
Reducing Acceptance Marks in Emerson-Lei
Automata by QBF Solving
Tereza Schwarzová #

Masaryk University, Brno, Czech Republic

Jan Strejček # Ñ

Masaryk University, Brno, Czech Republic

Juraj Major #

Masaryk University, Brno, Czech Republic

Abstract
This paper presents a novel application of QBF solving to automata reduction. We focus on
Transition-based Emerson-Lei automata (TELA), which is a popular formalism that generalizes
many traditional kinds of automata over infinite words including Büchi, co-Büchi, Rabin, Streett,
and parity automata. Transitions in a TELA are labelled with acceptance marks and its accepting
formula is a positive Boolean combination of atoms saying that a particular mark has to be visited
infinitely or finitely often. Algorithms processing these automata are often very sensitive to the
number of acceptance marks. We introduce a new technique for reducing the number of acceptance
marks in TELA based on satisfiability of quantified Boolean formulas (QBF). We evaluated our
reduction technique on TELA produced by state-of-the-art tools of the libraries Owl and Spot and
by the tool ltl3tela. The technique reduced some acceptance marks in automata produced by
all the tools. On automata with more than one acceptance mark obtained by translation of LTL
formulas from literature with tools Delag and Rabinizer 4, our technique reduced 27.7% and 39.3% of
acceptance marks, respectively. The reduction was even higher on automata from random formulas.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Automata over infinite objects

Keywords and phrases Emerson-Lei automata, TELA, automata reduction, QBF, telatko

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.23

Supplementary Material Software: https://gitlab.fi.muni.cz/xschwar3/telatko
archived at swh:1:dir:ce6c69759d7317f0bc9cb2dc2cc96e9473ca31cd

Funding T. Schwarzová received funding from the European Union’s Horizon Europe program under
the Grant Agreement No. 101087529.

1 Introduction

Automata over infinite words like Büchi, Rabin, Streett, or parity automata play a crucial
role in many algorithms related to concurrency theory, game theory, and formal methods in
general. In particular, they are used in specification, verification, analysis, monitoring, and
synthesis of various systems with infinite behaviour. In 1987, Emerson and Lei [12] introduced
automata over infinite words where acceptance conditions are arbitrary combinations of
acceptance primitives saying that a certain set of states should be visited finitely often
or infinitely often. In 2015, the same kind of acceptance condition was described in the
Hanoi omega-automata format (HOAF) [3]. The only difference is that the acceptance
primitives talk about finitely or infinitely often visited acceptance marks rather than sets
of states. Acceptance marks are placed on transitions and each mark identifies the set of
transitions containing this mark. Hence, these automata are called transition-based Emerson-
Lei automata (TELA) and they generalize many traditional kinds of automata over infinite
words including Büchi, co-Büchi, Rabin, Streett, and parity automata.

© Tereza Schwarzová, Jan Strejček, and Juraj Major;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xschwar3@mail.muni.cz
https://orcid.org/0009-0001-9016-5399
mailto:strejcek@fi.muni.cz
https://www.fi.muni.cz/~xstrejc/
https://orcid.org/0000-0001-5873-403X
mailto:major@fi.muni.cz
https://orcid.org/0009-0007-1871-9047
https://doi.org/10.4230/LIPIcs.SAT.2023.23
https://gitlab.fi.muni.cz/xschwar3/telatko
https://archive.softwareheritage.org/swh:1:dir:ce6c69759d7317f0bc9cb2dc2cc96e9473ca31cd;origin=https://gitlab.fi.muni.cz/xschwar3/telatko;visit=swh:1:snp:c777a3ad52182a7060188f6d7eddd358a81c32d6;anchor=swh:1:rev:7c8e2f983847d4b14576d6b2e58265c02eed5ebc
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

TELA have attracted a lot of attention during the last few years [5, 15, 16, 18]. Their
popularity comes probably from the fact that these automata can often use fewer states
than equivalent automata with simpler acceptance conditions. Further, algorithms handling
TELA can automatically handle all automata with traditional acceptance conditions. TELA
can be obtained for example by translating formulas of linear temporal logic (LTL) [17]
with tools ltl2dela (known as Delag) [16] or ltl2dgra (known as Rabinizer 4) [13] of the
Owl library, ltl2tgba of the Spot library [9], or ltl3tela [15]. There are also algorithms
processing these automata, for example the emptiness check [5] or translation of TELA to
parity automata [18, 7].

Algorithms processing TELA are often sensitive to the number of acceptance marks more
than to other parts of the automaton. For example, the transformation of TELA to parity
automata based on color appearance record [18] transforms a TELA with m acceptance marks
and s states into a parity automaton with up to m! · s states. Further, the emptiness-check
algorithm [5] is exponential in the number of acceptance marks that appear in acceptance
primitives saying that a mark has to be visited finitely often, while it is only polynomial in
other measures of the input automaton.

The number of acceptance marks can be algorithmically reduced to one as every TELA
can be transformed to an equivalent Büchi automaton (this can be easily done for example
by Spot [9]), but this reduction is paid by dramatic changes of state space: the number of
states can increase exponentially in the number of acceptance marks and some important
structural properties like determinism can be lost. This motivates our study of a technique
reducing the number of acceptance marks without altering the structure of the automaton.

Our reduction technique is heavily based on quantified Boolean formulas (QBF). For a
given TELA and parameters C,K, it produces a QBF which is satisfiable if and only if there
exists an automaton with the same structure, K acceptance marks, an acceptance formula
in disjunctive normal form with C cubes (i.e., conjunction of literals), and the same set of
accepting runs as the original automaton. The placement of the marks on transitions and
the acceptance formula can be obtained from a model of the formula. Besides this formula,
we describe also the construction of two simpler formulas whose satisfiability implies the
existence of an automaton with the same structure, K acceptance marks, and the same set
of accepting runs, but not vice versa.

We have implemented our reduction technique in a tool called telatko. We show that
the tool can reduce acceptance marks in automata produced by Delag [16], Rabinizer 4 [13]
(both included in the Owl library), Spot [9], and ltl3tela [15]. While the reduction is
relatively modest on TELA produced by ltl3tela and Spot, it is substantial on automata
produced by the tools of the Owl library.

Related results

There is a simple technique [4] reducing the number of acceptance marks in transition-based
generalised Büchi automata (TGBA) without changing its structure. We are not aware of any
existing research aimed at simplification of acceptance formulas of TELA or reduction of the
number of its acceptance marks without increasing the number of states. There exists only
a SAT-based approach that transforms a deterministic TELA to an equivalent automaton
with a given acceptance condition and a given number of states [2] (if such an automaton
exists). Further, there are some SAT-based approaches aimed to reduce the number of
states of automata over infinite words. More precisely, there are reductions designed for
nondeterministic Büchi automata [11], deterministic Büchi automata [10], and deterministic

T. Schwarzová, J. Strejček, and J. Major 23:3

generalized Büchi automata [1]. Note that these techniques are usually very slow and their
authors typically suggest to use them only for specific purposes like looking for cases where
some automata construction can be improved.

