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Abstract. The paper describes a successful approach to checking com-
puter programs for standard memory handling errors like invalid pointer
dereference or memory leaking. The approach is based on four well-
known techniques, namely pointer analysis, instrumentation, static pro-
gram slicing, and symbolic execution. We present a particular very effi-
cient combination of these techniques, which has been implemented in
the tool Symbiotic and won by a large margin the MemSafety category
of SV-COMP 2018. We explain the approach and provide a detailed
analysis of effects of particular components.

1 Introduction

A popular application of formal methods in software development is to check
whether a given program contains some common defects like assertion violations,
deadlocks, race conditions, or memory handling errors. In this paper, we focus
on the last mentioned group consisting of the following types of errors:

– invalid dereference (e.g. null pointer dereference, use-after-free)
– invalid deallocation (e.g. double free)
– memory leak

We present the approach to memory safety checking of sequential C programs
implemented in Symbiotic [7], the winner of the MemSafety category of SV-
COMP 2018. The official competition graph in Figure 1 shows that Symbiotic
(represented by the rightmost line) won by a considerable margin. One can also
see that the tool is impressively fast: it would win even with its own time limit
lowered to 1 second for each benchmark (the competition time limit was 900
seconds).

In general, our approach to memory safety checking combines static data-
flow analysis with compile-time instrumentation. Static data-flow analyses for
memory safety checking [11,14,35] proved to be fast and efficient. However, they
typically work with under- or over-approximation and thus tend to produce false
alarms or miss some errors. Instrumentation, usually used for runtime monitor-
ing, extends the program with code that tracks the memory allocated by the
program and that checks correctness of memory accesses and absence of mem-
ory leaks. If a check fails, the instrumented program reaches an error location.
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Fig. 1. The quantile plot taken from https://sv-comp.sosy-lab.org/2018/results/

representing the results of SV-COMP 2018 in the category MemSafety. For each tool,
the plot shows what accumulated score would the tool achieve if the time limit for
checking a single benchmark is set to a given time. The scoring schema assigns 1 point
for every detected error provided that the tool generates an error witness which is
confirmed by an independent witness checker, 1 point for the verification of a safe
program (and 1 additional point if a correctness witness is generated and confirmed),
and a high penalty (-16 or -32 points) for an incorrect answer. Further, the overall
score is weighted by the size of subcategories. Precise description can be found at:
https://sv-comp.sosy-lab.org/2018/rules.php

We combine both approaches along with static program slicing to get a re-
duced instrumented program that contains a reachable error location if and only
if the original program contained a memory safety error. Reachability analysis is
then performed to reveal possible errors in manipulation with the memory. This
is the most expensive step of our approach.

The basic schema of our approach is depicted in Figure 2. First, the program
is instrumented. The instrumentation process has been augmented such that
it reduces the amount of inserted code with the help of a data-flow analysis,
namely an extended form of pointer analysis. We reduce the inserted code by
the following three improvements:

(I1) We do not insert a check before a pointer dereference if the pointer analysis
guarantees that the operation is safe. For example, when the pointer analysis
says that a given pointer always refers to the beginning of a global variable
and a dereference via this pointer does not use more bytes than the size of
the global variable, we know that the dereference is safe and we do not insert
any check before it.

(I2) If the pointer analysis cannot guarantee safety of a pointer dereference, but
it says that the pointer refers into a memory block of a fixed known size, we
insert a simpler check that the dereference is within the bounds of the block.
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Fig. 2. The schema of our approach.

(I3) We track only information about memory blocks that can be potentially
used by some of the inserted checks.

Note that interconnecting the instrumentation with a pointer analysis is not
completely straightforward. Since typical pointer analyses do not care whether
a memory block was freed or its lifetime has ended, a pointer analysis could
mark some parts of programs as safe even when they are not (e.g. dereferencing
a freed memory). For this reason, we needed to extend pointer analysis such
that it takes into account information about freeing heap-allocated memory and
the lifetime of local variables. Due to (I3), we perform the instrumentation in
two stages. During the first stage we insert checks and remember which memory
blocks are relevant for these checks. The second stage inserts the code tracking
information about the relevant blocks.

After instrumentation, the program is statically sliced in order to remove the
parts that are irrelevant for the reachability of inserted error locations. Finally,
we use symbolic execution to perform the reachability analysis.

