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Abstract. Preprocessing of the input formula is an essential part of all
modern smt solvers. An important preprocessing step is formula simplifi-
cation. This paper elaborates on simplification of quantifier-free formulas
containing unconstrained terms, i.e. terms that can have arbitrary val-
ues independently on the rest of the formula. We extend the idea in
two directions. First, we introduce partially constrained terms and show
some simplification rules employing this notion. Second, we show that
unconstrained terms can be used also for simplification of formulas with
quantifiers. Moreover, both these extensions can be merged in order to
simplify partially constrained terms in formulas with quantifiers. We ex-
perimentally evaluate the proposed simplifications on formulas in the
bit-vector theory.

1 Introduction

For most of the modern smt solvers, preprocessing of the input formula is a
crucial step for the efficiency of the solver. Therefore, modern smt solvers em-
ploy hundreds of rewrite rules in order to simplify the input formula [10]. The
aim of most of the simplifications is to reduce the size of the input formula and
to replace expensive operations by easier ones. One class of these simplification
rules focuses on formulas containing unconstrained variables. An unconstrained
variable is a variable that occurs only once in the formula and therefore can be
set to any suitable value without affecting the rest of the formula. For example,
the formula x+ (5 ∗ y+ z) = y ∗ z can be rewritten to an equisatisfiable formula
u = y ∗ z because, regardless of the values of y and z, the term x + (5 ∗ y + z)
can be evaluated to any value of u by choosing a suitable value of x. Such
terms, which can be set to an arbitrary value by a well-suited choice of values
of unconstrained variables, are called unconstrained terms. The principle of sim-
plifications of unconstrained terms is recalled in more detail in Section 3. This
simplification technique was proposed by Bruttomesso [8] and Brummayer [7],
who independently observed that industrial benchmarks often contain non-trivial
amount of unconstrained variables. For example, consider smt queries coming
from symbolic execution of a program, where a query is satisfiable if and only
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if the symbolically executed program path is feasible. There are basically two
sources of unconstrained variables in such queries. One source is input variables:
such a variable is unconstrained in all queries corresponding to the symbolic exe-
cution of a path that reads the input variable at most once. The second source is
program variables that are assigned on an executed path, but not read yet. For
instance, the execution of an assignment y:=x+5 leads to a conjunct y = x + 5
in the path condition query, where y does not appear anywhere else in the query
(unless it is read) and thus it is unconstrained. Such situations are especially fre-
quent when analyzing Static Single Assignment (ssa) code such as llvm, which
uses many program variables.

1.1 Contribution and Structure of the Paper

In this paper, we extend the notion of unconstrained terms in several ways:

– In some cases, the definition of unconstrained term is too restrictive by
allowing only terms that can evaluate to every possible value by a suitable
choice of values of unconstrained variables. For example, Bruttomesso and
Brummayer describe the simplification rule that replaces the bit-vector term
c · x by a fresh variable y, if x is an unconstrained variable and c is an odd
constant. However, if c is even, the simplification is no longer possible. We
describe a less restrictive simplification using partially constrained terms,
which for example allows replacing the term 6 · x by the term 2 · y; although
these two terms can not evaluate to all possible values, they can evaluate to
precisely the same set of values.
Partially constrained terms are studied in Section 4. This section also shows
that several ad-hoc simplification rules introduced by Bruttomesso can be
seen as instances of simplification of partially constrained terms. Our def-
inition of partially constrained terms allows construction of more similar
rules.

– Previously, the simplifications of unconstrained terms were described only
on quantifier-free formulas. In Section 5, we formalize the conditions under
which a simplification of unconstrained terms can be performed on quantified
formulas.

– Section 6 combines techniques from the two preceding sections and describes
simplification of partially constrained terms in quantified formulas. Further-
more, the resulting technique is combined with quantifier-specific simplifica-
tion rules to allow more efficient and straightforward applications.

Section 7 experimentally evaluates the influence of proposed simplifications on
performance of state-of-the-art smt solvers Z3 [9], Boolector [13], and Q3B [12]
on quantified bit-vector formulas arising in software and hardware verification.

We emphasize that the presented approach is not tied to any particular the-
ory. We use the bit-vector theory in many examples and in evaluation as its
functions tend to produce unconstrained terms when at least one argument is
an unconstrained.