Casares, Colcombet, and Fijalkow very recently introduced a structure called alternating
cycle decomposition (ACD) [6] which compactly represents all accepting and non-accepting
automata cycles. We expect that ACD could be used to reduce the number of acceptance
marks or to simplify the acceptance condition. However, such a reduction is not obvious.

Structure of the paper

The next section introduces basic terms used in the paper. Section 3 explains the construction
of the three mentioned quantified Boolean formulas. The reduction algorithm based on these
formulas is presented in Section 4. Section 5 describes our tool telatko implementing the
reduction technique. Experimental results are shown in Section 6. Finally, Section 7 suggests
other applications of our QBF-based reduction technique and closes the paper.

2 Preliminaries

In this section we recall the basic terms related to TELA and QBF.

▶ Definition 1 (TELA). A transition-based Emerson-Lei automaton (TELA) is a tuple
A = (Q,M,Σ, δ, qI , φ), where

Q is a finite set of states,
M is a finite set of acceptance marks,
Σ is a finite alphabet,
δ ⊆ Q× Σ× 2M ×Q is a transition relation,
qI ∈ Q is an initial state, and
φ is the acceptance condition constructed according to the following abstract syntax
equation, where m ranges over M .

φ ::= true | false | Inf m | Finm | (φ ∧ φ) | (φ ∨ φ)

A tuple t = (p, a,M ′, q) ∈ δ is the transition leading from state p to state q labelled with
a and acceptance marks M ′. The set M ′ is also referred to by mks(t). For a set of transitions
T ⊆ δ, let mks(T) =

⋃
t∈T mks(t) denote the set of marks that appear on transitions in T .

A run π of A over an infinite word u = u0u1u2 . . . ∈ Σω is an infinite sequence of
adjacent transitions π = (q0, u0,M0, q1)(q1, u1,M1, q2) . . . ∈ δω where q0 = qI . Let inf (π)
denote the set of transitions that appear infinitely many times in π. Run π is accepting iff
inf (π) satisfies the formula φ, where a set T of transitions satisfies Inf m iff m ∈ mks(T)
and it satisfies Finm iff m ̸∈ mks(T). The language of A is the set L(A) = {u ∈ Σω |
there is an accepting run of A over u}. Two automata A,B are equivalent if L(A) = L(B).

An acceptance formula φ is in disjunctive normal form (DNF) if it is a disjunction of
cubes, where each cube is a conjunction of atoms of the form Finm or Inf m. Each acceptance
formula can be transformed into an equivalent formula in DNF. Formula false corresponds
to the disjunction of zero cubes and formula true corresponds to the cube with zero atoms.

A path from a state p to a state q is a finite sequence of adjacent transitions of the
form ρ = (q0, u0,M0, q1)(q1, u1,M1, q2) . . . (qn−1, un−1,Mn−1, qn) ∈ δ+ such that p = q0 and
q = qn. A nonempty set of states S ⊆ Q is called a nontrivial strongly connected component
(SCC) if for each p, q ∈ S there is a path from p to q. An SCC S is maximal if there is no
SCC S′ satisfying S ⊊ S′. In the rest of this paper, SCC always refers to a maximal SCC.

SAT 2023

23:4 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

Given a set of states S ⊆ Q, let δS = δ ∩ (S × Σ× 2M × S) denote the set of all transitions
between states in S. Further, for each mark m ∈M , let δm = {t ∈ δ | m ∈ mks(t)} denote
the set of all transitions marked with m. A set of transitions T ⊆ δ is called a cycle if there
exists a path from a state p to the same state containing each transition of T at least once
and no transition outside T . Finally, we assume that each TELA A contains only states q
that are reachable from the initial state qI (i.e., q = qI or there is a path from qI to q) as
states that are not reachable from qI can be eliminated without any impact on L(A). We
also assume that each TELA has at least one SCC as automata without any SCC trivially
describe an empty language.

In graphical representation, we often use acceptance marks 1 , 2 , . . . ∈M . Further, an
edge p qa

kj denotes the transition (p, a, { j , k }, q) ∈ δ.
By choosing an appropriate acceptance condition, one can easily represent many classical

kinds of automata over infinite words. For example, a Büchi automaton can be represented
as a TELA with the acceptance condition φ = Inf 1 and the single mark 1 placed on all
transitions leaving the accepting states of the Büchi automaton. Further, a Rabin automaton
with k acceptance pairs can be similarly represented as a TELA with acceptance condition
φ = (Fin 1 ∧ Inf 1’) ∨ . . . ∨ (Fin k ∧ Inf k’) and marks M = { 1 , 1’ , . . . , k , k’ }.

Quantified Boolean formulas (QBF) are Boolean formulas extended with universal and
existential quantification over propositional variables. We assume that subformulas of the
form ∀x.ψ and ∃x.ψ do not contain another quantification of variable x inside ψ. The
semantics of ∀x.ψ and ∃x.ψ is given by equivalences

∀x.ψ ≡ ψ[x→ true] ∧ ψ[x→ false]
∃x.ψ ≡ ψ[x→ true] ∨ ψ[x→ false]

where ψ[x→ ρ] denotes the formula ψ with all occurrences of x simultaneously replaced by
ρ. The equivalences imply that each QBF can be transformed into an equivalent Boolean
formula. However, the size of this Boolean formula can be exponential in the size of the
original QBF. Let V be the set of all propositional variables. A mapping µ : V → {0, 1} is a
model of a QBF φ iff it is a satisfying assignment of an equivalent Boolean formula. A QBF
is satisfiable iff it has a model.

3 Construction of quantified Boolean formulas

Recall that we aim to reduce the number of acceptance marks in a given TELA A =
(Q,M,Σ, δ, qI , φ) without altering its structure and language. In other words, we look for

a set N of acceptance marks satisfying |N | < |M |,
an acceptance formula ψ over N , and
a function nm : δ → Q× Σ× 2N ×Q assigning new marks to transitions (i.e., for each
t = (p, a,M ′, q) ∈ δ, we assume that nm(t) = (p, a,N ′, q) for some N ′ ⊆ N) such that
the automaton B = (Q,N,Σ,nm(δ), qI , ψ) is equivalent to A.

We will actually look for ψ and nm such that each run π = t0t1t2 . . . of A is accepting
if and only if the run nm(t0)nm(t1)nm(t2) . . . of B is accepting. This requirement clearly
guarantees the equivalence of A and B, but it is not a necessary condition for the equivalence.
Indeed, there exist automata where relaxing this requirement can lead to a bigger reduction
of acceptance marks (see Figure 1). However, looking for ψ and nm that preserve the
acceptance of individual runs makes the problem easier as we can, for example, ignore the
labelling of transitions by the elements of Σ.

T. Schwarzová, J. Strejček, and J. Major 23:5

0
a

1
b

a

b

Inf 0 ∧ Inf 1

a

b

0
a

b

Inf 0

Figure 1 The left automaton accepts the words that contain infinitely many occurrences of both
a and b. Each accepting run of the left automaton has to contain infinitely many occurrences of both
transitions looping on the initial state. Hence, there does not exist any automaton with the same
accepting runs as the left automaton and less than two acceptance marks. The right automaton
accepts the same language using one acceptance mark and a different set of accepting runs.

