to solve
with the given time limit (y-axis) for one benchmark.

The program can be even compiled and run, provided that the original program
was compilable.

On the other hand, instrumentation inserts code manipulating complex data
structures, which may be challenging for some verification tools. Here we gain by
using the symbolic executor Klee that handles all the code that searches the lists
with records about memory using concrete values (the search through the elements
in the list is concrete, but the test whether a record is the one that we search may
involve symbolic expressions). Further, since we only track what memory blocks
are allocated, but we do not track the structure of the memory, we cannot reveal
errors that stem from, for example, unaligned access to memory within a structure.

As our approach uses symbolic execution, we are not able to verify programs
that contain unbounded heap structures or possibly unbounded loops. Symbolic



24 Marek Chalupa et al.

execution simply does not terminate for such programs. This inconvenience can be
solved by using a different verification backend that supports analysis of programs
with such traits.

As mentioned in Section 4.3, our implementation of slicing may remove some
infinite loops and thus lead to false positives. This problem is just technical and
does not affect the principles of this work.

7 Related Work

There are plenty of papers regarding compile-time instrumentation for detecting
memory errors, but very little that optimize this process for the context of soft-
ware verification: most of these papers focus on runtime monitoring and dynamic
testing. Nevertheless, the basic principles and ideas of instrumentation are shared
no matter whether the instrumented code is executed or passed to a verification
tool. Therefore, we give an overview of tools that perform compile-time instrumen-
tation although they do not verify but rather monitor the code. At the end of this
section, we present an overview of tools for verification of memory safety that use
some kind of instrumentation.

7.1 Runtime Monitoring Tools

Our instrumentation process is similar to the one of Kelly and Jones [25] or derived
approaches like [13,41]. The difference is that we do not need to instrument also
every pointer arithmetic (as explained in Section 2) and we use simple singly-linked
lists instead of splay trees to store records about allocated memory.

A different approach than remembering state of the memory in records is taken
by Tag-Protector [42]. This tool keeps records and a mapping of memory blocks
to these records only during the instrumentation process (the resulting program
does not maintain any lookup table or list of records) and inserts ghost variables
into the program to keep information needed for checking correctness of memory
accesses (e.g., size and base addresses of objects). These variables are copied along
with associated pointers. We believe a similar technique could be used to speed
up our approach.

AddressSanitizer [43] is a very popular plugin for compile-time instrumenta-
tion available in modern compilers. It uses shadow memory to keep track of the
program’s state and it is highly optimized for direct execution.

To the extent of our knowledge, none of the above-mentioned approaches use
static analysis to reduce the number or the runtime cost of inserted instructions.

CCured [36] is a source-to-source translator for C programming language that
transforms programs to be memory safe and uses static analysis to reduce the
complexity of inserted runtime checks. Static analysis is used to divide pointers into
three classes: safe, sequential, and wild pointers, each of them deserving gradually
more expensive tracking and checking mechanism. CCured does not use a lookup
table but extends the pointer representation to keep also the metadata (the so-
called “fat” pointers). The static analysis used by CCured is less precise as it uses
unification-based approach as opposed to our analysis which is inclusion-based.
Therefore, our analysis can prune the inserted checks more aggressively.



Joint Forces for Memory Safety Checking Revisited 25

NesCheck [33] uses very similar static analysis as CCured to reduce the num-
ber of inserted checks, but does not transform the pointer representation while
instrumenting. Instead, it keeps metadata about pointers separately in a dense,
array-based binary search tree.

SAFECode [14] is an instrumentation system that uses static analyses to reduce
the number of runtime checks. In fact, the authors also suggest to use this reduction
in the context of verification. SAFECode does not try to eliminate tracking of
memory blocks as our tool does. On the other hand, it employs automatic pool
allocation [29] which makes lookups of metadata fast.

SoftBounds [34] is a compile-time transformation designed to check for spatial
memory errors (e.g., out-of-bound access). However, it has been combined with
CETS [35], which is a compile-time instrumentation system for checking for tem-
poral memory errors (e.g., double-free). This combination is able to catch all the
common memory safety errors [44].