Our instrumentation extends the program with real working code, not just
with calls to undefined functions that are to be interpreted inside a verifier tool.
The advantage of instrumenting the whole machinery for checking memory safety
into the analyzed program (instead of inserting calls to place-holder functions
interpreted by a verifier or instead of monitoring the memory inside the tool) is
that the program is extended in tool-independent manner and any tool (working
with the same program representation) can be used to perform the reachability
analysis. Moreover, the instrumented program can be even compiled and run
(provided the original program was executable). The disadvantage is that the
reachability analysis tools that have problems with precise handling of compli-
cated heap-allocated data structures may struggle with handling the inserted
functions since these typically use structures like search trees for tracking the
state of memory blocks.
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The approach is implemented in the tool Symbiotic, which builds upon the
llvm framework [22,24]. Hence the analyzed C program is compiled into llvm
before the instrumentation starts. llvm is an intermediate representation lan-
guage on the level of instructions that is suitable for verification for its simplicity.
Examples contained in this paper are also in llvm, which is slightly simplified
to improve readability. For the needs of presentation, we explain few of the llvm
instructions: alloca instruction allocates memory on the stack and returns its
address, load reads a value from the address given as its operand, store writes
a given value to the memory on the address given as the other operand. Finally,
call instruction is used to call a given function. When there is any other in-
struction used in the paper, its semantics is described in relevant places in the
text.

This paper focuses mainly on the instrumentation part, as we use a standard
static program slicing based on dependency graphs [12] and a standard symbolic
execution [20]. The rest of the paper is organized as follows. Section 2 describes
the basic version of code instrumentation for checking memory safety that does
not use any auxiliary analysis. Section 3 introduces the extended pointer analysis
and explains the instrumentation improvements (I1)–(I3). Section 4 is devoted
to the implementation of our approach in Symbiotic. Section 5 presents ex-
perimental results comparing Symbiotic with state-of-the-art tools for memory
safety checking and illustrating the contribution of instrumentation improve-
ments and program slicing to the overall performance. Related work is discussed
in Section 6.

2 Basic Instrumentation

To check memory safety, our basic instrumentation inserts a code that tracks
all allocated memory blocks (including global and stack variables) and checks
all memory accesses at run-time. Similarly as Jones and Kelly [19], for every
allocated block of memory we maintain a record with its address and size. The
records are stored in three lists:

– StackList for blocks allocated on the stack
– HeapList for blocks allocated on the heap
– GlobalsList for global variables

Additionally, we maintain DeallocatedList for blocks on the heap that were al-
ready deallocated. This list can be safely omitted as it serves only to provide
more precise error descriptions. For example, the information in this list enables
us to distinguish double free from generic invalid deallocation, or use-after-free
from vague invalid dereference error.

To maintain the three lists, after each allocation we call one of
the functions remember stack(addr , size) or remember heap(addr , size) or
remember global(addr , size). Before every deallocation, we call function
handle free(addr) that checks that addr points to the beginning of a mem-
ory block allocated on the heap and removes the corresponding record from
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1. %p = alloca i32*

call remember stack(%p, 8)

call check pointer(%p, 8)

2. store null to %p

3. %addr = call malloc(20)

call remember heap(%addr, 20)

call check pointer(%p, 8)

4. store %addr to %p

call handle free(%addr)

5. call free(%addr);

check pointer(%p, 8)

6. %tmp = load %p

check pointer(%tmp, 4)

7. store i32 1 to %tmp

%p = alloca i32*

call remember stack(%p, 8)

store null to %p

%addr = call malloc(20)

call remember heap(%addr, 20)

store %addr to %p

call handle free(%addr)

call free(%addr);

%tmp = load %p

check pointer(%tmp, 4)

store i32 1 to %tmp

Fig. 3. Instrumentation of a code with an invalid pointer dereference on line 7. The
code on the left is instrumented by the basic instrumentation while the code on the
right is instrumented using the improvement (I1) described in Section 3. We assume
that the width of a pointer is 8 bytes and the width of an integer (in llvm denoted as
the type i32) is 4 bytes.

HeapList . Since local variables on the stack are destroyed when a function
finishes, we call function destroy stack() to remove relevant records from
StackList right before returning from a function. Further, before every instruc-
tion loading or storing n bytes from/to the address addr we call function
check pointer(addr , n) to check that the memory operation is safe. Finally,
we insert check leaks() at the end of main function to check that HeapList is
empty.

