
Speeding Up Quantified Bit-Vector SMT Solvers
by Bit-Width Reductions and Extensions

Martin Jonáš1 and Jan Strejček2[0000−0001−5873−403X]?

1 Fondazione Bruno Kessler, Trento, Italy
mjonas@fbk.eu

2 Masaryk University, Brno, Czech Republic
strejcek@fi.muni.cz

Abstract. Recent experiments have shown that satisfiability of a quan-
tified bit-vector formula coming from practical applications almost never
changes after reducing all bit-widths in the formula to a small number
of bits. This paper proposes a novel technique based on this observa-
tion. Roughly speaking, a given quantified bit-vector formula is reduced
and sent to a solver, an obtained model is then extended to the original
bit-widths and verified against the original formula. We also present an
experimental evaluation demonstrating that this technique can signifi-
cantly improve the performance of state-of-the-art smt solvers Boolec-
tor, CVC4, and Q3B on quantified bit-vector formulas from the smt-lib
repository.

1 Introduction

We have recently studied the influence of bit-width changes on satisfiability of
quantified bit-vector formulas from the smt-lib repository. The experiments
showed that satisfiability is surprisingly stable under these changes [7]. For ex-
ample, more than 95% of the considered formulas keep the same satisfiability
status after changing the bit-widths of all variables and constants to an arbitrary
value between 1 and the original bit-width. Indeed, all these stable formulas have
the same satisfiability status even if we replace every bit-vector constant and
variable by its least-significant bit and thus transform the formula into a quanti-
fied Boolean formula. Moreover, the percentage of stable formulas increased well
over 99% if all bit-widths are reduced to any value between 4 and the original
bit-width.

The experiments also confirm natural expectation that a formula with smaller
bit-widths can be often solved considerably faster than the formula with the same
structure but with larger bit-widths. For example, solving the formula

ϕ ≡ ∀x∀y∃z (x · (y + z) = 0)

takes Boolector [11] several minutes on a standard desktop machine when the
variables x, y, z and the constant 0 have the bit-width 32, but it is solved instantly
when the bit-width is 2.
? J. Strejček has been supported by the Czech Science Foundation grant GA18-02177S.

This paper presents a new technique for deciding satisfiability of quantified
bit-vector formulas that builds on the two mentioned observations: satisfiability
status of these formulas is usually stable under bit-width reduction and formulas
with reduced bit-widths can be often solved faster. Intuitively, the technique
consists of the following steps:

1. Reduce bit-widths of variables and constants in the input formula to a
smaller bit-width.

2. Decide satisfiability of the reduced formula using a standard decision proce-
dure. If the reduced formula is satisfiable, obtain its model. If it is unsatis-
fiable, obtain its countermodel (i.e., a reason for unsatisfiability).

3. Extend the model or the countermodel to the original bit-widths. For ex-
ample, a model of the formula ϕ defined above reduced to bit-widths 2
has the form z[2] = −y[2], where the superscripts denote bit-widths of the
corresponding variables. After extension to the original bit-width, we get
z[32] = −y[32].

4. Check whether the extended (counter)model is also a (counter)model of the
original formula. If the extended model is a model of the original formula,
then the formula is satisfiable. If the extended countermodel is a counter-
model of the original formula, then the formula unsatisfiable. In the remain-
ing cases, we increase the bit-widths in the reduced formula and repeat the
process.

The technique has some similarities with the approximation framework of
Zeljić et al. [12], which also reduces the precision of a given formula, computes a
model of the reduced formula, and checks if it is a model of the original formula.
However, the framework considers only quantifier-free formulas (and hence mod-
els are just elements of the considered domains, while they are interpretations
of Skolem functions in our setting) and it does not work with countermodels (it
processes unsat cores of reduced formulas instead).

The detailed description of formula reduction and (counter)model extension
is given in Section 3, preceded by Section 2 that recalls all necessary background
and notation. The algorithm is precisely formulated in Section 4. Section 5
presents our proof-of-concept implementation and it discusses many practical
aspects: how to get a counterexample, what to do with an incomplete model
etc. Experimental evaluation of the technique can be found in Section 6. It
clearly shows that the presented technique can improve performance of consid-
ered state-of-the-art solvers for quantified bit-vector formulas, namely Boolec-
tor [11], CVC4 [1], and Q3B [9], on both satisfiable and unsatisfiable formulas
from various subcategories of the relevant smt-lib category BV.

2 Preliminaries

This section briefly recalls the used logical notions and the theory of fixed sized
bit-vectors (BV or bit-vector theory for short). In the description, we assume
familiarity with standard definitions of a many-sorted logic, well-sorted terms,

2

atomic formulas, and formulas. To simplify the presentation, we suppose that
all formulas are in the negation normal form. That is, all formulas use only
logical connectives disjunction, conjunction, and negation and the arguments of
all negations are atomic formulas. We suppose that sets of all free and all bound
variables in the formula are disjoint and that each variable is quantified at most
once.

