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We introduce a new fragment of Linear temporal logic (LTL) called LIO and a new class

of Büchi automata (BA) called Almost linear Büchi automata (ALBA). We provide

effective translations between LIO and ALBA showing that the two formalisms are

expressively equivalent. As we expect applications of our results in model checking, we

use two standard sources of specification formulae, namely Spec Patterns and BEEM, to

study practical relevance of LIO fragment, and to compare our translation of LIO to

ALBA with two standard translations of LTL to BA via alternating automata. Finally,

we demonstrate that the LIO to ALBA translation can be much faster than the standard

translation and the produced automata can be substantially smaller.
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1. Introduction

The growing number of concurrent software and hardware systems puts more emphasis
on development of automatic verification methods applicable in practice. One of the most
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Fig. 1. An ALBA for the formula G(a ∨ Fb).

The automaton has two terminal strongly

connected components: {q2} corresponding

to Ga and {q3, q4} corresponding to GFb.
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Fig. 2. The Büchi automaton for

the formula G(a ∨ Fb) produced

by ltl2ba (Gastin & Oddoux,

2001).

promising methods is LTL model checking. The main problem of this verification method
is the state explosion problem and consequent high computational complexity. While
symbolic approaches to model checking partly solve the problem for hardware systems,
there is still no satisfactory solution for model checking of software systems. The most
auspicious approach is a combination of abstraction methods, reduction methods, and
optimized model checking algorithms.

Reduction methods and optimized algorithms are often based on some specific prop-
erties of the specification formula or the model. For example, a very effective reduction
method called partial order reduction employs the fact that specification formulae usually
do not use the modality next and thus they describe stutter-invariant properties (Lam-
port, 1983). Another example can be found in (Černá & Pelánek, 2003), where the authors
show that two classes of Manna and Pnueli’s hierarchy of temporal properties (Manna &
Pnueli, 1990), namely guarantee and persistence formulae, can be translated into termi-
nal and weak Büchi automata, respectively. Further, the authors of (Černá & Pelánek,
2003) suggest several improvements of standard model checking algorithms employing
the specific structure of these automata.

We have realized that all formulae of the restricted temporal logic (Perrin & Pin,
2004), i.e. formulae using only temporal operators eventually (F) and always (G), can be
translated to Büchi automata (BA) that are linear (1-weak), possibly with an exception of
terminal strongly connected components. These terminal components have also a specific
property: they accept only infinite words over a set of letters, where some selected letters
appear infinitely often. We call such automata Almost linear Büchi automata (ALBA).
Figure 1 provides an example of an ALBA automaton corresponding to the formula
G(a ∨ Fb).

We believe that the specific shape of ALBA automata brings a potential for improve-
ments of model checking process, especially when terminal strongly connected compo-
nents are described purely by the mentioned sets of letters. We can already provide an
example of an improvement in sanity checking. Sanity checks try to detect basic errors



Almost Linear Büchi Automata 3

in a specification and in a system model. For example, a correct specification formula
should be satisfiable and its negation too (Rozier & Vardi, 2007). In a standard approach
to LTL satisfiability checking, the formula is translated into a Büchi automaton and
Tarjan’s algorithm (Tarjan, 1972) or Nested Depth First Search (Nested-DFS) (Cour-
coubetis et al., 1992; Holzmann et al., 1996) then decides whether the automaton accepts
some word or not. If the formula is translated into an ALBA instead of a general BA, we
can use arbitrary reachability algorithm to decide the satisfiability (we basically check
reachability of a terminal component as nonemptiness check of a terminal component is
trivial). Asymptotic complexity of Tarjan’s algorithm, Nested-DFS and all reachability
algorithms is the same: linear. The improvement is in the fact that some reachability
algorithm can effectively run in parallel and distributed environment, while Tarjan’s al-
gorithm and Nested-DFS cannot as they are based on intrinsically sequential depth first
search.

Searching for the precise class of LTL formulae corresponding to ALBA has resulted in
the definition of an LTL fragment named LIO (the abbreviation for linear and infinitely
often). The fragment is strictly more expressive than the restricted temporal logic. To
prove that LIO corresponds to ALBA, we present translations between LIO and ALBA.