Our reduction method is based on two facts. First, the acceptance of a run π is fully
determined by inf (π). Second, each set inf (π) is a cycle and vice versa.

▶ Lemma 2. A set T ⊆ δ is a cycle if and only if there is a run π such that inf (π) = T .

Proof. To prove the direction “=⇒”, we assume that T is a cycle. The definition says that
there exists a path τ from a state p to the same state containing each transition of T at
least once and no transition outside T . As our automata contain only reachable states, there
exists a path ρ from the initial state qI to p or p = qI and we set ρ = ε. The infinite sequence
π = ρ.τω is a run satisfying inf (π) = T .

To prove the direction “⇐=”, we consider a run π. As inf (π) is the set of transitions that
appear infinitely many times in π, there has to be a suffix π′ of π containing only transitions
of inf (π). Let p be the first state of π′. As each transition of π′ appears infinitely many
times in π and thus also in π′, there has to be a finite prefix ρ of π′ such that ρ is a path from
p to p that contains all transitions of inf (π). In other words, the set inf (π) is a cycle. ◀

Hence, our goal can be reformulated as follows. We look for a new acceptance formula ψ
and a function nm such that for each cycle T ⊆ δ, it holds that T satisfies φ if and only if
nm(T) satisfies ψ. This can be roughly denoted by the formula

∀T ⊆ δ . cycle(T) =⇒
(
satisfiesφ(T) ⇐⇒ satisfiesψ(nm(T))

)
.

In fact, this corresponds to the shape of the QBF we will construct. As we are looking for ψ
and nm such that the formula holds, the subformula satisfiesψ(nm(T)) contains many free
variables representing possible instances of ψ and nm. If the formula is satisfiable, then each
of its models encodes a desired instance of ψ and nm. In the following, we assume that we are
looking for a new acceptance formula ψ in DNF. The choice of DNF is not fundamental, but
inherited from our previous attempt to reduce acceptance formulas. The presented method
can be easily adapted to look for ψ in conjunctive normal form (CNF) or in a different shape.

Now we describe the construction of the QBF in detail. The construction is parameterized
by two integers C,K ≥ 0, where K is the desired number of acceptance marks and C is the
number of cubes of ψ. Without loss of generality, we assume that the reduced automaton
will use the acceptance marks NK = {1, 2, . . . ,K}. We start with a description of Boolean
variables used in the constructed QBF.

For each transition t ∈ δ, variable et says whether t is in the current set T or not.

et =
{

1 if t ∈ T
0 otherwise

SAT 2023

23:6 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

For each transition t ∈ δ and acceptance mark k ∈ NK , variable nt,k says whether k is
on the transition nm(t) or not.

nt,k =
{

1 if k ∈ mks(nm(t))
0 otherwise

For each c ∈ {1, 2, . . . , C} and acceptance mark k ∈ NK , variables ic,k and fc,k say
whether the cth cube of ψ contains atoms Inf k or Fin k, respectively.

ic,k =
{

1 if the cth cube of ψ contains Inf k
0 otherwise

fc,k =
{

1 if the cth cube of ψ contains Fin k
0 otherwise

By e⃗, n⃗, i⃗, f⃗ we denote the vectors of all variables of the form et, nt,k, ic,k, and fc,k, respectively.
The constructed QBF have the form

ΦC,K(n⃗, i⃗, f⃗) = ∀e⃗ . cycle(e⃗) =⇒
(
satisfiesφ(e⃗) ⇐⇒ satisfiesC,K(e⃗, n⃗, i⃗, f⃗)

)
,

where ∀e⃗ denotes the sequence composed of ∀et for all variables et. Now we define the
subformulas satisfiesφ(e⃗), satisfiesC,K(e⃗, n⃗, i⃗, f⃗), and three versions of cycle(e⃗).

The subformula satisfiesφ(e⃗) says whether T satisfies the original acceptance formula φ
and it is derived directly from φ. Recall that T satisfies Inf m iff m ∈ mks(T), which means
that T contains some transition with mark m. As the transitions with mark m form the set
δm, Inf m can be expressed by

∨
t∈δm

et. Similarly, T satisfies Finm iff m ̸∈ mks(T), which
can be expressed by

∧
t∈δm

¬et. Hence, satisfiesφ(e⃗) arises from φ by replacing
all atoms of the form Inf m by

∨
t∈δm

et and
all atoms of the form Finm by

∧
t∈δm

¬et.

Next, we construct the subformula satisfiesC,K(e⃗, n⃗, i⃗, f⃗) that evaluates to true iff nm(T)
satisfies ψ. The subformula reflects the basic structure of ψ. As we assume that ψ is a
disjunction of C cubes, we have

satisfiesC,K(e⃗, n⃗, i⃗, f⃗) =
∨

c∈{1,2,...,C}

ξc,K(e⃗, n⃗, i⃗, f⃗)

where each ξc,K(e⃗, n⃗, i⃗, f⃗) corresponds to one cube. Recall that the presence of atoms Inf k
and Fin k in the cth cube is given by variables ic,k and fc,k, respectively. Inf k is satisfied
by nm(T) iff T contains a transition t such that k ∈ mks(nm(t)), which can be expressed
as

∨
t∈δ(et ∧ nt,k). Similarly, Fin k is satisfied by nm(T) iff there is no transition t ∈ T such

that k ∈ mks(nm(t)), which can be expressed as
∧
t∈δ ¬(et ∧ nt,k). Hence, we set

ξc,K(e⃗, n⃗, i⃗, f⃗) =
∧

k∈NK

(
ic,k =⇒

∨
t∈δ

(et ∧ nt,k)
)
∧

(
fc,k =⇒

∧
t∈δ

¬(et ∧ nt,k)
)
.

It remains to define the subformula cycle(e⃗). Let Te⃗ denote the set of transitions
represented by e⃗. The original intended meaning of cycle(e⃗) is

cycle(e⃗) ⇐⇒ Te⃗ is a cycle.

In fact, only the direction “⇐=” is needed for the correctness of our reduction method.
If there are some valuations of e⃗ such that cycle(e⃗) holds and Te⃗ is not a cycle, then we

T. Schwarzová, J. Strejček, and J. Major 23:7

will superfluously require the equivalence satisfiesφ(e⃗) ⇐⇒ satisfiesC,K(e⃗, n⃗, i⃗, f⃗) on these
valuations. These superfluous constraints can lead to loss of reduction opportunities, but
not to incorrectness. This observation allows us to trade the precision of cycle(e⃗) for its
simplicity.

We define three versions of cycle(e⃗):
cycle1(e⃗) is a lightweight version, which only says that Te⃗ is nonempty and Te⃗ ⊆ δS for
some SCC S. Except for SCCs, it does not use the information about the automaton
structure, but it comes with an interesting simplification of the whole formula ΦC,K .
cycle2(e⃗) is an intermediate version. It says that Te⃗ is nonempty, Te⃗ ⊆ δS for some SCC
S, and every transition in Te⃗ has a preceding and a succeeding transition in Te⃗, which is
a necessary condition for being a cycle, but not a sufficient one.
cycle3(e⃗) is a strict version saying that Te⃗ is a cycle. Unfortunately, it uses additional
universally quantified variables corresponding to automata states. Transformation of
ΦC,K to prenex normal form turns the quantifiers to existential ones and the resulting
formula thus contains quantifier alternation.