The bit-vector theory is a many-sorted first-order theory with infinitely many
sorts denoted [n], where n is a positive integer. Each sort [n] is interpreted
as the set of all bit-vectors of length n, which is also called their bit-width.
We denote the set of all bit-vectors of bit-width n as BVn and variables of
sort [n] as x[n], y[n], etc. The BV theory uses only three predicate symbols,
namely equality (=), unsigned inequality of binary-encoded natural numbers
(≤u), and signed inequality of integers in two’s complement representation (≤s).
The theory also contains various interpreted function symbols. Many of them
represent binary operations that produce a bit-vector of the same bit-width as its
two arguments. This is the case of addition (+), multiplication (·), bit-wise and
(&), bit-wise or (|), bit-wise exclusive or (⊕), left-shift (�), and right-shift (�).
The theory further contains function symbols for two’s complement negation (−),
concatenation (concat), zero extension extending the argument with n most-
significant zero bits (zeroExtn), sign extension extending the argument with n
copies of the sign bit (signExtn), and extraction of bits delimited by positions
u and l (including bits at these positions) from the argument, where position
0 refers to the least-significant bit and u ≥ l (extractul). The signature of BV
theory also contains numerals for constants m[n] for each bit-width n > 0 and
each number 0 ≤ m ≤ 2n− 1. Each term t has an associated bit-width, which is
denoted as bw(t). The precise definition of the many-sorted logic can be found
for example in Barrett et al. [3]. The precise description of bit-vector theory can
be found for example in the paper describing complexity of quantified bit-vector
theory by Kovásznai et al. [10].

A signature Σ is a set of uninterpreted function symbols, which is disjoint with
the set of all interpreted bit-vector function and predicate symbols. Each function
symbol f ∈ Σ has an associated arity k ∈ N0 and a sort (n1, n2, . . . , nk, n) ∈
Nk+1, where the numbers ni represent bit-widths of the arguments of f and n
represents the bit-width of its result. A Σ-structureM maps each uninterpreted
function f of the sort (n1, n2, . . . , nk, n) to a function of the type BVn1

×BVn2
×

. . .× BVnk
→ BVn, and each variable x[n] to a bit-vector value in BVn.

For a Σ-structure M, we define the evaluation function J KM, which assigns
to each term t the bit-vector JtKM obtained by (i) substituting each variable x
in t by its value M(x) given by M and (ii) evaluating all interpreted functions
and predicates using their given semantics and all uninterpreted functions using
their interpretations given byM(f). Similarly, the function J KM assigns to each
formula ϕ the Boolean value JϕKM obtained by substituting free variables in ϕ
by values given by M and evaluating all functions, predicates, logical operators
etc. according to M and the standard semantics. A formula ϕ is satisfiable if

3

JϕKM = > for some Σ-structureM; it is unsatisfiable otherwise. A Σ-structure
M is called a model of ϕ whenever JϕKM = >.

The Skolemization of a formula ϕ, denoted skolemize(ϕ), is a formula that is
obtained from ϕ by replacing each existentially quantified variable x[n] in ϕ by
a fresh uninterpreted function symbol fx[n] that has as arguments all variables
that are universally quantified above x[n] in the syntactic tree of the formula ϕ.
Skolemization preserves the satisfiability of the input formula ϕ [6].

For a satisfiable formula ϕ without uninterpreted functions, a model M of
skolemize(ϕ) assigns a bit-vectorM(y[m]) ∈ BVm to each free variable y[m] in ϕ,
and a function M(fx[n]) to each Skolem function fx[n] , which corresponds to an
existentially quantified variable x[n] in the formula ϕ. The functions M(fx[n])
may be arbitrary functions (of the corresponding type) in the mathematical
sense. To be able to work with the model, we use the notion of a symbolic model,
in which the functionsM(fx[n]) are represented symbolically by terms. Namely,
M(fx[n]) is a bit-vector term of bit-width n whose free variables may be only
the variables that are universally quantified above x[n] in the original formula
ϕ. In the further text, we treat the symbolic models as if they assign a term
not to the corresponding Skolem function fx[n] , but directly to the existentially
quantified variable x[n]. For example, the formula

∀x[32]∀y[32] ∃z[32]
(
x[32] · (y[32] + z[32]) = 0[32]

)
from the introduction has a symbolic model {z[32] 7→ −y[32]}.

For a sentence ϕ, the dual notion to the symbolic model is a symbolic coun-
termodel. The symbolic countermodel of a sentence ϕ is a symbolic model of the
negation normal form of ¬ϕ, i.e., a Σ-structure M that assigns to each univer-
sally quantified variable x[n] in ϕ a term of bit-width n whose free variables may
be only the existentially quantified variables that are quantified above x[n] in
the original formula ϕ.