2 Preliminaries

This section briefly recalls the theory of fixed sized bit-vectors (BV or bit-vector
theory for short). It is a multi-sorted first-order theory with infinitely many sorts
corresponding to bit-vectors of various lengths. The BV theory uses only three
predicates, namely equality (=), unsigned inequality of binary-encoded natu-
ral numbers (≤u), and signed inequality of integers in two’s complement rep-
resentation (≤s). The theory also contains various functions, namely addition
(+), multiplication (·), unsigned division (÷), bit-wise and (bvand), bit-wise or
(bvor), bit-wise exclusive or (bvxor), left-shift (�), right-shift (�), concatena-
tion (concat), and extraction of n bits starting from position p (extractnp ). The

signature of BV theory also contains constants c[n] for each bit-width n > 0 and
a number 0 ≤ c ≤ 2n−1. Additionally, as in smt-lib [1] and in Hadarean [11], we
suppose a distinguished sort Boolean and instead of treating formulas and terms
differently, formulas are merely the terms of sort Boolean. This sort is similar to
bit-vectors of length 1, but Boolean uses standard logic operators (∧,∨,¬) and
not the bit-vector ones. If a bit-width of a constant or a variable is not specified,
we suppose that it is equal to 32. The precise description of the multi-sorted
logic can be found for example in Barrett et al. [3]. For a precise description of
the syntax and semantics of the BV theory, we refer the reader to Hadarean [11].

For a valuation µ that assigns to each variable a value in its domain, J Kµ de-
notes the evaluation function, which assigns to each formula ϕ the value obtained
by substituting free variables in ϕ by values given by µ and evaluating all func-
tions, predicates, logic operators etc. A formula ϕ is satisfiable if JϕKµ = > for
some valuation µ; it is unsatisfiable otherwise. Formulas ϕ and ψ are equivalent
if they have the same set of free variables and for each valuation µ of these free
variables, the equality JϕKµ = JψKµ holds. Formulas ϕ and ψ are equisatisfiable,
if either both are satisfiable, or both are unsatisfiable.

If ϕ is a formula and t, s are terms of the same sort, we use ϕ[t← s] to denote
the formula ϕ with every occurrence of the term t replaced by the term s. In
particular, if x is a variable, ϕ[x ← t] is the result of substituting the variable
x by the term t. Further, vars(ϕ) denotes the set of free variables in ϕ. Finally,
a variable v ∈ vars(ϕ) is called unconstrained in ϕ, if it occurs only once in the
formula ϕ and it is called constrained otherwise.

If convenient, we work with functions as with sets of pairs. For example, the
union of functions f : A → B and g : C → D where A ∩ C = ∅ is a function
f ∪ g : (A ∪ C) → (B ∪D). Similarly, {(a, b)} is a function from the set {a} to
the set {b}. This function is also denoted as {a 7→ b}.

3 Unconstrained Terms in Quantifier-Free Formulas

This section formalizes known simplifications of quantifier-free formulas contain-
ing unconstrained terms. Intuitively, a term t is unconstrained in the formula ϕ if
for every assignment to the variables occurring in the term, every possible value
of the sort of the term t can be obtained by changing values of only variables



that are unconstrained in ϕ. The idea of simplification is to replace a nontrivial
unconstrained term by a fresh variable, which leads to a smaller equisatisfiable
formula. For example, consider the formula (x+ 3y = 0 ∧ y > 0) in the theory
of integers. The formula contains one unconstrained variable x. The term x+ 3y
is unconstrained as it can attain any integer value, regardless of the value of y.
If we replace the term x + 3y by a fresh variable v, we get the equisatisfiable
formula (v = 0 ∧ y > 0). Alternatively, one can realize that the whole term
x + 3y = 0 is unconstrained and thus it can be replaced by a fresh Boolean
variable w. In this way, we get an equisatisfiable formula (w ∧ y > 0). In both
cases, the variable y of the simplified formula become unconstrained and the
formula can be further simplified.

To formalize the simplification principle, we define when a term is uncon-
strained due to a set of variables U , which means that a term can evaluate to an
arbitrary value by changing only values of variables in U . Further, we define when
a term is unconstrained in a formula ϕ, which means that it is unconstrained
due to a set of variables that are unconstrained in ϕ.