We write Φj,C,K when we want to emphasize that a particular formula ΦC,K contains the
version cyclej(e⃗).

3.1 Lightweight version cycle1(e⃗)

The lightweight version is defined as

cycle1(e⃗) =
∨

SCC S

(∨
t∈δS

et ∧
∧

t′∈δ∖δS

¬et′
)

which means only that Te⃗ is nonempty and Te⃗ ⊆ δS for some SCC S. This condition is
satisfied by every cycle.

The formula Φ1,C,K built with cycle1(e⃗) says that for every nonempty set T ⊆ δS where
S is an SCC, T satisfies φ if and only if nm(T) satisfies ψ. Note that the only aspects of a
transition t reflected by the formula are its set of marks mks(t) and its affiliation to an SCC.
Hence, we do not have to distinguish between transitions that are affiliated to the same SCC
and have the same sets of marks.

Let us now fix an SCC S. We define an equivalence ∼S ⊆ δS × δS on transitions such
that t1 ∼S t2 whenever mks(t1) = mks(t2).

▶ Lemma 3. Assume that there is a function nm and a formula ψ such that

for every set ∅ ≠ T ⊆ δS it holds (T satisfies φ ⇐⇒ nm(T) satisfies ψ). (1)

Then there exists a function nm′ that respects the equivalence ∼S (i.e., it assigns the same
marks to equivalent transitions) and

for every set ∅ ≠ T ⊆ δS it holds (T satisfies φ ⇐⇒ nm′(T) satisfies ψ). (2)

Proof. Let nm be a function and ψ a formula such that (1) holds. To construct the function
nm′, we first select one transition from each equivalence class of ∼S . For every transition
t = (p, a,M ′, q) ∈ δS , by t we denote the selected transition equivalent to t and we define the
function nm′ such that nm′(t) = (p, a,mks(nm(t)), q). Note that we do not need to discuss
the value of nm′ on transitions outside δS as it is not relevant for the lemma. Clearly, nm′

respects the equivalence ∼S . It remains to show that (2) holds for nm′ and ψ.

SAT 2023

23:8 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

Figure 2 An automaton structure (left) and two sets Te⃗ (middle and right) that are not cycles
even if cycle2(e⃗) holds. The transition labels and acceptance marks are not depicted.

Let T ⊆ δS be a nonempty set. We construct the set T = {t | t ∈ T}. As mks(t) = mks(t)
for all transitions of δS , we get mks(T) = mks(T) and thus

T satisfies φ ⇐⇒ T satisfies φ.

Now we apply (1) to T and we get

T satisfies φ ⇐⇒ nm(T) satisfies ψ.

Finally, the definition of nm′ implies that nm′(T) = nm(T) and thus

nm(T) satisfies ψ ⇐⇒ nm′(T) satisfies ψ.

Altogether, we obtain

T satisfies φ ⇐⇒ T satisfies φ ⇐⇒ nm(T) satisfies ψ ⇐⇒ nm′(T) satisfies ψ

which proves that (2) holds for nm′ and ψ. ◀

The lemma suggests the following simplification of the whole formula Φ1,C,K built with
cycle1(e⃗). Before we build the formula, we compute the equivalences ∼S for all SCCs and
temporarily remove all transitions affiliated to SCCs except one of each equivalence class.
Then we build the formula Φ1,C,K for the pruned automaton. The more transitions we
removed, the shorter formula with less et variables we obtain. If the formula Φ1,C,K for
the pruned automaton is satisfiable, we derive nm and ψ from its model and extend nm to
all transitions of the original automaton such that it changes the acceptance marks on all
equivalent transitions in the same way. In the following, we use this simplification whenever
Φ1,C,K is employed.

3.2 Intermediate version cycle2(e⃗)
The intermediate version says that Te⃗ is nonempty, Te⃗ ⊆ δS for some SCC S, and for each
state q ∈ Q it holds that Te⃗ contains a transition leading to q if and only if it contains a
transition leaving q. Formally,

cycle2(e⃗) = cycle1(e⃗) ∧
∧
q∈Q

(∨
t′∈δ ∩ Q×Σ×2M ×{q}

et′ ⇐⇒
∨

t′′∈δ ∩ {q}×Σ×2M ×Q

et′′

)
.

This condition is satisfied by every cycle, but also by some sets of transitions that are not
cycles. Some examples of such sets are provided in Figure 2.

3.3 Strict version cycle3(e⃗)
Before we give the definition of cycle3(e⃗), we prove that cycles can be characterised in the
following way.

T. Schwarzová, J. Strejček, and J. Major 23:9

▶ Lemma 4. A nonempty set T ⊆ δ is a cycle if and only if, for each set of states S ⊆ Q,
one of the following conditions holds.
A. All transitions in T lead from a state in S to a state in S (i.e., T ⊆ δS).
B. All transitions in T lead from a state outside S to a state outside S (i.e., T ⊆ δQ∖S).
C. T contains a transition leading from a state in S to a state outside S and a transition

leading from a state outside S to a state in S.

Proof. We first prove the direction “=⇒”. Let T be a cycle and S ⊆ Q be an arbitrary set
of states. We show that if (A) and (B) do not hold, then (C) has to hold. Hence, assume
that T ̸⊆ δS and T ̸⊆ δQ∖S . Then there are two cases.

T contains a transition t ∈ δS and a transition t′ ∈ δQ∖S . The definition of a cycle implies
that there exists a path t1t2 . . . tn ∈ T+ from a state p back to p containing both t and t′.
However, this implies that T contains a transition leading from a state in S to a state
outside S and a transition leading from a state outside S to a state in S.
T contains a transition t leading from a state in S to a state outside S (or vice versa).
However, as T is a cycle, there exists a path t1t2 . . . tn ∈ T+ that leads from a state p to
the same state and contains t. Hence, T has to contain also a transition leading from a
state outside S to a state in S (or vice versa).

In both cases, (C) holds.
Now we prove the opposite direction “⇐=” by contraposition. Assume that a nonempty

set T is not a cycle. We show that there is a set S ⊆ Q such that neither (A) nor (B) nor
(C) holds. Let p be a state such that some transition of T leads from p. We define the set
Spost of states reachable from p via transitions in T and the set Spre of states from which p

is reachable via transitions of T .