We can define substitution of a symbolic (counter)model into a given formula.
We define this notion more generally to allow substitution of an arbitrary assign-
ment that assigns terms to variables of the formula. For each such assignment
A and a formula ϕ, we denote as A(ϕ) the result of simultaneous substitution
of the term A(x[n]) for each variable x[n] in the domain of A and removing all
quantifications of the substituted variables. For example, the value of

A
(
∀x[32]∀y[32] ∃z[32] (x[32] · (y[32] + z[32]) = 0[32])

)
for A = {z[32] 7→ −y[32]} is ∀x[32]∀y[32] (x[32] · (y[32] + (−y[32])) = 0[32]).

3 Formula Reduction and Model Extension

This section describes the basic building blocks of our new technique, namely
reduction of bit-widths in a given formula and extension of bit-widths in a given
model or countermodel.

4

3.1 Reduction of Bit-Widths in Formulas

The goal of the reduction procedure is to reduce the bit-widths of all variables
and constants in a given formula so that they do not exceed a given bit-width.
In fact, we reduce bit-widths of all terms in the formula in order to keep the
formula type consistent. A similar reduction is defined in our previous paper [7],
but only for a simpler fragment of the considered logic.

As the first step, we inductively define a function rt that takes a term and
a bit-width bw ∈ N and reduces all subterms of the term. The function always
cuts off all most-significant bits above the given bit-width bw. As the base case,
we define the reduction on constants and variables.

rt(m[n], bw) = (m mod 2min(n,bw))
[min(n,bw)]

rt(x[n], bw) = x[min(n,bw)]

Further, let ◦ range over the set {+, ·,&, |,⊕,�,�} of binary functions that
produce results of the same bit-width as the bit-width of their arguments. To
reduce a term t1 ◦ t2, we just need to reduce the arguments.

rt(t1 ◦ t2, bw) = rt(t1, bw) ◦ rt(t2, bw)

rt(−t1, bw) = −rt(t1, bw)

The most interesting cases are the functions that change bit-widths. As the first
case, let extn be a function that extends its argument with n most-significant
zero bits (zeroExtn) or with n copies of the sign bit (signExtn). A term extn(t)
where t has bw or more bits is reduced just to rt(t, bw). Indeed, the function extn
is completely removed as the bits it would add exceed the maximal bit-width.
When t has less than bw bits, we apply the extension function but we decrement
its parameter if the bit-width of the resulting term should exceed bw. Moreover,
we also apply the reduction function to t to guarantee that bit-widths of its
subterms do not exceed bw.

rt(extn(t), bw) =

{
rt(t, bw) if bw(t) ≥ bw
extmin(n,bw−bw(t))(rt(t, bw)) if bw(t) < bw

As the second case, consider a term extractul (t) that represents bits of t between
positions u and l (including these positions). The reduction is defined by one of
the following three subcases according to the relation of bw and positions u and
l. Recall that u ≥ l, the bit-width of the original term is u− l+ 1, and it has to
be reduced to m = min(u− l + 1, bw).

– If both u and l point to some of the bw least-significant bits of t (i.e., bw > u),
the positions u and l of rt(t, bw) are defined, and so we just reduce the
argument t and do not change the parameters of extract.

– If l points to some of the bw least-significant bits of t but u does not (i.e.,
u ≥ bw > l), we reduce the argument t, extract its most-significant bits up
to the position l, and extend the result with most-significant zero bits such

5

that the bit-width of the result is m. These additional zero bits correspond
to the positions that should be extracted, but are not present in the term
rt(t, bw).

– If both positions u and l point outside the bw least-significant bits of t (i.e.,
l ≥ bw), we replace the term with the bit-vector of zeroes of the length m.

In the following formal definition, we denote by o the bit-width of term t after
reduction, i.e., o = bw(rt(t, bw)) = min(bw(t), bw).

rt(extractul (t), bw) =


extractul (rt(t, bw)) if bw > u

extm−(o−l)(extract
o−1
l (rt(t, bw))) if u ≥ bw > l

0[m] if l ≥ bw

where ext ∈ {signExt, zeroExt} can be chosen during the implementation.
Finally, reduction of a term concat(t1, t2) representing concatenation of t1

and t2 is given by one of the following two cases. Note that the reduced term
should have the size m = min(bw(t1) + bw(t2), bw). If bw(t2) ≥ bw, the term is
reduced to rt(t2, bw) as the bits of t1 exceed the desired maximal bit-width. In
the opposite case, we reduce both t1 and t2 and create the term containing all
the bits of the reduced term t2 preceded by m − bw(t2) least-significant bits of
the reduced term t1.

rt(concat(t1, t2), bw) =

=

{
rt(t2, bw) if bw(t2) ≥ bw
concat

(
extract

m−bw(t2)−1
0

(
rt(t1, bw)

)
, rt(t2, bw)