As far as we known, the idea of using pointer analysis to reduce the fragment
of memory that needs to be tracked was discussed only by Yong and Horwitz [47].
Even though the high-level concept of this work seems similar to our approach,
the authors focus on runtime protection against exploitation of unchecked user
inputs.

7.2 Memory Safety Verification Tools

In this subsection, we move from runtime memory safety checkers to verification
tools. Instrumentation is common in this context as well, but using static analysis
to reduce the number of inserted checks has not caught as much attention as we
believe it deserves.

Modern verification tools support checking memory safety usually through
some kind of instrumentation, but the instrumented functions are typically in-
terpreted directly by the tool (they are not implemented in the program).
CPAchecker [3] and UltimateAutomizer [20] insert checks for correctness of mem-
ory operations directly into their internal representation. SMACK [6] instruments
code on llvm level by inserting a check (that is interpreted inside the tool) before
every memory-manipulating instruction.

Map2Check [39] is a memory bug hunting tool that instruments programs to
track the state of allocated memory (the instrumentation is similar to Jones and
Kelly’s approach) and then uses verification to find possible errors in memory
operations. It had used bounded model checking as the verification backend, but
it has switched to a combination of fuzzing and symbolic execution (using Klee)
recently [32,31].

None of the hitherto mentioned tools use static analysis to reduce inserted
checks neither program slicing to reduce the analyzed code. More precisely,
CPAchecker implements some kind of program slicing, but as far as we know,
it is not applied in the standard settings.

One of few publications that explore possibilities of combination of static anal-
ysis and memory safety verification is due to Beyer et. al. [2], where authors apply
CCured to instrument programs and then verify them using BLAST. The main
goal was to eliminate as much inserted checks as possible using model checking.



26 Marek Chalupa et al.

SeaHorn [18] instruments code on llvm level. It uses ghost variables and shadow
memory to keep information needed for checking the validity of memory accesses.
Checks are inserted directly into code as assertions. An unification-based field-
sensitive pointer analysis is used to rule out trivial out-of-bound checks.

CBMC [27] is a bounded model checker that injects memory safety checks into
its internal code representation. Checking its source code reveals that it uses a
kind of lightweight field-insensitive taint analysis to reduce the number of inserted
checks.

SANTE (Static ANalysis and TEsting) [10,9] is a bug hunting tool that com-
bines static analysis, slicing, and concolic execution. The tool can find division-by-
zero errors, out-of-bound array accesses and some cases of invalid pointer deref-
erence [9]. SANTE does not use instrumentation, however, its workflow is very
similar to the one of Symbiotic. It runs value analysis to reveal possible errors
and then slices the program with respect to these possible errors. A specialized
slice is generated for either each possible error or for some subset of the possible
errors (to compare, Symbiotic always generates one slice for all possible errors).
Each of the slices is then passed to concolic execution engine that checks whether
the error is real. In the case of SANTE, the combination of the three techniques
also proved to be more efficient and more successful than using each technique in-
dependently [10]. Unfortunately, it seems that SANTE is not maintained anymore
and we were not able to get a working instance of this tool for comparison.

8 Conclusion

We presented an approach for checking memory safety properties of programs
which is based on a combination of instrumentation with extended pointer analy-
sis, static program slicing, and symbolic execution. We explained why and how we
need to extend a pointer analysis and how the extended analysis can be used to re-
duce the number of inserted checks and to use cheaper checks in some situations.
We introduced an instrumentation optimization that allows us to dramatically
reduce also the number of tracked memory blocks. These instrumentation en-
hancements combined with static program slicing resulted in much faster analysis
of error location reachability performed by symbolic execution. We implemented
this technique in the tool Symbiotic that is able to compete with state-of-the-art
memory safety verification tools.

Acknowledgments

The research is supported by The Czech Science Foundation grant GA18-02177S.
The authors would like to thank three anonymous reviewers of STTT for their
useful suggestions.

References

1. Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.



Joint Forces for Memory Safety Checking Revisited 27

2. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Checking memory
safety with blast. In Fundamental Approaches to Software Engineering, 8th International
Conference, FASE 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume
3442 of Lecture Notes in Computer Science, pages 2–18. Springer, 2005.

3. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software ver-
ification. In Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in
Computer Science, pages 184–190. Springer, 2011.

4. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and resource measurement.
In Model Checking Software - 22nd International Symposium, SPIN 2015, Stellenbosch,
South Africa, August 24-26, 2015, Proceedings, volume 9232 of Lecture Notes in Computer
Science, pages 160–178. Springer, 2015.

5. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In 8th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2008, December 8-10,
2008, San Diego, California, USA, Proceedings, pages 209–224. USENIX Association,
2008.

6. Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamarić, and Michael
Emmi. SMACK software verification toolchain. In Proceedings of the 38th IEEE/ACM
International Conference on Software Engineering (ICSE) Companion, pages 589–592.
ACM, 2016.

7. Marek Chalupa, Jan Strejček, and Martina Vitovská. Joint forces for memory safety
checking. In Maŕıa-del-Mar Gallardo and Pedro Merino, editors, Model Checking Software
- 25th International Symposium, SPIN 2018, Malaga, Spain, June 20-22, 2018, Proceed-
ings, volume 10869 of Lecture Notes in Computer Science, pages 115–132. Springer, 2018.

8. Marek Chalupa, Martina Vitovská, and Jan Strejček. Symbiotic 5: Boosted instrumen-
tation (competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessa-
loniki, Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in
Computer Science, pages 442–446. Springer, 2018.

9. Omar Chebaro, Pascal Cuoq, Nikolai Kosmatov, Bruno Marre, Anne Pacalet, Nicky
Williams, and Boris Yakobowski. Behind the scenes in sante: a combination of static
and dynamic analyses. Automated Software Engineering, 21(1):107–143, 2014.

10. Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand. The SANTE
tool: Value analysis, program slicing and test generation for C program debugging. In
Tests and Proofs - 5th International Conference, TAP 2011, Zurich, Switzerland, June
30 - July 1, 2011. Proceedings, volume 6706 of Lecture Notes in Computer Science, pages
78–83. Springer, 2011.

11. Clang: a C language family frontend for LLVM. http://clang.llvm.org, 2018.
12. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

An efficient method of computing static single assignment form. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pages 25–35. ACM, 1989.

13. Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds checking for C
with very low overhead. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 162–171. ACM, 2006.

14. Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: enforcing alias anal-
ysis for weakly typed languages. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, pages 144–157. ACM,
2006.

15. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via static pointer
analysis (preliminary experience). In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’98, pages
27–34. ACM, 1998.

16. Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Byte-precise verification of low-level list
manipulation. In Francesco Logozzo and Manuel Fähndrich, editors, Static Analysis - 20th
International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings,
volume 7935 of Lecture Notes in Computer Science, pages 215–237. Springer, 2013.

http://clang.llvm.org


28 Marek Chalupa et al.

17. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. In International Symposium on Programming, 6th Colloquium,
Toulouse, April 17-19, 1984, Proceedings, volume 167 of Lecture Notes in Computer Sci-
ence, pages 125–132. Springer, 1984.

18. Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The SeaHorn
verification framework. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206
of Lecture Notes in Computer Science, pages 343–361. Springer, 2015.

19. Samuel Z. Guyer and Calvin Lin. Error checking with client-driven pointer analysis.
Science of Computer Programming, 58(1):83 – 114, 2005.

20. Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044
of Lecture Notes in Computer Science, pages 36–52. Springer, 2013.

21. Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and
Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, pages 54–61. ACM,
2001.

22. Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural pointer
alias analysis. ACM Transactions on Programming Languages and Systems (TOPLAS),
21:848–894, 1999.

23. Lukáš Hoĺık, Michal Kotoun, Petr Peringer, Veronika Šoková, Marek Trt́ık, and Tomáš
Vojnar. Predator shape analysis tool suite. In Proceedings of HVC 2016, volume 10028 of
Lecture Notes in Computer Science, pages 202–209. Springer, 2016.

24. Susan Horwitz, Thomas W. Reps, and David W. Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

25. Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. In AADEBUG, pages 13–26, 1997.

26. James C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

27. Daniel Kroening and Michael Tautschnig. CBMC - C bounded model checker - (com-
petition contribution). In Tools and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages
389–391. Springer, 2014.

28. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In 2nd IEEE / ACM International Symposium on Code Gen-
eration and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, CGO
’04, pages 75–88. IEEE Computer Society, 2004.