Spost = {p} ∪ {q ∈ Q | there is a path in T+ from p to q}
Spre = {p} ∪ {q ∈ Q | there is a path in T+ from q to p}

As there is a transition of T leading from p, we have that T ̸⊆ δQ∖Spost and T ̸⊆ δQ∖Spre , i.e.,
(B) does not hold for Spost and Spre. Further, the definition of Spost implies that there is
no transition of T leading from a state in Spost to a state outside Spost, which means that
(C) does not hold for Spost . Similarly, T contains no transition leading from a state outside
Spre to a state in Spre, which means that (C) does not hold for Spre. Now we prove by
contradiction that (A) does not hold for at least one of Spost , Spre. Hence, let us assume that
T ⊆ δSpost and T ⊆ δSpre . Then for each ti ∈ T leading from pi to qi we have that pi ∈ Spost
and qi ∈ Spre, which implies that

pi = p (we set ρ′
i = ε in this case) or there is a path ρ′

i ∈ T+ leading from p to pi, and
qi = p (we set ρ′′

i = ε in this case) or there is a path ρ′′
i ∈ T+ leading from qi to p.

Then there is a path ρi = ρ′
itiρ

′′
i ∈ T+ leading from p back to p and containing ti. If we

concatenate all these paths, we get the path ρ1ρ2 . . . ρ|T | ∈ T+ that contains all transitions
of T and leads from p back to p, which means that T is a cycle. This is a contradiction. ◀

The formula cycle3(e⃗) says that Te⃗ is nonempty and each set S ⊆ Q satisfies (A) or (B)
or (C). For each state q ∈ Q, variable sq says whether q is in the current set S or not.

sq =
{

1 if q ∈ S
0 otherwise

SAT 2023

23:10 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

By s⃗ we denote the vectors of all variables of the form sq. The formula cycle3(e⃗) is defined
as follows.

cycle3(e⃗) =
∨
t∈δ

et ∧ ∀s⃗ . ζA(e⃗, s⃗) ∨ ζB(e⃗, s⃗) ∨ ζC(e⃗, s⃗)

ζA(e⃗, s⃗) =
∧

t=(p,a,M ′,q)∈δ

(
et =⇒ (sp ∧ sq)

)
ζB(e⃗, s⃗) =

∧
t=(p,a,M ′,q)∈δ

(
et =⇒ (¬sp ∧ ¬sq)

)
ζC(e⃗, s⃗) =

(∨
t=(p,a,M ′,q)∈δ

et ∧ sp ∧ ¬sq
)
∧

(∨
t=(p,a,M ′,q)∈δ

et ∧ ¬sp ∧ sq
)

3.4 Complexity of formulas
The constructed formulas Φj,C,K for j ∈ {1, 2, 3} use |δ| universally quantified variables
et, |δ| · K free variables nt,k, and C · K free variables ic,k and fc,k. The formula Φ3,C,K
additionally uses |Q| variables sq that are existentially quantified (when the formula is
transformed to prenex normal form) in the scope of universal quantification of variables et.

To analyze the length of the formulas, we start with its subformulas. One can easily
check that |satisfiesφ(e⃗)| ∈ O(|φ| · |δ|) and |satisfiesC,K(e⃗, n⃗, i⃗, f⃗)| ∈ O(C ·K · |δ|). Further,
|cycle1(e⃗)|, |cycle2(e⃗)| ∈ O(S · |δ|), where S is the number of SCCs in the automaton. Next,
|cycle3(e⃗)| ∈ O(|δ|+ |Q|), which can be simplified to |cycle3(e⃗)| ∈ O(|δ|) as |Q| ≤ |δ| follows
from the assumptions that all states are reachable and each automaton has at least one SCC.
Altogether, we get |Φ1,C,K |, |Φ2,C,K | ∈ O(S · |δ|+ |φ| · |δ|+C ·K · |δ|) = O

(
(S+ |φ|+C ·K) · |δ|

)
and |Φ3,C,K | ∈ O(|δ|+ |φ| · |δ|+ C ·K · |δ|) = O

(
(|φ|+ C ·K) · |δ|

)
. Note that the formula

Φ3,C,K is asymptotically shorter than Φ1,C,K and Φ2,C,K , but it contains an additional
quantifier alternation.

3.5 Optimizations of formulas
Finally, we mention three simple optimizations of the formula construction, which are always
applied in the rest of the paper.

The first optimization is based on the fact that every cycle is completely included in the
transition set δS of some SCC S. Hence, all transitions t that do not lead between states of
the same SCC can be completely ignored during the formula construction. The acceptance
marks on such a transition t do not affect the acceptance of any run as t appears at most
once on each run. For these transitions t, we can define nm(t) such that mks(nm(t)) = ∅.

The second optimization is specific for Φ3,C,K . In the construction of cycle3(e⃗), we replace
the subformula

∨
t∈δ et enforcing the nonemptiness of Te⃗ by cycle2(e⃗). This modification

prolongs the formula, but it does not change the overall semantics of cycle3(e⃗) and our
preliminary experiments showed that QBF solvers can often solve the modified formula
Φ3,C,K faster.

The third optimization extends Φj,C,K into the conjunction

Φj,C,K ∧
∧

c∈{1,2,...,C}

∧
k∈NK

(¬ic,k ∨ ¬fc,k).

The added part says that no cube contains both Inf k and Fin k for any k. A cube with both
Inf k and Fin k would be useless as it cannot be satisfied by any run.

T. Schwarzová, J. Strejček, and J. Major 23:11

Algorithm 1 The single-level reduction procedure.

Procedure SingleLevelReduction(A, j, reduceC)
Input: TELA A = (Q,M,Σ, δ, qI , φ), j ∈ {1, 2, 3}, reduceC ∈ {true, false}
Output: an equivalent TELA with the same structure as A and with at most as

many acceptance marks as in A

CA ← the number of cubes in the formula φ transformed to DNF
KA ← the number of acceptance marks in A
C ← CA
K ← KA
while K > 1 ∧ satisfiable(Φj,C,K−1) do K ← K−1
if K = 1 then

if all cycles in A are accepting then // check the condition true
return (Q, ∅,Σ, δ′, qI , true) where δ′ is δ with all marks removed

if all cycles in A are rejecting then // check the condition false
return (Q, ∅,Σ, δ′, qI , false) where δ′ is δ with all marks removed

if reduceC then // reduction of the number of cubes
while C > 1 ∧ satisfiable(Φj,C−1,K) do C ← C−1

if K < KA ∨ C < CA then
compute nm and ψ from a model of Φj,C,K
return (Q,NK ,Σ,nm(δ), qI , ψ)

return A

We have also made some experiments with breaking the symmetries in the formula models.
In particular, we have ordered new acceptance marks by their placements on transitions
and we have ordered the cubes by their content. As the effect of these modifications was
inconclusive, we do not describe it here.

4 Reduction algorithm

This section explains how we use the QBF constructed in the previous section to reduce the
number of acceptance marks in TELA. First, we describe a single-level reduction, which uses
only a single kind of QBF. More precisely, we talk about level 1, level 2, or level 3 reduction
when Φ1,C,K , Φ2,C,K , or Φ3,C,K is used, respectively.