During runtime, there can be situations when a pointer is incorrectly shifted
to a different valid object in memory (e.g. when two arrays are allocated on the
stack one next to the other, a pointer may overflow from the first one to the sec-
ond one). In this case, the checking function finds a record for the object pointed
to by the pointer and it does not raise any error even though the pointer points
outside of its base object. To overcome this problem, some approaches instru-
ment also every pointer arithmetic operation [9,19,31]. We do not instrument
pointer arithmetic as we do not execute the code but pass it to a verification
tool that keeps strict distinction between objects in memory. Therefore, a pointer
derived from an object cannot overflow to a different object.

An example of a basic instrumentation is provided in Figure 3 (left). Allo-
cations on lines 1 and 3 are instrumented with calls to remember stack and
remember heap, respectively. The address of the memory allocated by the call
to malloc is stored to %p on line 4. This memory is then freed and handle free

is called in reaction to this event. The call of check pointer before line 7 re-
veals use-after-free error as the value of %p loaded on line 6 is the address of the
memory allocated on line 3 and freed on line 5.
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3 Instrumentation Improvements

All suggested instrumentation improvements rely on an extended pointer analy-
sis. Hence, we first recall the standard pointer analysis and describe its extension.

3.1 Extended Pointer Analysis

Roughly speaking, a standard pointer analysis computes for each pointer vari-
able its points-to set containing all memory locations the variable may point to.
Here a memory location is an abstraction of a concrete object located in mem-
ory during runtime. A frequent choice used also by our analysis is to abstract
these objects by instructions allocating them. For example, the object allocated
on line 3 in Figure 3 is represented by memory location 3:malloc(20) referring
to the function call that allocates the memory and its line number. Note that
one memory location can represent more objects, for example when the allo-
cation is within a program loop. Besides the memory locations, points-to sets
can also contain two special elements: null if the pointer’s value may be null,
and unknown if the analysis fails to establish information about any referenced
memory location.

The precision of pointer analysis can be tuned in several directions. We fo-
cus on flow-sensitivity and field-sensitivity. A pointer analysis is called flow-
sensitive [16] if it takes into consideration the flow of data in the program and
computes specific points-to information for every control location in the pro-
gram. On the contrary, flow-insensitive analyses ignore the execution order of
instructions and compute summary information about a pointer that holds at
any control location in the program. For instance, in Figure 3 a flow-insensitive
analysis would tell us that %tmp may point either to null or to the memory lo-
cation 3:malloc(20) due to the assignments on lines 2 and 4. The flow-sensitive
analysis can tell us that %tmp may point only to 3:malloc(20). In the context
of standard programming languages, one has to specify a control location when
asking a flow-sensitive pointer analysis for the points-to set of some pointer vari-
able. When working with llvm, we do not do that as llvm programs are in
the SSA form [8] where every program variable is assigned at a single program
location only. A pointer analysis is called field-sensitive if it differentiates be-
tween individual elements of arrays and structures. We achieve field-sensitivity
by refining information in points-to sets with offsets (e.g. p points to memory
location A at offset 4).

Standard pointer analyses ignore information whether a memory block was
freed or whether the lifetime of a local variable has ended because of the end of
its scope. Even though such events do not change pointer values, they are crucial
if we want to use pointer analysis to optimize the instrumentation process. Con-
sider the dereference on line 7 in Figure 3. Usual flow- and field-sensitive pointer
analysis tells us that the pointer %tmp points to the location 3:malloc(20) at
offset 0 and thus writing 4 bytes to that memory seems to be safe. However, it
is not as this memory has been already freed on line 5.
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There exist sophisticated forms of pointer analysis that can model the heap
and the stack and provide information about deallocation and ceased lifetime
of memory objects (e.g. shape analysis [16,29]), but these are too expensive for
our use case. Instead, we extended a simple flow- and field-sensitive Andersen’s
style [1] pointer analysis so that it can track whether a pointer variable can
possibly point to an invalidated memory (i.e. a memory that was freed or its
lifetime ended). In such a case, it includes invalidated in its points-to set. The
extension is straightforward. Whenever the pointer analysis passes the end of
a function, we traverse the points-to information and to all pointers that may
point to a local object we add the invalidated element. Similarly, when free

is called, we add invalidated element to the points-to set of pointers that may
point to the freed object.