Further, we compare the LIO to ALBA translation with standard translations of LTL
formulae to Büchi automata (BA). The main theoretical difference is in the size of pro-
duced automata: while standard translations produce automata with at most exponen-
tially many states (in length of input formulae), LIO to ALBA can produce double
exponential automata. We currently do not know whether this exponential gap is an
unavoidable price for the specific form of resulting automata or it is only a weakness
of our translation. However, there exist LIO formulae such that the automata created
by the standard translations are not ALBA. For example, ltl2ba (Gastin & Oddoux,
2001) translates the formula G(a∨ Fb) into an automaton depicted on Figure 2, which is
not ALBA (if we switch off all optimizations, ltl2ba produces an automaton with four
states, which is also not ALBA).

To get a more realistic view of relevance and practical applicability of the LIO to ALBA
translation, the translation has been implemented. The implementation called lio2alba

is compared with two standard LTL to BA translators, namely with ltl2ba (Gastin &
Oddoux, 2001) and the translation employed in distributed model checker DiVinE (Bar-
nat et al., 2006). For the comparison we use specification formulae of LTL taken from two
standard sources: Spec Patterns (Dwyer et al., 1998) and BEEM (Pelánek, 2007). The
tests show that LIO to ALBA translation is applicable for majority of these specification
formulae and the produced ALBA automata have more or less the same sizes as automata
produced by the reference translators. To compare the efficiency on bigger formulae, we
run the three mentioned translators also on some parametrised formulae. Despite the
double exponential theoretical complexity, lio2alba shows to be surprisingly powerful
in some cases. For example, the formula

θn = ¬((GFp1 ∧ GFp2 ∧ . . . ∧ GFpn)→ G(p→ Fr))

is translated by lio2alba for n = 320 approximately in the time needed by ltl2ba to
translate the formula only for n = 10. Let us note that the formula θn is taken from the



T. Babiak, V. Řehák, and J. Strejček 4

introduction of (Gastin & Oddoux, 2001), where it is used to demonstrate efficiency of
ltl2ba.

The paper is structured as follows. Section 2 provides the definitions of LTL, LIO,
BA, and ALBA. Section 3 presents the ALBA to LIO translation. The LIO to ALBA
translation and proof of its double exponential complexity is shown in Section 4. Section 5
describes the lio2alba implementation (including some optimizations) and discusses
experimental comparison of the three implementations. The last section sums up the
presented results and mentions some topics for future research.

Some results including a preliminary version of the LIO to ALBA translation with
a triple exponential bound have been already presented in (Babiak et al., 2009). The
detailed results of our experiments can be found in (Babiak, 2010).

2. Preliminaries

In this section we recall the definitions of LTL and Büchi automata. Then we define the
LTL fragment LIO and Almost linear Büchi automata. Finally, we present a hierarchy
of language classes corresponding to various types of Büchi automata.

2.1. Linear temporal logic

The syntax of Linear Temporal Logic (LTL) (Pnueli, 1977) is defined as follows

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where tt stands for true, a ranges over a countable set AP of atomic propositions, X

and U are modal operators called next and until, respectively. The logic is interpreted
over infinite words over the alphabet Σ = 2AP ′ , where AP ′ ⊆ AP is a finite subset.
Given a word u = u(0)u(1)u(2) . . . ∈ (2AP ′)ω, by ui we denote the ith suffix of u,
i.e. ui = u(i)u(i+ 1) . . ..

The semantics of LTL formulae is defined inductively as follows:

u |= tt
u |= a iff a ∈ u(0)
u |= ¬ϕ iff u 6|= ϕ

u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1 |= ϕ

u |= ϕ1 Uϕ2 iff ∃i ≥ 0 . (ui |= ϕ2 and ∀ 0 ≤ j < i . uj |= ϕ1 )

We say that a word u satisfies ϕ whenever u |= ϕ. Given an alphabet Σ, a formula ϕ

defines the language

LΣ(ϕ) = {u ∈ Σω | u |= ϕ}.
We often write L(ϕ) instead of L2AP(ϕ)

(ϕ), where AP(ϕ) denotes the set of atomic propo-
sitions occurring in the formula ϕ.