29. Chris Lattner and Vikram Adve. Automatic pool allocation: Improving performance by
controlling data structure layout in the heap. SIGPLAN Not., 40(6):129–142, 2005.

30. The LLVM compiler infrastructure. http://llvm.org, 2017.
31. Map2check tool. https://map2check.github.io/, 2018.
32. Rafael Menezes, Herbert Rocha, Lucas C. Cordeiro, and Raimundo S. Barreto. Map2check

using LLVM and KLEE - (competition contribution). In Dirk Beyer and Marieke Huis-
man, editors, Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer Science, pages
437–441. Springer, 2018.

33. Daniele Midi, Mathias Payer, and Elisa Bertino. Memory safety for embedded devices
with nesCheck. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 127–139. ACM, 2017.

34. Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Soft-
bound: Highly compatible and complete spatial memory safety for c. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’09, pages 245–258. ACM, 2009.

35. Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Cets:
Compiler enforced temporal safety for c. SIGPLAN Not., 45(8):31–40, 2010.

http://llvm.org
https://map2check.github.io/


Joint Forces for Memory Safety Checking Revisited 29

36. George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe retrofitting of
legacy code. SIGPLAN Not., 37(1):128–139, 2002.

37. Alexander Nutz, Daniel Dietsch, Mostafa Mahmoud Mohamed, and Andreas Podelski.
ULTIMATE KOJAK with memory safety checks - (competition contribution). In Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035 of
Lecture Notes in Computer Science, pages 458–460, 2015.

38. Noam Rinetzky and Shmuel Sagiv. Interprocedural shape analysis for recursive programs.
In Compiler Construction, 10th International Conference, CC 2001 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2001 Genova,
Italy, April 2-6, 2001, Proceedings, volume 2027 of Lecture Notes in Computer Science,
pages 133–149. Springer, 2001.

39. Herbert O. Rocha, Raimundo S. Barreto, and Lucas C. Cordeiro. Hunting memory bugs
in C programs with map2check - (competition contribution). In Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of
Lecture Notes in Computer Science, pages 934–937. Springer, 2016.

40. Raphael Ernani Rodrigues, Victor Hugo Sperle Campos, and Fernando Magno Quintão
Pereira. A fast and low-overhead technique to secure programs against integer overflows.
In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013, pages 33:1–33:11.
IEEE Computer Society, 2013.

41. Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In
Proceedings of the Network and Distributed System Security Symposium, NDSS 2004, San
Diego, California, USA, pages 159–169. The Internet Society, 2004.

42. Ahmed Saeed, Ali Ahmadinia, and Mike Just. Tag-protector: An effective and dynamic
detection of out-of-bound memory accesses. In Proceedings of the Third Workshop on
Cryptography and Security in Computing Systems, CS2 ’16, pages 31–36. ACM, 2016.

43. Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Ad-
dresssanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference, USENIX ATC’12, pages 28–28. USENIX Asso-
ciation, 2012.

44. Softbound + cets: Complete and compatible full memory safety for c. https://www.cs.
rutgers.edu/~santosh.nagarakatte/softbound/, 2018.

45. Martina Vitovská, Marek Chalupa, and Jan Strejček. SBT-instrumentation: A tool for
configurable instrumentation of LLVM bitcode, 2018. arXiv:1810.12617.

46. Yimin Xia, Jun Luo, and Minxuan Zhang. Detecting memory access errors with flow-
sensitive conditional range analysis. In Embedded Software and Systems: Second Inter-
national Conference, ICESS 2005, Xi’an, China, December 16-18, 2005. Proceedings,
volume 3820 of Lecture Notes in Computer Science, pages 320–331. Springer, 2005.

47. Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid pointer
dereferences. In Proceedings of the 9th European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-11, pages 307–316. ACM, 2003.

https://www.cs.rutgers.edu/~santosh.nagarakatte/softbound/
https://www.cs.rutgers.edu/~santosh.nagarakatte/softbound/

	Introduction
	Basic Instrumentation
	Optimized Instrumentation
	Implementation
	Experimental Evaluation
	Advantages and Disadvantages of Our Approach
	Related Work
	Conclusion