More formally, the extended pointer analysis assigns to every pointer variable
p the corresponding points-to set

ptset(p) ⊆ (Mem ×Offset) ∪ {null, unknown, invalidated},

where Mem is the set of memory locations and Offset = N0 ∪ {?} is the set of
non-negative integers extended with a special element ‘?’ denoting an unknown
offset. In the following, we assume that the information computed by the pointer
analysis is sound, i.e. every address that can be assigned to a pointer variable p
during runtime has a corresponding element in ptset(p) (where unknown pointer
covers any address).

(I1) Reduce the Number of Checks

The extended pointer analysis can often guarantee that each possible memory
dereference performed by a particular instruction is safe. Let us assume that
an instruction reads or writes n bytes from/to the memory pointed by a pointer
variable p. The extended pointer analysis guarantees its safety if ptset(p) contains
neither null nor unknown nor invalidated, and for every (A, offset) ∈ ptset(p)
it holds that every object represented by memory location A contains at least
offset + n bytes. Formally, the access is safe if

– ptset(p) ∩ {unknown, null, invalidated} = ∅ and
– for each (A, offset) ∈ ptset(p) it holds that offset 6= ? and offset+n ≤ size(A),

where size(A) denotes the minimum size of the memory objects represented by
A if it is known at compile time, otherwise it denotes 0 (and thus the condition
does not hold as n ≥ 1).

Before instrumenting a memory access with a check, we query the extended
pointer analysis. If the analysis says that the memory access is safe, the check is
not inserted. For example, in Figure 3 the dereferences of the variable %p on lines
2, 4, and 6 are safe and thus need not be instrumented with a check. However,
we insert a check before line 7 because the analysis says that %tmp may point to
an invalidated memory. Figure 3 (right) provides the example code instrumented
using the improvement (I1).
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1. %array = alloca [10 x i32]

call remember stack(%array, 10*4)

2. %m = call input()

3. %tmp = getelementptr %array, %m

call check bounds(%tmp, 4, %array, 0, 40)

4. store 1 to %tmp

Fig. 4. Instrumentation of a code using the simpler, constant-time check. Recall that
we assume that the width of an integer (i32) is 4 bytes.

(I2) Simplify Checks When Possible

The function check pointer(addr , n) used by our instrumentation approach to
check validity of memory accesses is not cheap. It searches the lists of records
(StackList , HeapList , and GlobalsList) for the one that represents the memory
block where addr points to. Hence, it has a linear complexity with respect to
the number of records in the lists. Here we present an improvement that can
sometimes replace this check with a simpler, constant-time check.

Let us assume that there is an instruction accessing n bytes at the memory
pointed by a pointer variable p1 and such that the extended pointer analysis can-
not guarantee its safety. Further, assume that the value of p1 has been computed
as a pointer p0 shifted by some number of bytes. Instead of a possibly expensive
call check pointer(p1, n), we can insert a simpler check if we know the size of
the memory block referred by p0 and where precisely p0 points into the object
(i.e. its offset). Formally, we insert the simpler check before a potentially unsafe
dereference of p1 if

– ptset(p0) ∩ {unknown, null, invalidated} = ∅ and

– there exist size0 > 0 and offset0 6= ? such that, for each (A, offset) ∈
ptset(p0), it holds that size(A) = size0 and offset = offset0.

Indeed, in this case we can compute the actual offset of p1 as offset1 = offset0 +
(p1−p0) and we know the size of the object that p1 points into. The dereference
is safe iff all the accessed bytes are within the bounds of the memory object,
i.e. 0 ≤ offset1 and offset1 +n ≤ size0. This constant-time check is implemented
by the function check bounds(p1, n, p0, offset0, size0).

Figure 4 provides an example where the simpler check is applied before the
last instruction. In this example, an array of ten integers is allocated on line 1.
The instruction %tmp = getelementptr %array, %m on line 3 returns the ad-
dress of the m-th element of the array, i.e. the address %array increased by
4m bytes. Line 4 stores integer 1 on this address. The extended pointer analy-
sis cannot determine the offset of this address as it depends on the user input.
However, it can determine that %array points to the beginning (i.e. at offset 0)
of the block of the size 40. Hence, the call to check bounds is inserted instead
of the usual check pointer.
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(I3) Extension with Staged Instrumentation

Although the previous two instrumentation improvements eliminate or simplify
checks of dereference safety, the approach still tracks all memory allocations.
However, it is sufficient to track only memory blocks that are relevant for some
check. For example, the code in Figure 3 (right) remembers records for both allo-
cations on lines 1 and 3, but no record corresponding to the allocation on line 1 is
ever used: handle free(%addr) searches only HeapList and the extended pointer
analysis tells us that the pointer checked by check pointer(%tmp, 4) can never
point to the location 1:alloca i32*. Hence, the call to remember stack inserted
after line 1 can be safely omitted. Note that we always track all allocations on
heap as they are relevant for the memory leaks checking.