Definition 1. Let t be a term and U ⊆ vars(t) be a set of variables. We say
that the term t is unconstrained due to U if, for each valuation µ of variables
in (vars(t) r U) and every value b of the same sort as the term t, there exists a
valuation ν of variables in U such that JtKµ∪ν = b.

Example 1. In the bit-vector theory, the following terms are unconstrained due
to {x} for any term t′ not containing x:

– x+ t′ and t′ + x,
– c[n] · x and x · c[n] if c is an odd constant,
– bvnot(x), bvxor(x, t′) and bvxor(t′, x),
– x <u c

[n] if c 6= 0,
– c[n] <u x if c 6= 2n − 1,
– x = t′ and x 6= t′.

Note that the last two terms are unconstrained due to {x} because each sort
of the bit-vector theory contains at least two elements. Further, the terms x · y,
bvand(x, y), bvor(x, y) are unconstrained due to {x, y}. A comprehensive list of
unconstrained terms can be found for example in Franzén’s doctoral thesis [10].

On the contrary, multiplication by an even constant is not an unconstrained
term. For example, the term 2 · x over the theory of bit-vectors never evaluates
to 3 as the number 3 does not have a multiplicative inverse in the ring of integers
modulo 232. As a consequence, the term x · y is neither unconstrained due to
{x}, nor unconstrained due to {y}.

Definition 2. A subterm t of a formula ϕ is called unconstrained in the formula
ϕ if it is unconstrained due to a set of variables that are unconstrained in ϕ.

The following theorem states the correctness of simplification based on uncon-
strained terms.



Theorem 1 ([8, 10]). Let ϕ be a quantifier-free formula and t its subterm un-
constrained in ϕ. Then ϕ is equisatisfiable with the formula ϕ[t← v], where v is
a fresh variable of the same sort as t.

Note that our definition of unconstrained terms and the statement of The-
orem 1 are slightly more general than the ones given by Brummayer and Brut-
tomesso, which consider unconstrained terms containing only a single uncon-
strained variable. The definition of unconstrained term used in this paper is due
to Franzén [10].

The approach where subformulas are identified with terms of sort Boolean
brings some additional benefits. In particular, a subformula can be an uncon-
strained term even if it consists of terms that are not unconstrained. For example,
let us consider the formula ϕ ≡ (3x+ 3y = 0 ∧ y > 0) over the theory of inte-
gers. The term 3x+ 3y is not unconstrained as its value is always a multiple of
3. However, term 3x + 3y = 0 of sort Boolean is unconstrained due to {x}. As
x is unconstrained in ϕ, we can simplify the formula to the equisatisfiable form
(v ∧ y > 0). Elimination of pure literals can then further reduce the formula to
the form (y > 0). As both > and ⊥ can be obtained by suitable choices of the
value of the variable y, the term y > 0 is unconstrained due to {y}, and thus
the formula can be simplified to v′, where v′ is a Boolean variable.

Note on models The simplified formulas are in general equisatisfiable to the
original ones, but not equivalent. For example, the formulas (x+3y = 0 ∧ y > 0)
and (v = 0 ∧ y > 0) mentioned above are both satisfiable, but they use different
sets of variables and thus they have different models. In this case, a model of
the original formula can be easily computed from the model µ of the simplified
formula: it assigns to y the value JyKµ and to x the value J−3yKµ. However, in
some cases, the computation of a model for the original formula can be harder.
For example, assume that we have replaced the unconstrained term 180423[32] ·x
over the bit-vector theory by a fresh variable y. To get the value of x such that
the term 180423[32] · x evaluates to a given value of y then means to find the
multiplicative inverse of 180423 in the ring of integers modulo 232 and multiply it
by the value of y. Although this inverse can be still computed using an extended
Euclidean algorithm, it is computationally not trivial.

Note that algorithms for effective retrieval of models for the original formulas
from models of the simplified formulas are beyond the scope of this paper.