We extend the LTL with derived modal operators
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— Fϕ called eventually and equivalent to tt Uϕ,
— Gϕ called always and equivalent to ¬F¬ϕ,
— ϕRψ called release and equivalent to ¬(¬ϕ U¬ψ), and
— ϕWψ called weak until and equivalent to (Gϕ) ∨ (ϕUψ).

For a set {O1, . . . , On} of modal operators, LTL(O1, . . . , On) denotes the LTL fragment
containing all formulae with modalities O1, . . . , On only. We will use mainly the fragments
LTL(F,G) with modalities eventually and always and LTL() without any modalities. In
the following, we use α, α0, α1, . . . to represent formulae of LTL(). Note that an LTL()
formula describes only a property of the first letter of an infinite word. Hence, we say
that a letter e ∈ Σ satisfies an LTL() formula α, written e |= α, iff ew |= α for some
w ∈ Σω.

2.2. Büchi automata

Definition 1. A Büchi automaton (BA) is a tuple A = (Q,Σ, δ, q0, F ), where

— Q is a finite set of states,
— Σ is a finite alphabet,
— δ : Q× Σ→ 2Q is a total transition function,
— q0 ∈ Q is an initial state, and
— F ⊆ Q is a set of accepting states.

We write p e→ q instead of q ∈ δ(p, e). A Büchi automaton is traditionally seen as a
directed graph where nodes are the states and there is an edge leading from p to q and
labelled by e whenever p e→ q. An edge p e→ p is called a loop on p.

A run π over an infinite word u(0)u(1)u(2) . . . ∈ Σω is a sequence

π = r0
u(0)→ r1

u(1)→ r2
u(2)→ . . .

where r0 = q0 is the initial state. The run is accepting if some accepting state occurs
infinitely often in the sequence r0, r1, . . .. The language L(A) defined by automaton A is
the set of all infinite words u such that the automaton has an accepting run over u.

A state q is reachable from p, written p→∗ q, if p = q or there exists a sequence

r0
u(0)→ r1

u(1)→ r2
u(2)→ . . .

u(n)→ rn+1

where p = r0 and q = rn+1.
A strongly connected component (SCC or component for short) is a maximal set of

states S ⊆ Q such that p →∗ q holds for every p, q ∈ S. Note that every state of an
automaton belongs to exactly one strongly connected component.

Several special classes of Büchi automata have been considered in the context of model
checking so far. A Büchi automaton (Q,Σ, δ, q0, F ) is called

— terminal if for each p ∈ F and a ∈ Σ it holds that δ(p, a) 6= ∅ and δ(p, a) ⊆ F ,
— weak if every SCC of the automaton contains only accepting states or only non-

accepting states,
— k-weak for some k > 0 if it is weak and every SCC contains at most k states,
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— linear or very weak if it is 1-weak.

Linear Büchi automata can be alternatively defined as automata where each SCC consists
of one state, i.e. each cycle is a loop.

Given an automaton A and its state q, by Aq we denote the automaton A where the
initial state is changed to q. Further, a strongly connected component S is called terminal
if for all p ∈ S it holds that p→∗ q implies q ∈ S.

In the following, we assume that Büchi automata use alphabets of the form 2AP ′ for
some finite set of atomic propositions AP ′ ⊆ AP . When we draw such an automaton,
we usually label transitions with LTL() formulae, where p α→ q means that there is a
transition p

e→ q for each e ∈ 2AP ′ satisfying the formula α.

2.3. The LIO fragment

The LIO fragment of LTL is defined on syntactic level as

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | αUϕ,

where α ranges over LTL() and ψ ranges over LTL(F,G), i.e. ψ is defined as

ψ ::= α | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Fψ | Gψ.

The fragment does not fit into any standard taxonomy of LTL fragments (see (Strejček,
2004)), but it is a strictly more expressive generalization of the fragment LTL(F,G) also
known as restricted temporal logic (Perrin & Pin, 2004). Let us note that LTL(F,G)
covers many specification formulae frequently used in the context of model checking, for
example typical response formulae of the form G(a ⇒ Fb). In fact, it is more important
that LIO contains negations of these formulae, as only the negations of specification
formulae need to be translated into automata in model checking algorithms.

The syntax of LIO can be also extended with other operators that do not modify its
expressive power. For example, we can safely add formulae of the form ϕRα and αWϕ

as ϕRα ≡ Gα ∨ αU (α ∧ ϕ) and αWϕ ≡ Gα ∨ αUϕ.