The reduction procedure called SingleLevelReduction is given in Algorithm 1. Besides
the reduction of acceptance marks, the algorithm also reduces the number of cubes in the
acceptance formula if the last argument reduceC is set to true. The first while loop gradually
decreases the number of marks until K = 1 is reached or the QBF solver behind the function
satisfiable(Φj,C,K−1) fails to reduce the number of marks, i.e., it claims unsatisfiability of
the formula or it runs out of resources. If the loop ends with K = 1, we check whether an
acceptance condition without any mark (i.e., true or false) can be used. These checks are
based on an inspection of the automaton rather than on QBF solving. If some of the checks
succeeds, we return the corresponding automaton without any acceptance mark. Otherwise,
if reduceC is set to true then the procedure gradually reduces the number of cubes in the
second while loop. Note that the loop never checks for acceptance condition with 0 cubes as
it is equivalent to false and this case was treated above. Finally, if the procedure succeeds to
reduce the number of marks or cubes, it constructs the modified automaton. Otherwise, it
returns the original automaton.

SAT 2023

23:12 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

automaton A

0a
1
b

2
3 c

3
d

(Fin 1 ∧ Inf 2) ∨ (Inf 0 ∧ Fin 1 ∧ Inf 3)

SingleLevelReduction(A, 1, true)

0a
2
b

0
2 c

1
d

Inf 0 ∧ Fin 1 ∧ Inf 2

SingleLevelReduction(A, 2, true)

a
0
b

0 c
1
d

Inf 0 ∧ Fin 1

SingleLevelReduction(A, 3, true)

0a
0
b

c

d

Fin 0

Figure 3 An example illustrating the results of the three single-level reductions: an input
automaton A and the automata obtained by reducing it with level 1, level 2, and level 3.

The algorithm can be reformulated to use an incremental approach instead of building
a new formula in each iteration of the while loops. The incremental version of the first
while loop builds the formula Φ = Φj,C,K−1 only in the first iteration. In each subsequent
iteration, it extends this formula with a condition saying that one more mark is not used
in the automaton, i.e., the mark is neither on edges, nor in the acceptance formula. For
example, if we want to say that the mark k ∈ NK is not used, we replace Φ by

Φ ∧
∧
t∈δ

¬nt,k ∧
∧

c∈{1,2,...C}

(¬ic,k ∧ ¬fc,k).

The second while loop can be transformed to an incremental version similarly. The in-
cremental approach benefits from the fact that some QBF solvers can decide an extended
formula faster as they reuse the information computed when solving the original formula.

Figure 3 shows a very simple automaton A and the three automata produced by calls
of SingleLevelReduction(A, j, true) for j ∈ {1, 2, 3}. The figure clearly illustrates that the
higher level of reduction we use, the more acceptance marks can be reduced. On the other
side, lower levels are typically faster. The best results can be often achieved by combining
reductions of all levels. We call this approach multi-level reduction. It is a straightforward
sequential application of the three levels, see Algorithm 2.

5 Implementation

The presented reduction algorithms have been implemented in a tool called telatko. It is
implemented in Python 3 and uses the Spot library [9] for automata parsing and manipulation,
and the theorem prover Z3 [8] to solve the satisfiability of QBF transformed to prenex (non-
CNF) normal form. Our tool is available at

https://gitlab.fi.muni.cz/xschwar3/telatko

under the GNU GPLv3 license. The tool can be executed by the command

telatko -F <input.hoa> [-L j] [-C] [-I] [-T t] [-O <output.hoa>]

https://gitlab.fi.muni.cz/xschwar3/telatko

T. Schwarzová, J. Strejček, and J. Major 23:13

Algorithm 2 The multi-level reduction procedure.

Procedure MultiLevelReduction(A, reduceC)
Input: TELA A = (Q,M,Σ, δ, qI , φ) and reduceC ∈ {true, false}
Output: an equivalent TELA with the same structure as A and with at most as

many acceptance marks as in A

A ← SingleLevelReduction(A, 1, false)
A ← SingleLevelReduction(A, 2, false)
A ← SingleLevelReduction(A, 3, reduceC)
return A

where
-F <input.hoa> specifies the file with the input automaton in HOA format [3],
-L j specifies the reduction level; if omitted, the multi-level reduction is used,
-C switches on the reduction of the number of cubes after the number of marks is reduced

(it corresponds to reduceC = true in Algorithms 1 and 2),
-I switches on the incremental version,
-T t sets the timeout for each QBF query to t seconds (the default value is 50 seconds),
-O <output.hoa> specifies the output file; if omitted, the produced automaton is sent to

stdout in the HOA format.

If some call of the function satisfiable(Φj,C,K−1) in the first while loop of Algorithm 1
does not return true, then the name of the output automaton (included in the generated
HOA) encodes the reason for it. In the case of a single level reduction, the name has the
form Lj_k_X, where j is the considered level, k = K − 1 is the number of acceptance marks
considered by the formula, X is either U if the formula is unsatisfiable or T if the solver did
not decide within the time limit. If X is T, a longer timeout may lead to further reductions.
If the multi-level reduction is used, the automaton name contains the information from
all levels. For example, the name ‘L1_5_U L2_3_U L3_1_T’ means that level 1 reduced the
number of marks to 6 (reduction to 5 is impossible on this level), level 2 reduced it to 4, and
level 3 to 2 as the QBF solver did not finish in the time limit when trying to reduce the
number of marks to 1.

6 Experimental evaluation

To evaluate our reduction technique, we applied telatko to automata produced by the
following process. We started with two sets of LTL formulas.

One set contains all LTL formulas from literature that are provided by the tool genltl
of the Spot library [9] 2.10.4. For parameterized formula patterns, we consider instances
for all combinations of parameter values from 1 to 4.
The second set consists of 400 random LTL formulas with 4 atomic propositions. These
formulas were generated by the tool randltl of the Spot library.

On both these sets, we applied the tool ltlfilt of the Spot library to simplify the formulas
and remove duplicates and formulas equivalent to true and false. After these steps, we
had 348 LTL formulas from literature and 335 random formulas. Formulas from both
sets have been translated to nondeterministic TELA by two state-of-the-art translators,
namely ltl2tgba (used with option -G to get generic TELA) from the Spot library [9]
and ltl3tela [15], and to deterministic TELA by ltl3tela with option -D1 and by two

SAT 2023

23:14 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

Table 1 Considered translators and the numbers of fails and successfully constructed automata
with at most 1 mark and with at least 2 marks for each translator and set of formulas.

348 formulas from literature 335 random formulas

automata with automata with

translator (version)web fails at most
1 mark

at least
2 marks fails at most

1 mark
at least

2 marks

ltl2tgba -G (2.10.4)1 0 278 70 0 320 15
ltl3tela (2.2.0)2 18 239 91 0 286 49
ltl3tela -D1 (2.2.0)2 20 247 81 0 291 44
ltl2dela (21.0)3 5 214 129 0 246 89
ltl2dgra (21.0)3 12 102 234 0 130 205

state-of-the-art translators from the Owl library [14], namely ltl2dela (known as Delag) [16]
and ltl2dgra (known as Rabinizer 4) [13]. Some translators failed on some formulas: they
usually reached a timeout of 60 seconds or produced an automaton that cannot be parsed
by the Spot library. Further, we have removed automata with 0 or 1 acceptance mark as
there is a little point in reducing these. Table 1 shows the exact versions of the translators.
For each translator and each set of formulas, the table also provides the number of fails, the
number of produced automata with less than two marks, and the number of automata with
at least two marks. The numbers of automata with at least two marks are typeset in bold as
these automata are actually used for the experimental evaluation of our reduction technique.