4 Partially Constrained Terms in Quantifier-Free
Formulas

The key property of the simplification presented in the previous section is that
the possible values of an unconstrained term are precisely the same as the possi-
ble values of a fresh variable of the same sort. This approach can be generalized
even to terms that are partially constrained : a complex term can be replaced by
a simpler one representing the same values. For example, the value of the term



6 · x over the bit-vector theory can be any number divisible by 2. Therefore, if
6 · x is a subterm of a formula where x is unconstrained, then the subterm 6 · x
can be replaced by 2 · y where y is a fresh variable of the same sort as x.

The following definition formalizes the notion that two terms represent the
same set of possible values for any fixed valuation of variables in C. Intuitively,
in applications of this definition, the set C will contain all constrained variables.

Definition 3. Let C be a set of variables and t, s be terms of the same sort. Fur-
ther, let U = (vars(t)∪vars(s))rC. Terms t and s are called C-interchangeable,

written t
C

 s, if for every valuation µ of variables in C it holds that

{JtKµ∪ν | ν is a valuation of U} = {JsKµ∪ρ | ρ is a valuation of U}.

Now we formulate the simplification principle for partially constrained terms
and prove its correctness.

Theorem 2. Let ϕ be a quantifier-free formula and C be the set of its con-

strained variables. For any subterm t of ϕ and any term s such that t
C

 s and

vars(s)∩vars(ϕ) ⊆ C, the formula ϕ is equisatisfiable with the formula ϕ[t← s].

Proof. All variables of ϕ and ϕ[t← s] can be divided into three disjoint sets:

1. the set C of all constrained variables in ϕ,
2. the set U = (vars(t)∪vars(s))rC of all variables in t or s that are not in C,
3. the set U ′ containing all variables that are neither in C, nor in U .

The precondition vars(s)∩ vars(ϕ) ⊆ C formulated in the theorem implies that
every variable of U appears either only in t or only in s and not in any other
part of the formula. Moreover, variables of U ′ appear neither in t, nor in s.

Suppose that ϕ is satisfiable. Hence, there exists a valuation µ of variables
in C, a valuation ν of variables in U , and a valuation ν′ of variables in U ′ such
that µ∪ ν ∪ ν′ is a satisfying assignment of ϕ. As t and s are C-interchangeable
and do not contain any variable from U ′, there exists a valuation ρ of variables
in U such that JtKµ∪ν = JsKµ∪ρ. As valuations ν and ρ concern only variables
of U that do not appear outside t and s, we get that the assignment µ ∪ ρ ∪ ν′
satisfies ϕ[t← s].

It remains to show that satisfiability of ϕ[t ← s] implies satisfiability of ϕ.
However, the arguments are completely symmetric. ut

Note that the definition of C-interchangeability generalizes Definition 1 in the
sense that a term t is unconstrained due to U if and only if it is C-interchangeable
with a fresh variable u of the same sort, where C = vars(t)rU . Theorem 1 can
then be seen as a corollary of Theorem 2.

Applications Now we show some applications of the previous theorem. We
start with an example from the theory of non-linear real arithmetic and then
focus on terms over the bit-vector theory. In particular, we focus on simplifica-
tion of partially constrained terms with multiplication as this operation is very
expensive for some smt solvers, especially these based on bdds.



Example 2. Consider the term t · u in the theory of non-linear real arithmetic,
where u is an unconstrained variable and t is an arbitrary term not containing
the variable u. The term t · u can be replaced by ite(t = 0, 0, v), where v is a
fresh variable, as the terms t · u and ite(t = 0, 0, v) are vars(t)-interchangeable.
In general, this simplification can be performed in any theory in which addition
and multiplication form a field.

Example 3. In the bit-vector theory, the term 4 · u can be evaluated to any
bit-vector where the two least significant bits are zeroes. The same holds for
the term 12 · u. In general, the term c[n] · u with a constant c[n] can represent
any bit-vector ending with i zeroes, where i is the highest integer such that 2i

divides c. This follows from the fact that c can be expressed as 2i ·m for some
odd number m and every odd number has a multiplicative inverse m−1 in the
bit-vector theory. All bit-vectors with i zeroes at the end can be also represented
by the term v � i. Hence, the terms c[n] · u and v � i are ∅-interchangeable.
Finally, Theorem 2 implies that a formula ϕ with an unconstrained variable u
and a term c[n] ·u is equisatisfiable with the formula ϕ[c[n] ·u ← v � i] where v is
a fresh variable and i is the constant described above. Note that the term v � i
is easier to compute and express as a circuit than the original multiplication by
a potentially large constant c[n].