)
if bw(t2) < bw

Now we define a function rf that reduces the maximal bit-widths of all terms
in a given formula to a given value bw. The function is again defined inductively
using the function rt in the base case to reduce arguments of predicate symbols.
The rest of the definition is straightforward.

rf (t1 1 t2, bw) = rt(t1, bw) 1 rt(t2, bw) for 1 ∈ {=,≤u,≤s}
rf (¬ϕ, bw) = ¬rf (ϕ, bw)

rf (ϕ1 � ϕ2, bw) = rf (ϕ1, bw) ◦ rf (ϕ2, bw) for � ∈ {∧,∨}
rf (Qx[n] .ϕ, bw) = Qx[min(n,bw)] .rf (ϕ, bw) for Q ∈ {∀,∃}

3.2 Extending Bit-Widths of Symbolic Models

If a reduced formula is satisfiable and its symbolic modelM is obtained, it cannot
be directly substituted into the original formula. It first needs to be extended to
the original bit-widths. Intuitively, for each result M(x) = t, where the original
bit-width of the variable x is n, we

1. increase bit-widths of all variables in t to match the bit-widths in the original
formula ϕ,

6

2. for each operation whose arguments need to have the same bit-width, we
increase bit-width of the argument with the smaller bit-width to match the
bit-width of the other argument,

3. change the bit-width of the resulting term to match the bit-width of the
original variable x[n].

In the formalization, we need to know bit-widths of the variables in the
original formula. Therefore, for a formula ϕ, we introduce the function bwsϕ
that maps each variable name x in ϕ to its original bit-width in ϕ. For example,
bwsx[32]+y[32]=0[32](x) = 32. Further, we use the function adjust , which adjusts
the bit-width of the given term t to the given bit-width bw.

adjust(t, bw) =


t if bw(t) = bw

extbw−bw(t)(t) if bw(t) < bw

extractbw−10 (t) if bw(t) > bw

where ext ∈ {signExt, zeroExt} can be chosen during the implementation.
For each term t of the reduced model, we now recursively construct a term t,

which uses only the variables of the original formula and is well-sorted. In other
words, this construction implements the first two steps of the symbolic model
extension described above.

As the base cases, we keep the bit-width of all constants and extend the
bit-width of all variables to their original bit-widths in ϕ.

m[n] = m[n]

x[n] = x[bwsϕ(x)]

For any operation ◦ ∈ {+, ·,&, |,⊕,�,�} that requires arguments of the same
bit-widths, we may need to extend the shorter of these arguments.

t1 ◦ t2 = adjust
(
t1,max(bw(t1),bw(t2))

)
◦ adjust

(
t2,max(bw(t1),bw(t2))

)
For the remaining operations, the construction is straightforward.

−t1 = − t1
extn(t1) = extn(t1) for ext ∈ {zeroExt, signExt}

extractij(t1) = extractij(t1)

concat(t1, t2) = concat(t1, t2)

Now we complete the symbolic model extension with its third step. Formally,
for a symbolic modelM we define a model extension extendM (M) that assigns
to each variable x in the domain of M the term M(x) adjusted to the original
bit-width of x.

extendM (M)(x) = adjust(M(x),bwsϕ(x)).

7

Example 1. Consider a formula ϕ that contains variables x[8], y[8], z[4], v[8], w[4].
Suppose that we have the modelM of rf (ϕ, 4) given below. With the parameter
ext of adjust set to signExt, the assignment extendM (M) is defined as follows.

M = {x[4] 7→ v[4] + 3[4], extendM (M) = {x[8] 7→ v[8] + 3[8],

y[4] 7→ w[4], y[8] 7→ signExt4(w[4]),

z[4] 7→ v[4], z[4] 7→ extract30(v[8])}

Note that the numeral 3[8] in extendM (M) arises by evaluation of the ground
term signExt4(3[4]).

Note on additional smt-lib operations. The syntax of the BV theory given in
smt-lib actually contains more predicates and functions than we have defined.
The constructions presented in Subsections 3.1 and 3.2 can be extended to cover
these additional predicates and functions mostly very easily. One interesting case
is the if-then-else operator ite(ϕ, t1, t2) where the first argument is a formula
instead of a term. To accommodate this operator, the reduction functions rt and
rf are defined as mutually recursive, and the symbolic model extension has to
be enriched to handle not only terms, but also formulas. All these extensions
can be found in the dissertation of M. Jonáš [8]. Note that ite indeed appears
in symbolic models in practice.

4 Algorithm

In this section, we propose an algorithm that employs bit-width reductions and
extensions to decide satisfiability of an input formula. In the first subsection, we
describe a simpler approach that can only decide that a formula is satisfiable.
The following subsection dualizes this approach to unsatisfiable formulas. We
then show how to combine these two approaches in a single algorithm, which is
able to decide both satisfiability and unsatisfiability of a formula.