In order to insert only relevant calls to remember stack and
remember global functions, we perform the instrumentation in two stages.

1. In the first stage, checks are inserted as described before. Additionally, for
every inserted check pointer call, we remember its first argument, i.e. the
pointer variable. In the first stage, we also insert all calls to remember heap,
handle free, and destroy stack.

2. The second stage inserts calls to remember stack and remember global.
For every memory location A corresponding to a global variable or some
allocation on the stack, we check whether any pointer variable remembered in
the first stage can point into the memory location A. Formally, we check that
there exists some remembered pointer p such that (A, offset) ∈ ptset(p) for
some offset , or unknown ∈ ptset(p). We insert the call to remember stack or
remember global only if the answer is positive. Further, we insert the call to
check leaks at the end of main function only if some call to remember heap

was inserted in the first stage.

Note that in the first stage we do not remember arguments of check bounds

introduced by (I2) as this function does not search the lists of records.
In Figures 3 (right) and 4, the presented staged instrumentation would not

insert any call to remember stack.
In general, inserting fewer calls to functions that create records has a positive

effect on the speed of reachability analysis since StackList and GlobalsList are
shorter. All the described extensions together can significantly reduce the amount
of inserted code. This has also a positive effect on the portion of code possibly
removed by program slicing before the reachability analysis.

4 Implementation

The described approach was implemented in Symbiotic [7]. The tool consists
of three main parts, namely instrumentation module, slicing module and the ex-
ternal state-of-the-art open-source symbolic executor Klee [5]. Moreover, the
instrumentation and slicing modules rely on our library called dg that provides
dependence graph construction and various pointer analyses including the ex-
tended pointer analysis described in Section 3.
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Instead of implementing a single-purpose instrumentation for memory safety
checking, we developed a configurable instrumentation module [34]. The instru-
mentation process is controlled by a configuration file provided by the user. A
configuration can specify an arbitrary number of instrumentation stages, each
defined by a set of instrumentation rules. Every rule describes which instructions
should be matched and how to instrument them. At the moment, the instrumen-
tation can insert only call instructions as it is sufficient for most use-cases. An
instrumentation rule can trigger an additional action like setting a flag or re-
membering values or variables used by the matched instructions. Further, a rule
can be guarded by conditions of several kinds. A condition can claim that

– a given flag has a particular value,

– a given value or a variable has been already remembered (or not),

– an external plugin returns a particular answer on a given query constructed
with parts of matched instructions.

A rule with conditions is applied only if all conditions are satisfied. For example,
in memory safety checking we use the extended pointer analysis as a plugin in
order to instrument only dereferences that are not safe due to (I1).

Besides a configuration, the user has to also provide definitions of functions
whose calls are inserted into the program. For checking memory safety, these
functions are written in C and translated to llvm. After a successful instrumen-
tation, these functions are linked to the instrumented code.

We implemented a static backward slicing algorithm based on dependence
graphs [12] as we have not found any suitable program slicer for llvm bitcode.
The algorithm has been extended to a simple form of inter-procedural slicing,
where dependence graphs for procedures are connected by inter-procedural edges
and the slice is obtained by one backward search instead of using the traditional
two-pass algorithm introduced in [18].

Symbiotic applies code optimizations provided by the llvm framework after
instrumentation and again after slicing. Finally, Klee is executed on the sliced
and optimized code to check for reachability of the inserted error locations.

The tool Symbiotic and its components are licensed under the MIT and
Apache-2.0 open-source licenses and can be found at:

https://github.com/staticafi/symbiotic

Klee is licensed under the University of Illinois license.