Example 4. More interestingly, we can simplify also the term t · u where u is
unconstrained, even if t is a term with a non-constant value. As an example,
consider the term t · u[3] for a 3-bit variable u. We write t[i] as a shortcut for
the extraction of the i-th least significant bit of the term t where 0 ≤ i ≤ 2,
i.e. t[i] ≡ extract12−i(t). Then t · u[3] is vars(t)-interchangeable with the term

ite
(
t[0] = 1[1], v0, ite

(
t[1] = 1[1], v1 � 1[3], ite(t[2] = 1[1], v2 � 2[3], 0[3])

))
.

In general, the term t · u[k] is vars(t)-interchangeable with the term defined as

ite
(
t[0] = 1[1], v0,

ite
(
t[1] = 1[1], v1 � 1[k],

. . .

ite(t[k − 1] = 1[1], vk−1 � (k − 1)[k], 0[k]) . . .
))
.

Therefore, in a formula ϕ with an unconstrained variable u[k], a term t · u[k]
can be replaced by the term above with fresh variables v0, v1, . . . , vk−1 and the
resulting formula is equisatisfiable with ϕ.

In the previous two examples, the multiplications has been replaced by oper-
ations like bit-equality and bit-shift by a constant, which are very cheap for
bdd-based smt solvers.

Example 5. Now we discuss some simplification rules mentioned by Bruttomesso
without a proof of correctness. For example, consider the simplification rule that



Table 1: Each line presents a pair of vars(t)-interchangeable terms, assuming that
b, u 6∈ vars(t). Terms on the right are considered simpler for smt solvers than these on
the left.

t <u u b ∧ t 6= 2k − 1

t <s u b ∧ t 6= 2k−1 − 1
u <u t b ∧ t 6= 0

u <s t b ∧ t 6= −2k−1

t ≤u u b ∨ t = 0

t ≤s u b ∨ t = −2k−1

u ≤u t b ∨ t = 2k − 1

u ≤s t b ∨ t = 2k−1 − 1

rewrites the term t >u u containing an unconstrained bit-vector variable u by
the term b ∧ t 6= 0, where b is a fresh Boolean variable. Intuitively, the rule is
correct as t >u u can be evaluated to both > and ⊥ unless t is evaluated to 0. If
the value of t is 0, t >u u evaluates to ⊥. Correctness of this rule follows directly
from Theorem 2 and the fact that the term t >u u is vars(t)-interchangeable
with the term b ∧ t 6= 0 assuming that u, b 6∈ vars(t). Similar simplification rules
can be derived from pairs of vars(t)-interchangeable terms presented in Table 1.

5 Unconstrained Terms in Quantified Formulas

In this section, we extend the treatment of unconstrained variables to formulas
containing quantifiers. To simplify the presentation, we suppose that all formulas
are in the prenex normal form and do not contain any free variables. That is,
ϕ = Q1B1Q2B2 . . . QnBnψ, where ψ is a quantifier-free formula, Qi ∈ {∀,∃} for
all 1 ≤ i ≤ n, and all Bi are pairwise disjoint sets of variables. Sequences QiBi
are called quantifier blocks. Quantifier blocks are supposed to be maximal, that
is Qi 6= Qi+1. A quantifier block QiBi is existential if Qi = ∃ and universal
otherwise. The level of a variable x is i such that x ∈ Bi. For a variable x, we
denote as level(x) its level and for a set of variables X we define levels(X) =
{level(x) | x ∈ X}. If the set X contains only variables of the same level, we
denote as level(X) the level of all variables in that set. We say that an occurrence
of a Boolean variable has the positive polarity if the occurrence is under an even
number of negations and that it has the negative polarity otherwise. A variable
is called unconstrained in the quantified formula ϕ if it is unconstrained in its
quantifier-free part ψ.

It is easy to see that Theorem 1 can not be directly applied to quantified for-
mulas. As an example, consider the formula ϕ ≡ ∃x∀y (x+y = 0). Although the
variable x is unconstrained in the formula ϕ and the term x+y is unconstrained
due to {x}, the conclusion of Theorem 1 is not true regardless of the position



of the quantifier for the fresh variable v: the formula ϕ is equisatisfiable neither
with ∃v∀y (v = 0) nor with ∀y∃v (v = 0). The following modified definition of
the unconstrained term solves this problem.