4.1 Checking Satisfiability Using Reductions and Extensions

Having defined the functions rf (see Subsection 3.1), which reduces bit-widths
in a formula, and extendM (see Subsection 3.2), which extends bit-widths in a
symbolic model of the reduced formula, it is fairly straightforward to formulate
an algorithm that can decide satisfiability of a formula using reduced bit-widths.

This algorithm first reduces the bit-widths in the input formula ϕ, thus ob-
tains a reduced formula ϕred , and checks its satisfiability. If the formula is not
satisfiable, the algorithm computes a new reduced formula ϕred with an increased
bit-width and repeats the process. If, on the other hand, the reduced formula
ϕred is satisfiable, the algorithm obtains its symbolic model M, which assigns
a term to each existentially quantified and free variable of the formula ϕred .

8

The model is then extended to the original bit-widths of the variables in the
formula ϕ and the extended model is substituted into the original formula ϕ,
yielding a formula ϕsub . The formula ϕsub may not be quantifier-free, but it
contains only universally quantified variables and no free variables. The formula
ϕsub may therefore be checked for satisfiability by a solver for quantifier-free bit-
vector formulas: the solver can be called on the formula ϕ¬sub that results from
removing all quantifiers from the formula ¬ϕsub transformed to the negation
normal form. Since the formula ϕsub is closed, the satisfiability of ϕ¬sub implies
unsatisfiability of ϕsub and vice versa. Finally, if the formula ϕsub is satisfiable,
so is the original formula. If the formula ϕsub is not satisfiable, the process is
repeated with an increased bit-width.

Example 2. Consider the formula ϕ ≡ ∀x[32]∃y[32] (x[32] + y[32] = 0[32]). Reduc-
tion to 2 bits yields the formula rf (ϕ, 2) ≡ ∀x[2]∃y[2] (x[2] + y[2] = 0[2]). An
smt solver can decide that this formula is satisfiable and its symbolic model
is {y[2] 7→ −x[2]}. An extended candidate model is then {y[32] 7→ −x[32]}. Af-
ter substituting this candidate model into the formula, one gets the formula
ϕsub ≡ ∀x[32] (x[32] + (−x[32]) = 0[32]). Negating the formula ϕsub and removing
all the quantifiers yields the quantifier-free formula (x[32] + (−x[32]) 6= 0[32]),
which is unsatisfiable. Therefore, the formula ϕsub is satisfiable and, in turn, the
original formula ϕ is satisfiable as well.

The correctness of the approach is guaranteed by the following theorem.

Theorem 1 ([8, Theorem 11.1]). Let ϕ be a formula in the negation normal
form and A a mapping that assigns terms only to free and existentially quanti-
fied variables of ϕ. If each term A(x) contains only universal variables that are
quantified in ϕ before the variable x, satisfiability of A(ϕ) implies satisfiability
of ϕ.

4.2 Dual Algorithm

The algorithm of the previous subsection can improve performance of an smt
solver only for satisfiable formulas. However, its dual version can be used to
improve performance on unsatisfiable formulas. In the dual algorithm, one can
decide unsatisfiability of a formula by computing a countermodel of a reduced
formula and verifying it against the original formula. More precisely, if the solver
decides that the reduced formula ϕred is unsatisfiable, one can extend its coun-
termodel M, substitute the extended countermodel into the original formula,
obtaining a formula ϕsub which contains only existentially quantified variables.
Satisfiability of ϕsub can be again checked by a solver for quantifier-free formulas
applied to ϕsub after removing all its existential quantifiers. If the formula ϕsub is
unsatisfiable, the original formula ϕ must have been unsatisfiable. If the formula
ϕsub is satisfiable, the process is repeated with an increased bit-width.

Example 3. Consider the formula ϕ = ∀y[32] (x[32] + y[32] = 0[32]). Reduction to
one bit yields the formula rf (ϕ, 1) = ∀y[1] (x[1] + y[1] = 0[1]). This formula can

9

be decided as unsatisfiable by an smt solver and its countermodel is {y[1] 7→
−x[1] + 1[1]}. The extension of this countermodel to the original bit-widths is
then {y[32] 7→ −x[32] + 1[32]}. After substituting this candidate countermodel
to the original formula, one obtains the quantifier-free formula ϕsub = (x[32] +
(−x[32] + 1[32]) = 0[32]), which is unsatisfiable. The original formula ϕ is thus
unsatisfiable.

The correctness of the dual algorithm is guaranteed by the following theorem.

Theorem 2 ([8, Theorem 11.2]). Let ϕ be a formula in the negation normal
form and A a mapping that assigns terms only to universally quantified variables
of ϕ. If each term A(x) contains only free and existential variables that are quan-
tified in ϕ before the variable x, unsatisfiability of A(ϕ) implies unsatisfiability
of ϕ.