To all automata, we have applied all single-level reductions and the multi-level reduction,
always with incremental approach and without reducing the number of cubes. We do not
reduce the number of cubes as our primary aim is to reduce the number of acceptance
marks. The timeout for each QBF query was set to 30 seconds. All reductions have been
performed by the tool telatko built with Spot library version 2.10.4 and Z3 version 4.8.15.
The experiments have been run on a computer with Intel® Core™ i7-8700 processor and
32 GB of memory running Ubuntu 20.04.4. We used the tool autcross of the Spot library
to get the statistics of the reduced automata and the running times.

For each automata set identified by the translator and the set of formulas, Table 2 shows
the cumulative numbers of marks in the input automata set and after each reduction, together
with the reduction ratio and total time spent by the considered reduction. The column solver
timeout shows the number of automata for which the last query to QBF solver did not finish
within the 30 seconds limit. The timeout of the last QBF query means that the automaton
may be potentially further reduced if a longer time limit is used. One can observe that a
higher level sometimes achieves a smaller reduction than a lower level (e.g., compare level 1
and level 2 for ltl3tela on automata coming from formulas from literature). This is caused
by the QBF solver timeouts occurring earlier as formulas constructed by the higher level are
more complex. The automata sets produced by ltl2dela and ltl2dgra on formulas from
literature do not contain any automaton where level 2 or level 3 achieves a better result than
level 1. However, all levels contribute to the reductions in the multi-level setting.

1 https://spot.lrde.epita.fr
2 https://github.com/jurajmajor/ltl3tela
3 https://owl.model.in.tum.de/

https://spot.lrde.epita.fr
https://github.com/jurajmajor/ltl3tela
https://owl.model.in.tum.de/

T. Schwarzová, J. Strejček, and J. Major 23:15

Table 2 For each automata set identified by the translator and the set of formulas, the table
provides the cumulative number of acceptance marks before any reduction (in the box), after
reduction of individual levels and after multi-level reduction (column marks). The column reduction
shows the percentage of saved acceptance marks and time reports the cumulative reduction time in
seconds. The column solver timeout indicates the number of instances where the last call to the
QBF solver timed out.

reduction of marks in automata
from formulas from literature

reduction of marks in automata
from random formulas

translator reduction
level marks reduction

[%]
time
[s]

solver
timeout marks reduction

[%]
time
[s]

solver
timeout

ltl2tgba -G 198 marks in 70 automata 32 marks in 15 automata
1 198 0.0 48.5 0 32 0.0 8.4 0
2 198 0.0 65.2 0 31 3.1 9.4 0
3 189 4.5 409.8 7 26 18.8 43.9 1

multi 189 4.5 427.6 7 26 18.8 44.9 1

ltl3tela 348 marks in 91 automata 120 marks in 49 automata
1 332 4.6 530.3 13 101 15.8 32.4 0
2 334 4.0 551.0 14 100 16.7 32.3 0
3 326 6.3 698.5 18 95 20.8 66.9 1

multi 319 8.3 1619.2 18 95 20.8 73.4 1

ltl3tela -D1 272 marks in 81 automata 97 marks in 44 automata
1 272 0.0 383.1 9 95 2.1 23.8 0
2 272 0.0 386.6 10 95 2.1 24.6 0
3 272 0.0 950.2 14 92 5.2 54.1 0

multi 272 0.0 1659.6 16 92 5.2 67.2 1

ltl2dela 523 marks in 129 automata 234 marks in 89 automata
1 386 26.2 811.4 18 154 34.2 89.0 0
2 391 25.2 1071.6 19 153 34.6 123.6 0
3 397 24.1 7326.8 26 149 36.3 172.7 2

multi 378 27.7 9186.0 24 148 36.8 219.8 2

ltl2dgra 882 marks in 234 automata 491 marks in 205 automata
1 544 38.3 859.1 14 293 40.3 275.6 0
2 554 37.2 1073.5 17 280 43.0 283.9 0
3 553 37.3 1349.7 22 267 45.6 433.6 3

multi 535 39.3 2434.0 23 264 46.2 411.7 2

SAT 2023

23:16 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

Table 3 The effect of multi-level reduction on all considered automata constructed from formulas
from literature. A cell on coordinates (x, y) contains the number of automata that have been reduced
from x to y acceptance marks. If the cell contains a sum of two numbers, the latter represents the
number of automata where the attempt to reduce another mark has been unsuccessful due to a QBF
solver timeout.

ac
ce

pt
an

ce
m

ar
ks

af
te

r
th

e
re

du
ct

io
n 20–24 0+1

15–19 0+4 0+1
10–14 0+8 0+1 0

9 0 0 0 0
8 0+16 0+1 0 0 0
7 0 0+2 0 0+1 0 0
6 2+12 0+3 0 0+1 1 0 0
5 10+5 2 0 0+1 1 0 0 0
4 46+10 14 5+2 10 2+1 4 4 0+1 0
3 73+2 5+2 2 0 1 0 0 0+1 0 0
2 96+10 27 8+1 4 2 0 0+1 0 0 0 0
1 149 11 4 2 1 1 0 0 0 0 0
0 27 2 1 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10–14 15–19 20–24
acceptance marks before the reduction

Table 4 The effect of multi-level reduction on all considered automata constructed from random
formulas. The meaning of each cell is the same as in Table 3.

ac
ce

pt
an

ce
m

ar
ks

af
te

r
th

e
re

du
ct

io
n 5 0 0+1 0 0 0

4 0 2 0+1 0 0 1
3 11+1 8 2 0 0 1 0
2 107+3 29+1 22 1 1 0 0 0
1 188 10 9 0 0 0 0 0
0 3 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9
acceptance marks before the reduction

Table 3 shows the effect of multi-level reduction to the number of acceptance marks in
individual automata constructed from formulas from literature. The table indicates that in
many cases only 1 or 2 marks can be saved. However, the achieved reduction is substantial
for some automata with a higher number of original acceptance marks. For example, in 26
cases, we have reduced 7 or more acceptance marks to only 4 or less. Table 4 shows the same
information for automata constructed from random formulas.

Figure 4 presents the time spent by multi-level reduction on individual automata of each
automata set. The charts show a pleasing finding that for every set, most automata are
reduced in under 5 seconds and the high cumulative running times are caused by a relatively
small number of complicated automata.

T. Schwarzová, J. Strejček, and J. Major 23:17

0 20 40 60 80 100 120 140 160 180 200 220 240

100

101

102

103

104

automata from formulas from literature ordered by processing time

pr
oc

es
sin

g
tim

e
[s]

ltl2tgba -G
ltl3tela
ltl3tela -D1
ltl2dela
ltl2dgra

0 20 40 60 80 100 120 140 160 180 200 220

100

101

102

automata from random formulas ordered by processing time

pr
oc

es
sin

g
tim

e
[s]

ltl2tgba -G
ltl3tela
ltl3tela -D1
ltl2dela
ltl2dgra

Figure 4 Running times of telatko on individual automata of each automata set. Automata
sets constructed from formulas from literature are in the upper graph, automata sets constructed
from random formulas are in the lower graph. Each line shows the time (y axis) needed by telatko
to process the xth automaton of the set, where automata in the set are ordered by their processing
time.