Definition 4. Let ϕ be a quantified formula, t its subterm, and U ⊆ vars(t) a
set of variables such that |levels(U)| = 1. We say that the term t is unconstrained
due to U if, for each valuation µ of variables in (vars(t)rU) and every value b
of the same sort as the term t, there exists a valuation ν of variables in U such
that JtKµ∪ν = b and, furthermore,

level(U) ≥ max
(

levels
(
vars(t) r U

))
.

For example, in the formula ∃x∀y (x+ y = 0) mentioned above, the subterm
x + y is not unconstrained due to {x}, since level(x) < level(y). On the other
hand, it is unconstrained due to {y}.

The following theorem shows that a subterm that are unconstrained due to
a set of unconstrained variables can be simplified even in quantified formulas.

Theorem 3. Let ϕ be a formula, t be a term, U be a subset of vars(t), and v be
a variable not occurring in ϕ. If t is unconstrained due to the set of variables U
and all variables in U are unconstrained in ϕ, then ϕ is equivalent to the formula
ϕ in which the term t is replaced by v and the variables of U are replaced in their
quantifier block by the variable v.

Proof. The definition of unconstrained subterm implies that all variables in U
have the same level. Let k = level(U) and let ϕ ≡ Q1B1 . . . QkBk ψ, where
the formula ψ can contain quantifiers. We show that the formula QkBk ψ is
equivalent to the formula Qk((Bk r U) ∪ {v}) (ψ[t← v]).

Let V =
⋃

1≤i<k Bi. Observe that U ⊆ Bk and the last line of the definition
of an unconstrained term implies (vars(t) r U) ⊆ V ∪ (Bk r U). Let µ be an
assignment of values to all variables in V . We distinguish two cases according to
the quantifier Qk.

– Suppose thatQk = ∃. If J∃BkψKµ = >, then there is a valuation ν of variables
in Bk such that JψKµ∪ν = >. Note that the function µ ∪ ν assigns values to
a superset of vars(t) and therefore can be used to evaluate the term t. Let
bv be the value JtKµ∪ν . For this value, we have Jψ[t ← v]Kµ∪ν∪{v 7→bv} = >
and therefore also J∃(Bk ∪ {v})ψ[t← v]Kµ = >. Since all variables in U are
unconstrained, the formula ψ[t ← v] does not contain any variable from U
and therefore J∃((Bk r U) ∪ {v})ψ[t← v]Kµ = >.

Conversely, if J∃((Bk r U) ∪ {v})ψ[t ← v]Kµ = >, there is a valuation
ν of variables in (Bk r U) ∪ {v} such that Jψ[t ← v]Kµ∪ν = >. As t is
unconstrained due to the set U , there is a valuation νU of variables in U
such that JtKµ∪ν∪νU = ν(v). Therefore JψKµ∪ν∪νU = > and in turn J∃(Bk ∪
{v})ψKµ = >, because ν ∪ νU is an assignment to variables from Bk ∪ {v}.
Finally, because the formula ψ does not contain the variable v, we know that
J∃Bk ψKµ = >.



– If Qk = ∀, the proof is dual to the ∃ case, but each existential quantifier is
replaced by the universal quantifier and each > is replaced by ⊥. ut

As an example, consider again the formula ∃x∀y (x + y = 0). According to
the previous theorem, it is equivalent with ∃x∀v (v = 0), because the term x+ y
is unconstrained due to {y}. Moreover, as the term v = 0 is unconstrained due to
{v}, it is equisatisfiable with ∃x∀p p, where p is a Boolean variable. This formula
is trivially equivalent to ⊥.

6 Partially Constrained Terms in Quantified Formulas

Both described extensions of unconstrained terms – i.e. partially constrained
terms and unconstrained terms in quantified formulas – can be combined to-
gether in a fairly obvious way. The next theorem precisely describes this com-
bination. The proof of this theorem is a straightforward extension of already
presented proofs.