5 Experimental Evaluation

The section is divided into two parts. First, we compare several setups of the
described approach in order to show which ingredients are essential for good
performance. The second part provides a closer comparison of Symbiotic with
the other two winning tools in the MemSafety category of SV-COMP 2018.
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inserted calls number of instruct. solved benchmarks

check
pointer

check
bounds

remember*
w/o

slicing
with
slicing

relative
size

w/o slicing with slicing

safe unsafe safe unsafe

basic 32333 0 10511 575k 343k 60% 116 132 118 131
(I1) 4930 0 10511 538k 303k 56% 119 132 125 132
(I1)+(I2) 4750 180 10511 538k 301k 56% 119 132 126 132
(I1)+(I3) 4930 0 830 478k 174k 36% 130 132 180 132
(I1)+(I2)+(I3) 4750 180 792 478k 171k 36% 132 132 181 132

Table 1. For each instrumentation configuration, the table shows the total numbers of
inserted calls of check pointer, check bounds, and rememeber* functions. Further, it
shows the total numbers of instructions in instrumented benchmarks (as sent to Klee)
with and without slicing, together with their ratio in the column relative size. Finally,
the table shows the numbers of solved benchmarks with and without slicing.

5.1 Contribution of Instrumentation Improvements and Slicing

We evaluated 10 setups of the approach presented in this paper. More precisely,
we consider five different configurations of instrumentation referred as basic,
(I1), (I1)+(I2), (I1)+(I3), and (I1)+(I2)+(I3), each with and without slicing.
The basic instrumentation is the one described in Section 2 and the other four
configurations employ the corresponding improvements presented in Section 3.
We do not consider other configurations as they are clearly inferior.

For the evaluation, we use 390 memory safety benchmarks from SV-COMP
20181, namely 326 benchmark from the MemSafety category and another 64
benchmarks of the subcategory TerminCrafted, which was not included in the
official competition this year. The benchmark set consists of 140 unsafe and 250
safe benchmarks. The unsafe benchmarks contain exactly one error according to
the official SV-COMP rules. All experiments were performed on machines with
Intel(R) Core(TM) i7-3770 CPU running at 3.40GHz. The CPU time limit for
each benchmark was set to 300 seconds and the memory limit was 6 GB. We
used the utility Benchexec [4] for reliable measurement of consumed resources.

The results are presented in Table 1 and Figure 5. The numbers of inserted
calls in the table show that the extended pointer analysis itself can guarantee
safety of approximately 85% of all dereferences. In other words, (I1) reduces the
number of inserted checks to 15%. Further, (I2) can replace a relatively small
part of these checks by simpler ones. The improvement (I3) reduces the number
of inserted memory-tracking calls to around 8% in both configurations (I1)+(I3)
and (I1)+(I2)+(I3).

The numbers of instructions show that (I3) not only reduces the instrumented
program size, but also substantially improves efficiency of program slicing. Al-

1 https://github.com/sosy-lab/sv-benchmarks/, revision tag svcomp2018

11

https://github.com/sosy-lab/sv-benchmarks/


0 50 100 150 200 250 300
n-th fastest benchmark

100

101

102
CP

U 
tim

e 
[s

]
basic
basic, no slicing
(I1)+(I2)
(I1)+(I2), no slicing
(I1)+(I3)
(I1)+(I3), no slicing
(I1)+(I2)+(I3)
(I1)+(I2)+(I3), no slicing

Fig. 5. Quantile plot of running times of the considered setups (excluding timeouts and
errors). The plot depicts the number of benchmarks (x-axis) that the tool is able to
solve in the given configuration with the given time limit (y-axis) for one benchmark.
We omitted the lines for (I1) with and without slicing as they almost perfectly overlap
with the corresponding lines for (I1)+(I2).

together, all instrumentation improvements and slicing reduce the total size of
programs to 30% comparing to the basic instrumentation without slicing.

Obviously, the most important information is the numbers of solved bench-
marks. We can see that all setups detected 132 unsafe benchmarks except the
basic configuration with slicing, where the slicing procedure did not finish for
one benchmark within the time limit. As the considered benchmark set contains
only 140 unsafe benchmarks, this confirms the generic observation that for ver-
ification tools, finding a bug is usually easy. The situation is different for safe
benchmarks. All considered setups verified between 116 and 132 safe benchmarks
except (I1)+(I3) with slicing and (I1)+(I2)+(I3) with slicing, which verified 180
and 181 benchmarks, respectively. This performance gap is also well illustrated
by Figure 5. The lines clearly show that even though the instrumentation im-
provements help on their own, it is the combination of (I1), (I3) and program
slicing that helps considerably. The effect of (I2) is rather negligible.