4.3 Combined Algorithm

Now we combine the two algorithms into one. In the rest of this section, we sup-
pose that there exists a model-generating solver that produces symbolic models
for satisfiable quantified bit-vector formulas and countermodels for unsatisfiable
ones. Formally, let solve(ϕ) be the function that returns (sat,model) if ϕ is
satisfiable and (unsat, countermodel) in the opposite case.

Further, we use smt queries to check the satisfiability of ϕsub . Generally, these
queries can be answered by a different smt solver than the model-generating one.
We call it model-validating solver and suppose that it has the function verify(ψ)
which returns either sat or unsat reflecting the satisfiability of ψ.

Using these two solvers, the algorithm presented in Listing 1.1 combines the
techniques of the two preceding subsections. This algorithm first reduces the bit-
widths in the input formula to 1 and checks satisfiability of the reduced formula
ϕred by the model-generating solver. According to the result, we try to validate
either the extended symbolic model or the extended symbolic countermodel with
the model-validating solver. If the validation succeeds, the satisfiability of the
original formula is decided. Otherwise, we repeat the process but this time we
reduce the bit-widths in the input formula to twice the value used in the previous
iteration. The algorithm terminates at the latest in the iteration when the value
of bw is so high that the formula ϕred is identical to the input formula ϕ. In
this case, the model-generating solver provides a model or a countermodel M
of ϕ. As M contains the unchanged variables of ϕ, its extension extendM (M)
is identical to M and the model-validating solver has to confirm the result.

5 Implementation

We have implemented the proposed algorithm in a proof-of-concept tool. How-
ever, our implementation differs in several aspects from the described algorithm.
This section explains all these differences and provides more details about the
implementation.

10

Listing 1.1: The combined algorithm for checking satisfiability of ϕ using bit-
width reductions and extensions.

1 bw ← 1
2 while (true) {
3 ϕred ← rf (ϕ, bw)
4 (result ,M) ← solve(ϕred)
5 A ← extendM (M)
6 ϕsub ← A(ϕ)
7 if (result == sat) {
8 ϕ¬

sub ← removeQuantifiers(¬ϕsub)
9 verificationResult ← verify(ϕ¬

sub)
10 if (verificationResult == unsat) return SAT
11 }
12 if (result == unsat) {
13 ϕsub ← removeQuantifiers(ϕsub)
14 verificationResult ← verify(ϕsub)
15 if (verificationResult == unsat) return UNSAT
16 }
17 bw ← increaseBW(bw)
18 }

5.1 Model-Generating Solver

As the model-generating solver, we use Boolector 3.2.0 as it can return symbol-
ically expressed Skolem functions as models of satisfiable quantified formulas,
which is crucial for our approach. Unfortunately, Boolector does not satisfy some
requirements that we imposed on the model-generating solver.

First, the symbolic model M returned by Boolector may not contain terms
for all existentially quantified variables of the input formula ϕ. Therefore, the for-
mula ϕsub may still contain both existentially and universally quantified variables
and we cannot employ an smt solver for quantifier-free formulas as the model-
validation solver. Our implementation thus uses a model-validating solver that
supports quantified formulas. An alternative solution is to extendM to all exis-
tentially quantified variables, for example by assigning 0[n] to each existentially
quantified variable x[n] that is not assigned byM. This allows using a solver for
quantifier-free formulas as the model-validating solver. However, our preliminary
experiments indicate that this alternative solution does not bring any significant
benefit. Moreover, the best performing smt solvers for the quantifier-free bit-
vector formulas can also handle quantified formulas.

Second, Boolector returns symbolic models only for satisfiable formulas and
cannot return symbolic countermodels. We alleviate this problem by running
two parallel instances of Boolector: one on the original formula ϕ and one on
the formula ¬ϕ′, where ϕ′ arises from ϕ by existential quantification of all free
variables. We then use only the result of the solver that decides that the formula
is satisfiable; if ϕ is satisfiable, we get its symbolic model, if ¬ϕ′ is satisfiable,

11

we get its symbolic model, which is a symbolic countermodel of ϕ. Effectively,
this is equivalent to running the algorithm of Listing 1.1 without the lines 12–
16 in two parallel instances: one on ϕ and the other on ¬ϕ′. This is what our
implementation actually does.

5.2 Portfolio Solver

The aim of our research is to improve the performance of an smt solver for the
BV theory using the bit-width reductions and extensions. The solver is used as
the model-validating solver. We investigate two implementations:

– To see real-world benefits, we run the original solver in parallel with the
two processes that use bit-width reductions. The result of the first process
that decides the satisfiability of the input formula is returned. The schematic
overview of our portfolio solver is presented in Figure 1. In this variant, if
the reducing solvers reach the original bit-width of the formula, they return
unknown.

– To see the negative overhead of reductions, we also consider a variant of
the above-mentioned approach, but without the middle thread with original
solver. In this variant, the reducing solvers are additionally executed for the
original bit-width in their last iteration.