Theorem 4. Let ϕ be a quantified formula and t be its subterm such that the
set U of unconstrained variables appearing in t satisfies |levels(U)| = 1 and

level(U) ≥ max
(
levels(C)

)
,

where C = vars(t) r U . Further, let s be an arbitrary term such that t
C

 s and

vars(s) ∩ vars(ϕ) ⊆ C. Then the formula ϕ is equivalent with the formula ϕ
where the term t is replaced by the term s and the variables of U are replaced in
their quantifier block by the set of variables vars(s) r vars(ϕ).

Note that due to this theorem, we can easily transfer simplification rules men-
tioned by Bruttomesso to quantified formulas, because they can be reformulated
using the notion of interchangeable terms, as was described in Section 4.

Moreover, such simplifications can be combined with additional quantifier-
specific simplification rules. The key observation is that the simplifications us-
ing unconstrained and partially constrained terms often introduce fresh – and
therefore unconstrained – Boolean variables (see Table 1). For example, if b is
an existentially quantified Boolean variable that is unconstrained in a formula
ϕ, it can be replaced by > if it occurs in ϕ with the positive polarity and by ⊥ if
it occurs with the negative polarity and the resulting formula will be equivalent
to the original one. Similarly, an unconstrained universally quantified Boolean
variable can be replaced by ⊥ if it has the positive polarity and by > if it has
the negative polarity. Combining those simplifications with simplifications using
unconstrained and partially constrained terms therefore yields more straight-
forward simplification rules, which are shown in Table 2. Although this table
shows only rules for terms with positive polarity, the dual versions for terms
with negative polarity are straightforward.



Table 2: Derived simplification rules for partially constrained terms (in the left col-
umn) with positive polarity in quantified formulas. We assume that u is an uncon-
strained variable and level(u) ≥ max

(
levels(vars(t))

)
.

Quantifier type of u

Term Existential Universal

u = t or t = u > ⊥
u 6= t or t 6= u > ⊥

t <u u t 6= 2k − 1 ⊥
t <s u t 6= 2k−1 − 1 ⊥
u <u t t 6= 0 ⊥
u <s t t 6= −2k−1 ⊥

t ≤u u > t = 0

t ≤s u > t = −2k−1

u ≤u t > t = 2k − 1

u ≤s t > t = 2k−1 − 1

7 Experimental Evaluation

We have implemented all mentioned simplifications of quantified bit-vector for-
mulas containing partially constrained terms – including all rules mentioned by
Franzén and rules from Examples 3 and 4, and Table 2. The algorithm itera-
tively simplifies the input formula up to the fixed point. The implementation is
written in C++, uses Z3 api to parse the input formula, and is freely available at
https://gitlab.fi.muni.cz/xjonas/BVExprSimplifier. We have evaluated
the effect of implemented simplifications on the performance of the solvers Z3 [9],
Boolector [13], and the bdd-based solver Q3B [12] on two sets of benchmarks.

The first set of benchmarks contains all 191 formulas from the BV1 category
of the smt-lib benchmark repository [2]. The second set of benchmarks consists
of 5 461 formulas generated by the model checker SymDivine [4] when run on
verification tasks from SV-COMP [5]. The generated quantified formulas arise
from an equivalence check of two symbolic states, both of which are represented
by path conditions. Since the input for the tool SymDivine is an llvm bit-code,
the resulting formulas are expected to contain a large number of unconstrained
variables.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00GHz processors and 128 gb of ram. Each benchmark run was
limited to use 8 gb of ram and 15 minutes of cpu time. All measured times are
cpu times and include both the time of formula preprocessing and the time of the
actual smt solving, unless explicitly stated otherwise. For reliable benchmarking

1 BV is a category of quantified bit-vector formulas without arrays and uninterpreted
functions.



Table 3: For each benchmark set, solver, and configuration, the table provides the
numbers of formulas decided as satisfiable (sat), unsatisfiable (unsat), or undecided
(other) because of an error, a timeout or a memory out. The table also shows the time
necessary to decide benchmarks in the benchmark set in the form of simplification
time + solving time, or just solving time if the simplification was not performed. Only
benchmarks that were decided by both configurations of the given solver are counted
into solving times.

smt-lib SymDivine

sat unsat other time (s) sat unsat other time (s)

Z3 70 92 29 426 1137 3999 325 3006
Z3-s 72 92 27 16 + 430 1137 4194 130 169 + 381

Boolector 78 95 18 1 513 1137 3296 1028 20 269
Boolector-s 86 95 10 16 +1 257 1137 3610 714 169 + 1 173

Q3B 94 94 3 2 986 1137 4202 122 9 046
Q3B-s 94 94 3 16 +2 233 1137 4202 122 169 + 3 082

we employed BenchExec [6], a tool that allocates specified resources for a
program execution and measures their use precisely. We used the solver Z3 in the
latest stable version 4.5.0, Boolector in the version attached to the paper [13], and
the solver Q3B in the latest development version (commit 6830168 on GitHub).