5.2 Comparison of Symbiotic, PredatorHP, and UKojak

Now we take a closer look at the performance of the top three tools in MemSafety
category of SV-COMP 2018, namely Symbiotic, PredatorHP [17], and UKo-
jak [28]. What we present and interpret are the official data of this category
available on the competition website https://sv-comp.sosy-lab.org/2018/.
Note that SV-COMP 2018 used 900 seconds timeout and memory limit of 15 GB
per benchmark.

Table 2 shows the numbers of solved safe and unsafe benchmarks in each
subcategory and total time needed to solve these benchmarks. None of the tools
reported any incorrect answer. Symbiotic was able to solve the most bench-
marks (almost 80%) in very short time compared to the other two tools. More-
over, all unsafe benchmarks solved by PredatorHP and UKojak were also
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Symbiotic PredatorHP UKojak

subcategory
number of

solved
safe

solved
safe

solved
safe

benchmarks unsafe unsafe unsafe

Arrays 69 62
44

7
0

44
27

18 7 17

Heap 180 145
55

148
66

51
26

90 82 25

LinkedLists 51 27
3

43
19

4
0

24 24 4

Other 26 26
23

18
16

23
23

3 2 0

total 326 260
125

216
101

122
76

135 115 46

CPU time [s] 310 2100 11000

Table 2. Numbers of bechmarks solved by the three considered tools in each subcate-
gory of MemSafety. The last row shows total CPU time spent on all solved benchmarks.

solved by Symbiotic. PredatorHP is better in solving safe instances of Heap
and LinkedLists subcategories. Let us note that while Symbiotic and UKojak
are general purpose verification tools, PredatorHP is a highly specialized tool
for shape analysis of C programs operating with pointers and linked lists. In par-
ticular, it uses an abstraction allowing to represent unbounded heap-allocated
structures, which is something at least Symbiotic cannot handle.

Scatter plots in Figure 6 provide another comparison of the tools. On the left,
one can immediately see that running times of UKojak are much longer than
these of Symbiotic for nearly all benchmarks. The fact that UKojak is written
in Java and starting up the Java Virtual Machine takes time can explain a fixed
delay, but not the entire speed difference. Moreover, there are 141 benchmarks
solved by Symbiotic and unsolved by UKojak, compared to only 3 benchmarks
where the situation is the other way around. In many of these cases, UKojak
gave up or crashed even before time limit.

The plot on the right shows that PredatorHP outperforms Symbiotic on
simple benchmarks solved by both tools within one second. Further, there are 34
benchmarks where Symbiotic timed out but which were successfully solved by
PredatorHP. On the other hand, Symbiotic decided 78 benchmarks that were
not decided by PredatorHP. For most of these benchmarks, PredatorHP
gave up very quickly as its static analysis is unable to decide. Moreover, many
benchmarks were solved by Symbiotic within a second whereas PredatorHP
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Fig. 6. Scatter plots comparing Symbiotic with UKojak (left) and with Preda-
torHP (right) by their running times (in seconds) on individual benchmarks. The
symbols × represent benchmarks solved by both tools, ◦ are benchmarks solved by
Symbiotic but not by the other tool, � are benchmarks solved by the other tool but
not by Symbiotic, and 4 are benchmarks that were solved by neither of the tools.

computed much longer. To sum up, it seems that the benefits of Symbiotic and
PredatorHP are complementary to a large extent.

6 Related Work

There is plenty of papers on runtime instrumentation for detecting memory er-
rors, but very little that optimize this process for the context of software verifi-
cation. Nevertheless, the basic principles and ideas are shared no matter whether
the instrumented code is executed or passed to a verification tool. Therefore, we
give an overview of tools that perform compile-time instrumentation although
they do not verify but rather monitor the code. Further, an overview of tools for
verification of memory safety is also provided.

6.1 Runtime Monitoring Tools

Our instrumentation process is similar to the one of Kelly and Jones [19] or
derived approaches like [9,31]. The difference is that we do not need to instrument
also every pointer arithmetic (as explained in Section 2) and we use simple singly-
linked lists instead of splay trees to store records about allocated memory.