Our experimental implementation is written in C++ and Python. It uti-
lizes the C++ api of Z3 [5] to parse the input formula in the smt-lib format.
The Z3 api is also used in the implementation of formula reductions and some
simplifications (conversion to the negation normal form and renaming bound
variables to have unique names). The only part written in Python is a sim-
ple wrapper that executes the three parallel threads and collects their results.
As the parameters, we use ext = zeroExt in rt , ext = signExt in adjust , and
increaseBW(x) = 2 ∗ x. These parameters had the best performance during our
preliminary evaluation, but can be changed. The implementation is available at:
https://github.com/martinjonas/bw-reducing-solver

6 Experimental Evaluation

We have evaluated the impact of our technique on the performance of three
leading smt solvers for the BV theory: Boolector 3.2.0 [11], CVC4 1.6 [1], and
Q3B 1.0 [9]. Each of these solvers has been employed as the model-validating
solver, while the model-generating solver remains the same, namely Boolector.
For the evaluation, we have used all 5741 quantified bit-vector formulas from the
smt-lib benchmark repository [2]. The formulas are divided into 8 benchmark
families coming from different sources.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00GHz processors and 128 gb of ram. Each benchmark run was
limited to use 16 gb of ram and 5 minutes of wall time. All measured times are
wall times. For reliable benchmarking we employed BenchExec [4].

12

https://github.com/martinjonas/bw-reducing-solver

ϕ

Model-generating
solver

Reduce
bit-width
to bw:=1

Reduce to
larger

bit-width

Extend model
and substitute

Model-validating
solver

Model-validating
solver

Model-generating
solver

Reduce
bit-width
to bw:=1

Add implicit
existential quantifiers

to ϕ and negate it

Reduce to
larger

bit-width

Extend model
and substitute

Model-validating
solver

SAT UNSAT

sat

unsat

unsat sat sat unsat

sat

unsat

unsatsat

Fig. 1: High-level overview of the portfolio solver. The three shaded areas are
executed in parallel and the first result is returned.

6.1 Boolector

First, we have evaluated the impact of our technique on the performance of
Boolector 3.2.0. We have compared the vanilla Boolector (referred to as btor),
our portfolio solver running Boolector as both model-generating and model-
validating solver (btor-r), and the portfolio variant without the original solver
(btor-r-no). The numbers of formulas of individual benchmark families solved
by the three solvers can be found in the corresponding columns of Table 1.
While btor-r-no is not very competitive, the full portfolio solver was able to
solve 22 formulas more than Boolector itself. Note that this amounts to 8.6%
of the formulas unsolved by Boolector. The scatter plots in Figure 2 shows the
performance of the solvers. With the full portfolio approach, our technique can
also significantly reduce the running time of Boolector on a non-trivial number
of both satisfiable and unsatisfiable formulas from various benchmark families.

We have also investigated the reduction bit-width that was necessary to im-
prove the performance of Boolector. Among all executions of the full portfolio
solver, 475 benchmarks were actually decided by one of the two parallel threads
that perform bit-width reductions. From these 475 benchmarks, 193 were de-

13

Table 1: The table shows for each benchmark family and each solver the number
of benchmarks that were solver by the solver within a given timeout.

F
a
m

il
y

T
o
ta

l

bt
or

bt
or

-r

bt
or

-r
-n

o

bt
or

|c
vc

4

bt
or

|c
vc

4-
r

bt
or

|q
3b

bt
or

|q
3b

-r

2017-Preiner-keymaera 4035 4019 4022 4020 4025 4027 4025 4028
2017-Preiner-psyco 194 193 193 129 193 193 193 193
2017-Preiner-scholl-smt08 374 299 304 224 306 306 327 328
2017-Preiner-tptp 73 70 73 69 73 73 73 73
2017-Preiner-ua 153 153 153 23 153 153 153 153
20170501-Heizmann-ua 131 28 30 25 130 130 128 129
2018-Preiner-cav18 600 549 554 477 577 577 590 590
wintersteiger 181 152 156 125 167 169 172 174

Total 5741 5463 5485 5092 5624 5628 5661 5668

0.01

0.1

1

10

100

T/O

0.01 0.1 1 10 100 T/O
btor time (s)

bt
or

−
r−

no
 ti

m
e

(s
)

0.01

0.1

1

10

100

T/O

0.01 0.1 1 10 100 T/O
btor time (s)

bt
or

−
r

tim
e

(s
)

Family

2017−Preiner−keymaera

2017−Preiner−psyco

2017−Preiner−scholl−smt08

2017−Preiner−tptp

2017−Preiner−ua

20170501−Heizmann−ua

2018−Preiner−cav18

wintersteiger

Result

sat

TIMEOUT (timeout)

unsat

Fig. 2: Scatter plots of wall times of the solver btor vs the solvers btor-r and
btor-r-no. Each point represents one benchmark, its color shows the benchmark
family, and its shape shows its satisfiability.

cided using the bit-width of 1 bit, 141 using 2 bits, 111 using 4 bits, 23 using
8 bits, and 7 using 16 bits.