2.4. Almost linear Büchi automata

Definition 2. Almost linear Büchi automaton (ALBA) is a Büchi automaton A over an
alphabet Σ = 2AP ′ such that every non-terminal SCC contains just one state and for
every terminal component S there exists a formula

ρ = Gα0 ∧
∧

1≤i≤n

GFαi

such that n ≥ 0, α0, α1, . . . , αn ∈ LTL(), and for every q ∈ S it holds that L(Aq) = LΣ(ρ),
i.e. each state of the component S accepts exactly words satisfying ρ.

Note that our condition on terminal components is formulated only semantically: it
does not describe concrete structure of terminal components. In fact, a formula Gα0 ∧∧

0<i≤n GFαi can be translated into a (Büchi automaton with a single) component in
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Fig. 5. Shortest cycles in product automata.

at least three reasonable ways. We illustrate them by automata corresponding to the
formula ρ = Gtt ∧ GFa1 ∧ GFa2.

1. If we want to minimize the number of transitions and states of the automaton, we
create just a “cycle” depicted on Figure 3.

2. In the context of LTL model checking, a Büchi automaton A derived from an LTL
formula is usually used to build a product automaton that accepts all words accepted
by A and corresponding to some behaviour of the verified system. Model checking
algorithms then decide whether there is an accepting cycle in the product automaton
or not. If we want to keep the number of states of A minimal and to shorten the
length of potential cycles in product automata, we add to the automaton A some
shortcuts, see Figure 4.

3. If we want to minimize the length of potential cycles in product automata without
regard to the number of states, we translate the formula ρ into the automaton given
in Figure 5. Note that the number of states is exponential in the length of ρ, while it
is only linear in the previous two cases.

Any of the three mentioned shapes of terminal components can be used to formulate
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an alternative, purely syntactic definition of ALBA. Comparing to the original definition,
such a syntactic definition would generate a strictly smaller, but expressively equivalent
class of automata.

2.5. Hierarchy of Büchi automata classes

BA

weak BA

ALBA

llllllllllllllllllllll
...

3-weak BA

2-weak BA

linear BA (1-weak BA)

KKKKKKKKKKKKKKKKKKKKKKKK

terminal BA

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Fig. 6. Hierarchy of Büchi automata classes.

Figure 6 depicts the hierarchy of the mentioned classes of Büchi automata. A line
between two classes means that the upper class is strictly more expressive than the lower
class. If the figure does not indicate such a relation between a pair of classes, then the
two classes are incomparable.

Indicated inclusions follow directly from definitions of the classes. The strictness of
these inclusions is easy to prove and the same holds also for the indicated incomparability
relations. For example, incomparability of (k-)weak BA (for k ≥ 2) and ALBA classes is
due to the following two observations.

1. One can easily see that only two of the considered automata classes can express the
language defined by the formula GFa: ALBA and the general class. Hence, the ALBA
class is not included in any other considered class except the general one.

2. The 2-weak BA of Figure 7 is not equivalent to any ALBA automaton. This follows
from the fact that the automaton accepts some words with suffix ({a}.∅.{b})ω, while
it does not accept any word with suffix ({a}.{b}.∅)ω. Such a language is not recog-
nizable by any ALBA as no terminal strongly connected component of an ALBA can
distinguish between words that differ only in the order of letters. Hence, the ALBA
class does not include any class of the (k-)weak automata (for k ≥ 2).

Let us note that the complement of the language accepted by the 2-weak BA of Fig-
ure 7 is accepted by the ALBA automaton given in Figure 8. Hence, the class of ALBA
automata is not closed under complementation.

There is also a relation between the ALBA class and the fragment LTLdet better
known as the common fragment of CTL and LTL (Maidl, 2000). As negations of LTLdet

formulae are expressively equivalent to linear Büchi automata (Maidl, 2000) and ALBA
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is an extension of linear BA, we get that ALBA automata are strictly more expressive
than negated LTLdet formulae. As we will show that ALBA and LIO are equivalent, we
can derive that LIO is also strictly more expressive than negated LTLdet formulae.