A different approach than remembering state of the memory in records is
taken by Tag-Protector [32]. This tool keeps records and a mapping of memory
blocks to these records only during the instrumentation process (the resulting
program does not maintain any lookup table or list of records) and insert ghost

14



variables into the program to keep information needed for checking correctness
of memory accesses (e.g. size and base addresses of objects). These variables are
copied along with associated pointers. We believe a similar technique could be
used to speed up our approach.

AddressSanitizer [33] is a very popular plugin for compile-time instrumenta-
tion available in modern compilers. It uses shadow memory to keep track of the
program’s state and it is highly optimized for direct execution.

To the extent of our knowledge, none of the above-mentioned approaches use
static analysis to reduce the number or the runtime cost of inserted instructions.

CCured [27] is a source-to-source translator for C programming language that
transforms programs to be memory safe and uses static analysis to reduce the
complexity of inserted runtime checks. Static analysis is used to divide pointers
into three classes: safe, sequential, and wild pointers, each of them deserving
gradually more expansive tracking and checking mechanism. CCured does not
use a lookup table but extends the pointer representation to keep also the meta-
data (the so-called “fat” pointers). The static analysis used by CCured is less
precise as it uses unification-based approach opposed to our analysis which is
inclusion-based. Therefore, our analysis can prune the inserted checks more ag-
gressively.

NesCheck [26] uses very similar static analysis as CCured to reduce the num-
ber of inserted checks, but does not transform the pointer representation while
instrumenting. Instead, it keeps metadata about pointer separately in a dense,
array-based binary search tree.

SAFECode [10] is an instrumentation system that uses static analyses to
reduce the number of runtime checks. In fact, they also suggest to use this
reduction in the context of verification. SAFECode does not try to eliminate the
tracking of memory blocks as our tool does. However, it employs automatic pool
allocation [23] to make lookups of metadata faster.

As far as we known, the idea of using pointer analysis to reduce the fragment
of memory that needs to be tracked appeared only in [36]. Even though the high-
level concept of this work seems similar to our approach, they focus on runtime
protection against exploitation of unchecked user inputs.

6.2 Memory Safety Verification Tools

In the rest of this section, we move from runtime memory safety checkers to
verification tools. Instrumentation is common in this context as well, but using
static analysis to reduce the number of inserted checks has not caught as much
attention as we believe it deserves.

Modern verification tools also support checking memory safety usually
through some kind of instrumentation, but the instrumented functions are in-
terpreted directly by the tool (they are not implemented in the program).
CPAchecker [3] and UltimateAutomizer [15] insert checks for correctness of mem-
ory operations directly into their internal representation. SMACK [6] and Sea-
Horn [13] instrument code on llvm level. SeaHorn uses ghost variables for check-
ing out-of-bound memory accesses via assertions inserted into code, and shadow
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memory to track other types of errors. SMACK inserts a check before every
memory access. Map2Check [30] is a memory bug hunting tool that instruments
programs and then uses verification to find possible errors in memory operations.
It used bounded model checking as the verification backend, but it has switched
to llvm and Klee recently [25]. All these tools use no static analysis to reduce
inserted checks.

One of few publications that explore possibilities of combination of static
analysis and memory safety verification is [2], where authors apply CCured to
instrument programs and then verify them using BLAST. The main goal was to
eliminate as much inserted checks as possible using model checking.

Finally, CBMC [21] injects checks into its internal code representation.
Checking its source code reveals that it uses a kind of lightweight field-insensitive
taint analysis to reduce the number of inserted checks.

7 Conclusion

We have presented a technique for checking memory safety properties of pro-
grams which is based on a combination of instrumentation with extended pointer
analysis, program slicing, and symbolic execution. We describe how the extended
pointer analysis can be used to reduce the number of inserted checks and showed
that in some cases these checks can be further simplified. We introduced an in-
strumentation improvement that allows us to dramatically reduce also the num-
ber of tracked memory blocks. These instrumentation enhancements combined
with program slicing result in much faster analysis of error location reachability
that is performed by symbolic execution. We implemented this technique in the
tool Symbiotic that has consequently won the MemSafety category of Soft-
ware Verification Competition 2018 and thus proved to be able to compete with
state-of-the-art memory safety verification tools.
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4. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and resource mea-
surement. In Model Checking Software - 22nd International Symposium, SPIN
2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings, volume 9232 of
Lecture Notes in Computer Science, pages 160–178. Springer, 2015.

16



5. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages 209–
224. USENIX Association, 2008.

6. Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamarić, and
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