6.2 CVC4 and Q3B

We have also performed evaluations with CVC4 and Q3B as model-validating
solvers. This yields the following four solvers: cvc4, q3b are the vanilla CVC4
and Q3B, respectively; cvc4-r, q3b-r are the portfolio solvers using CVC4 and
Q3B, respectively, as the model-validating solver.

Whenever the model-generating solver differs from the model-validating solver,
the comparison is more involved. For example, the direct comparison of cvc4 and

14

0.01

0.1

1

10

100

T/O

0.01 0.1 1 10 100 T/O
btor|cvc4 time (s)

bt
or

|c
vc

4−
r

tim
e

(s
)

0.01

0.1

1

10

100

T/O

0.01 0.1 1 10 100 T/O
btor|q3b time (s)

bt
or

|q
3b

−
r

tim
e

(s
)

Family

2017−Preiner−keymaera

2017−Preiner−psyco

2017−Preiner−scholl−smt08

2017−Preiner−tptp

2017−Preiner−ua

20170501−Heizmann−ua

2018−Preiner−cav18

wintersteiger

Result

sat

TIMEOUT (timeout)

unsat

Fig. 3: Scatter plots of wall times of the virtual best solvers btor|cvc4 vs.
btor|cvc4-r (left) and btor|q3b vs. btor|q3b-r (right).

cvc4-r would be unfair and could be biased towards cvc4-r. This happens be-
cause models are provided by Boolector as the model-generating solver and the
model validation may become trivial for CVC4, even if it could not solve the
reduced formula alone. To eliminate this bias, we do not compare cvc4 against
cvc4-r, but the virtual-best solver from btor and cvc4, denoted as btor|cvc4,
against the virtual-best solver from btor and cvc4-r, denoted as btor|cvc4-r.
We thus investigate only the effect of reductions and not the performance of
the model-generating solver on the input formula. Similarly, we compare the
virtual-best solver btor|q3b against the virtual-best solver btor|q3b-r.

Table 1 shows the number of benchmarks solved by the compared solvers. In
particular, reductions helped the virtual-best solver btor|cvc4-r to solve 4 more
benchmarks than the solver btor|cvc4. This amounts to 3.4% of the benchmarks
unsolved by btor|cvc4. For btor|q3b-r, the reductions help to solve 7 new
benchmarks, i.e., 8.8% of unsolved benchmarks.

Similarly to the case of Boolector, reductions also help btor|cvc4-r to decide
several benchmarks faster than the solver btor|cvc4 without reductions. This
can be seen on the first scatter plot in Figure 3. As the second scatter plot in
this figure shows, reductions also help Q3B to solve some benchmarks faster.

All experimental data, together with additional results and all scripts that
were used during the evaluation are available at: https://fi.muni.cz/∼xstrejc/
sat2020/

7 Conclusions

We have described an algorithm that improves performance of smt solvers for
quantified bit-vector formulas by reducing bit-widths in the input formula. We
have shown that if used in a portfolio approach, our proof-of-concept implemen-
tation of this algorithm improves performance of state-of-the art smt solvers
Boolector, CVC4, and Q3B.

15

https://fi.muni.cz/~xstrejc/sat2020/
https://fi.muni.cz/~xstrejc/sat2020/

References

1. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, pages 171–177, 2011.

2. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

3. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satis-
fiability Modulo Theories. In Handbook of Satisfiability, pages 825–885. IOS Press,
2009.

4. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and Resource Mea-
surement. In Model Checking Software - 22nd International Symposium, SPIN
2015, Proceedings, volume 9232 of Lecture Notes in Computer Science, pages 160–
178. Springer, 2015.

5. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008.

6. John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

7. Martin Jonáš and Jan Strejček. Is satisfiability of quantified bit-vector formulas
stable under bit-width changes? In Gilles Barthe, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22. 22nd International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November
2018, volume 57 of EPiC Series in Computing, pages 488–497. EasyChair, 2018.

8. Martin Jonáš. Satisfiability of Quantified Bit-Vector Formulas: Theory & Practice.
PhD thesis, Masaryk University, 2019.

9. Martin Jonáš and Jan Strejček. Q3B: an efficient BDD-based SMT solver for quan-
tified bit-vectors. In Computer Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, 2019, Proceedings, Part II, pages 64–73,
2019.

10. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of fixed-size
bit-vector logics. Theory Comput. Syst., 59(2):323–376, 2016.

11. Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2, BtorMC
and Boolector 3.0. In Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I, pages 587–595, 2018.

12. Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer. An Approx-
imation Framework for Solvers and Decision Procedures. J. Autom. Reasoning,
58(1):127–147, 2017.

16

	Speeding Up Quantified Bit-Vector SMT Solvers by Bit-Width Reductions and Extensions