For all three smt solvers, we compare the performance of two different con-
figurations:

– In configurations Z3, Boolector, and Q3B, smt solvers are run on the input
formula, after performing cheap local simplifications done by Z3.

– In configuration Z3-s, Boolector-s, and Q3B-s, the input file is simplified
using the implemented simplifications based on unconstrained variables and
the same cheap local simplifications performed by Z3 up to the fixed point
and the result is fed to smt solvers.

Table 3 summarizes the obtained results. Thanks to the simplifications, the
solver Z3 was able to decide 2 more benchmarks from the smt-lib benchmark
set and 195 more benchmarks from the SymDivine benchmark set. The solver
Boolector can decide 8 more smt-lib benchmarks and 314 more SymDivine
benchmarks thanks to the simplifications. On the other hand, the number of
benchmarks decided by Q3B does not change after performing simplifications.
This is not surprising, as the remaining 122 formulas in the SymDivine bench-
mark set, which Q3B did not solve, do not contain any unconstrained variables.

We have also examined the time needed to solve benchmarks. Even when
the time of performing simplifications is counted, simplifications helped to re-
duce solving time of Z3 on SymDivine benchmarks to 18 %, the solving time
of Boolector on smt-lib benchmarks to 84 %, the solving time of Boolector on
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Fig. 1: The figure shows quantile plots for three configurations of all solvers run on both
benchmark sets. The configuration standard runs on original formulas and the other
two run on simplified formulas. The times of unconstrained do not include simplification
time, the times of unconstrained+simpl do.
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Fig. 2: The figure shows comparison of solving times with and without simplifications
for all three smt solvers on benchmarks from the SymDivine benchmark set. The times
are in seconds and include the time of performing simplifications.

SymDivine benchmarks to 7 %, the solving time of Q3B on smt-lib bench-
marks to 75 %, and the solving time of Q3B on SymDivine benchmarks to 35 %
of the original cpu time. On the other hand, simplifications increased the solving
time of Z3 on smt-lib benchmarks to 105 %, which is in part due to the time
needed to perform simplifications and in part due to the fact that after the sim-
plification, Z3’s quantifier instantiation heuristics needed more instantiations to
solve some of the formulas. Overall, the time needed to perform simplifications
is usually negligible when compared to the actual solving time – each formula
was simplified in less than 1.3 seconds and the average simplification time is
0.03 seconds. Quantile plots on Figure 1 show comparison of benchmarks solved
within a given time for configurations with and without simplifications.



Additionally, scatter plots on Figure 2 show comparison of time needed to
solve benchmarks for formulas from the SymDivine benchmark set. For this
benchmark set, the proposed simplifications are clearly beneficial, as was ex-
pected. Interestingly, the benchmarks from SymDivine set for which the sim-
plifications improved the solving time are not the same for all three smt solvers
– the performance of Z3 improved mainly on benchmarks originating in the SV-
COMP category eca; the performance of Boolector and Q3B improved on bench-
marks from all SV-COMP categories. Scatter plots for smt-lib benchmarks are
not presented in the paper, because the differences are not so significant. How-
ever, they can be found along with detailed results of all experiments on the
address http://www.fi.muni.cz/~xstrejc/sat2017/evaluation.html.

In general, the experimental results clearly show that the proposed simplifi-
cations are beneficial for all the considered smt solvers.

8 Conclusion

We have extended known simplifications of quantifier-free first-order formulas
containing unconstrained terms to a more general notion of a partially con-
strained terms and to quantified formulas. We have further implemented the
proposed simplifications for the theory of bit-vectors and shown the beneficial
effect of such simplifications for benchmarks arising in verification of software
and hardware.
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