3. The ALBA to LIO translation

The translation of an ALBA to LIO formulae is straightforward. Let A = (Q,Σ, δ, q0, F )
be an ALBA over an alphabet Σ = 2AP ′ . For every state q ∈ Q, we recursively define a
LIO formula ϕ(q) such that L(Aq) = LΣ(ϕ(q)). There are two cases:

— q is in a terminal strongly connected component. Due to the definition of ALBA,
there exists a formula

ρ = Gα0 ∧
∧

1≤i≤n

GFαi

such that n ≥ 0, α0, α1, . . . , αn ∈ LTL(). We set ϕ(q) = ρ. Note that ρ is a formula
of LTL(F,G).

— q is not in any terminal component. Let q a1→ q, q a2→ q, . . ., q an→ q be all loops on q

and q b1→ q1, q b2→ q2, . . ., q bm→ qm be all transitions leading from q to other states. For
every a ∈ Σ, let α(a) be an LTL() formula satisfied only by the letter a. Then we set

ϕ(q) =


(
∨

1≤i≤n

α(ai)) U
∨

1≤j≤m

(α(bj) ∧ Xϕ(qj)) if q 6∈ F,

(
(
∨

1≤i≤n

α(ai)) U
∨

1≤j≤m

(α(bj) ∧ Xϕ(qj))
)
∨ G

∨
0<i≤n

α(ai) if q ∈ F.

Note that ϕ(q) is a LIO formula assuming that all ϕ(qj) are in LIO.

The recursion in the definition of ϕ(q) is bounded as A is linear (except the terminal
components). The whole automaton then corresponds to the formula ϕ(q0). Hence, we
can pronounce the following theorem.

Theorem 3. Given an ALBA A over an alphabet Σ = 2AP ′ , there exists a LIO formula
ϕ such that

L(A) = LΣ(ϕ).
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4. The LIO to ALBA translation

The translation proceeds in two steps.

1. A given LIO formula is transformed to an equivalent LIO formula in normal form.
2. The formula in normal form is translated into an equivalent ALBA.

The two steps are described in the first two subsections. In the third subsection, we
analyze the complexity of our translation.

For each LIO formula ϕ, we define its size. If ϕ is in LTL(), we set size(ϕ) = 1.
Otherwise, we define size(ϕ) recursively as follows:

size(ϕ1 ∨ ϕ2) = size(ϕ1) + 1 + size(ϕ2)
size(ϕ1 ∧ ϕ2) = size(ϕ1) + 1 + size(ϕ2)

size(¬ϕ0) = 1 + size(ϕ0)
size(Fϕ0) = 1 + size(ϕ0)
size(Gϕ0) = 1 + size(ϕ0)
size(Xϕ0) = 1 + size(ϕ0)

size(αUϕ0) = 2 + size(ϕ0)

In this section, we always assume that LIO formulae are in positive form, i.e. no
temporal operator is in scope of any negation. Every LIO formula ϕ can be transformed
into an equivalent LIO formula ϕ′ in positive form using the following equivalences.

¬Fϕ0 ≡ G¬ϕ0 ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

¬Gϕ0 ≡ F¬ϕ0 ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

Note that size(ϕ′) ≤ size(ϕ), i.e. the transformation to positive form does not increase
the size of LIO formulae.

4.1. Transformation of LIO formulae to normal form

We say that a LIO formula ϕ is in normal form, if it is of the following form:

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | αUϕ,

where α ranges over LTL() and ψ is defined as

ψ ::= α | Gα | GFα | ψ ∨ ψ | ψ ∧ ψ | Fψ.

In other words, normal form says that a formula is in positive form and the modality
G can occur only in subformulae of the form Gα or GFα. The LIO formulae in normal
form are called nLIO formulae.

Note that the definition of normal form puts restriction only on subformulae ψ. Hence,
to transform a LIO formula to normal form, it is sufficient to transform its LTL(F,G)
subformulae to LIO formulae in normal form. We assume that LIO formulae are already in
positive form. Intuitively, it remains to push the operators G towards the subformulae of
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the form α or Fα. This can be done by repeated application of the following equivalences:

G(ϕ1 ∧ ϕ2) ≡ Gϕ1 ∧ Gϕ2

G(ϕ1 ∨ (ϕ2 ∧ ϕ3)) ≡ G(ϕ1 ∨ ϕ2) ∧ G(ϕ1 ∨ ϕ3)
G(ϕ1 ∨ Fϕ2) ≡ Gϕ1 ∨ F(ϕ2 ∧ XGϕ1) ∨ GFϕ2