SAT 2023

23:18 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

7 Conclusions

We have presented a method reducing the number of acceptance marks in transition-based
Emerson-Lei automata with use of QBF solving and without altering automata structure. We
have implemented the method in a tool called telatko. The current applications of the tool
are twofold. First, it can reduce the number of acceptance marks of a given TELA. Second, it
discloses how tools producing TELA are economical with acceptance marks. The presented
experimental results show that the tool can indeed reduce the number of acceptance marks in
automata produced by all considered state-of-the-art LTL to automata translators. Further,
it clearly shows that the translators of the Owl library are significantly less economical with
acceptance marks than the other two translators.

The reduction of acceptance marks is not the only application of the presented approach.
For example, it can be easily adapted to look for an equivalent automaton with the same
structure and an acceptance formula of a specific form (e.g., without any Finm atoms).
Even though the QBF queries can be time-consuming, in practice one can often find a good
trade-off between speed and efficiency by adjusting the formula precision and choosing a
reasonable timeout.

References
1 Souheib Baarir and Alexandre Duret-Lutz. Mechanizing the minimization of deterministic

generalized Büchi automata. In Proceedings of the 34th IFIP International Conference on
Formal Techniques for Distributed Objects, Components and Systems (FORTE’14), volume
8461 of Lecture Notes in Computer Science, pages 266–283. Springer, June 2014. doi:
10.1007/978-3-662-43613-4_17.

2 Souheib Baarir and Alexandre Duret-Lutz. SAT-based minimization of deterministic ω-
automata. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning – 20th International Conference,
LPAR 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in
Computer Science, pages 79–87. Springer, 2015. doi:10.1007/978-3-662-48899-7_6.

3 Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Křetínský,
David Müller, David Parker, and Jan Strejček. The Hanoi Omega-Automata Format. In
Proceedings of the 27th Conference on Computer Aided Verification (CAV’15), volume 8172
of Lecture Notes in Computer Science, pages 442–445. Springer, 2015. See also http://adl.
github.io/hoaf/.

4 Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmír Křetínský, and Jan Strejček.
Compositional approach to suspension and other improvements to LTL translation. In Ezio
Bartocci and C. R. Ramakrishnan, editors, Model Checking Software – 20th International Sym-
posium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings, volume 7976 of Lecture
Notes in Computer Science, pages 81–98. Springer, 2013. doi:10.1007/978-3-642-39176-7_6.

5 Christel Baier, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, David Müller,
and Jan Strejček. Generic emptiness check for fun and profit. In Proceedings of the 17th
International Symposium on Automated Technology for Verification and Analysis (ATVA’19),
volume 11781 of Lecture Notes in Computer Science, pages 445–461. Springer, 2019. doi:
10.1007/978-3-030-31784-3_26.

6 Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of
games and automata using muller conditions. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 123:1–123:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ICALP.2021.123.

https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-662-48899-7_6
http://adl.github.io/hoaf/
http://adl.github.io/hoaf/
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2021.123

T. Schwarzová, J. Strejček, and J. Major 23:19

7 Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer, Florian Renkin, and Salomon Sickert.
Practical applications of the Alternating Cycle Decomposition. In Dana Fisman and Grigore
Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems – 28th
International Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part II, volume 13244 of Lecture Notes in Computer Science, pages 99–117. Springer, 2022.
doi:10.1007/978-3-030-99527-0_6.

8 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

9 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 – A framework for LTL and ω-automata manipulation. In
Proceedings of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages 122–129.
Springer, 2016. doi:10.1007/978-3-319-46520-3_8.

10 Rüdiger Ehlers. Minimising deterministic Büchi automata precisely using SAT solving. In
O. Strichman and S. Szeider, editors, Proceedings of the 13th International Conference on
Theory and Applications of Satisfiability Testing (SAT’10), volume 6175 of Lecture Notes in
Computer Science, pages 326–332. Springer, 2010.

11 Rüdiger Ehlers and Bernd Finkbeiner. On the virtue of patience: Minimizing Büchi automata.
In Jaco van de Pol and Michael Weber, editors, Model Checking Software – 17th International
SPIN Workshop, Enschede, The Netherlands, September 27-29, 2010. Proceedings, volume
6349 of Lecture Notes in Computer Science, pages 129–145. Springer, 2010. doi:10.1007/
978-3-642-16164-3_10.

12 E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time logic
strikes back. Science of Computer Programming, 8(3):275–306, June 1987.

13 Jan Křetínský, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler. Rabinizer
4: From LTL to your favourite deterministic automaton. In Hana Chockler and Georg
Weissenbacher, editors, Proceedings of the 30th International Conference on Computer Aided
Verification (CAV’18), volume 10981 of Lecture Notes in Computer Science, pages 567–577.
Springer, 2018.

14 Jan Křetínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-words,
automata, and LTL. In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology
for Verification and Analysis – 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science,
pages 543–550. Springer, 2018. doi:10.1007/978-3-030-01090-4_34.

15 Juraj Major, František Blahoudek, Jan Strejček, Miriama Sasaráková, and Tatiana Zbončáková.
ltl3tela: LTL to small deterministic or nondeterministic Emerson-Lei automata. In Yu-Fang
Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated Technology for Verification
and Analysis – 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-
31, 2019, Proceedings, volume 11781 of Lecture Notes in Computer Science, pages 357–365.
Springer, 2019. doi:10.1007/978-3-030-31784-3_21.

16 David Müller and Salomon Sickert. LTL to deterministic Emerson-Lei automata. In Patricia
Bouyer, Andrea Orlandini, and Pierluigi San Pietro, editors, Proceedings of the Eighth Inter-
national Symposium on Games, Automata, Logics and Formal Verification (GandALF’17),
volume 256 of EPTCS, pages 180–194, September 2017.

17 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October – 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

SAT 2023

https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-16164-3_10
https://doi.org/10.1007/978-3-642-16164-3_10
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-31784-3_21
https://doi.org/10.1109/SFCS.1977.32

23:20 Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

18 Florian Renkin, Alexandre Duret-Lutz, and Adrien Pommellet. Practical “paritizing” of
Emerson-Lei automata. In Dang Van Hung and Oleg Sokolsky, editors, Automated Technology
for Verification and Analysis – 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19-23, 2020, Proceedings, volume 12302 of Lecture Notes in Computer Science, pages
127–143. Springer, 2020. doi:10.1007/978-3-030-59152-6_7.

https://doi.org/10.1007/978-3-030-59152-6_7

	1 Introduction
	2 Preliminaries
	3 Construction of quantified Boolean formulas
	3.1 Lightweight version cycle_1(e})
	3.2 Intermediate version cycle_2(e})
	3.3 Strict version cycle_3(e})
	3.4 Complexity of formulas
	3.5 Optimizations of formulas

	4 Reduction algorithm
	5 Implementation
	6 Experimental evaluation
	7 Conclusions