GF(ϕ1 ∨ ϕ2) ≡ GFϕ1 ∨ GFϕ2

GF(ϕ1 ∧ (ϕ2 ∨ ϕ3)) ≡ GF(ϕ1 ∧ ϕ2) ∨ GF(ϕ1 ∧ ϕ3)
GF(ϕ1 ∧ Fϕ2) ≡ GFϕ1 ∧ GFϕ2

GF(ϕ1 ∧ Gϕ2) ≡ GFϕ1 ∧ FGϕ2

GFFϕ ≡ GFϕ

GFGϕ ≡ FGϕ

GGϕ ≡ Gϕ

G(
∨
ϕ∈G Gϕ) ≡

∨
ϕ∈G Gϕ

G(α ∨
∨
ϕ∈G Gϕ) ≡ Gα ∨ αU (

∨
ϕ∈G Gϕ)

Lemma 4. For every formula ϕ of LTL(F,G), we can effectively construct an equivalent
nLIO formula.

Proof. For a given LTL(F,G) formula ϕ in positive form, we construct an equiv-
alent LIO formula nf(ϕ) in normal form. The formula nf(ϕ) is defined recursively.
The recursion is bounded as each nf(ϕ′) appearing in the definition of nf(ϕ) satisfies
size(ϕ′) < size(ϕ). We define nf(ϕ) according to the structure of ϕ.

— α nf(α) = α

In the remaining cases we assume that ϕ 6∈ LTL().
— ϕ1 ∨ ϕ2 nf(ϕ1 ∨ ϕ2) = nf(ϕ1) ∨ nf(ϕ2)

— ϕ1 ∧ ϕ2 nf(ϕ1 ∧ ϕ2) = nf(ϕ1) ∧ nf(ϕ2)

— Fϕ0 nf(Fϕ0) = tt U (nf(ϕ0))

— Gϕ0 This case is divided into the following subcases according to the structure of
ϕ0:

– α nf(Gα) = Gα

In the remaining cases we assume that ϕ0 6∈ LTL().

– ϕ1 ∧ ϕ2 nf(G(ϕ1 ∧ ϕ2)) = nf(Gϕ1) ∧ nf(Gϕ2)

– Fϕ1 This case is again divided into the following subcases according to the
structure of ϕ1:

• α nf(GFα) = GFα

In the remaining cases we assume that ϕ1 6∈ LTL().

• ϕ3 ∨ ϕ4 nf(GF(ϕ3 ∨ ϕ4)) = nf(GFϕ3) ∨ nf(GFϕ4)

• ϕ3 ∧ ϕ4 As conjunction is an associative operator, we can see it as an oper-

ator of arbitrary arity and we can assume that all conjuncts are not conjunc-
tions. Then either all conjuncts are formulae of LTL() (i.e. ϕ3 ∧ ϕ4 ∈ LTL()
- this case has been already covered by the Case GFα), or at least one con-
junct has the form ϕ5 ∨ ϕ6 or Fϕ5 or Gϕ5. Let ϕ4 be this conjunct and ϕ3 be
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conjunction of all the other conjuncts. We proceed according to the structure
of ϕ4.

· ϕ5 ∨ ϕ6 As GF(ϕ3 ∧ (ϕ5 ∨ ϕ6)) ≡ GF(ϕ3 ∧ ϕ5) ∨ GF(ϕ3 ∧ ϕ6), we set

nf(GF(ϕ3 ∧ (ϕ5 ∨ ϕ6))) = nf(GF(ϕ3 ∧ ϕ5)) ∨ nf(GF(ϕ3 ∧ ϕ6)).

· Fϕ5 As GF(ϕ3 ∧ Fϕ5) ≡ (GFϕ3) ∧ (GFϕ5), we set

nf(GF(ϕ3 ∧ Fϕ5)) = nf(GFϕ3) ∧ nf(GFϕ5).

· Gϕ5 As GF(ϕ3 ∧ Gϕ5) ≡ (GFϕ3) ∧ (FGϕ5), we set

nf(GF(ϕ3 ∧ Gϕ5)) = nf(GFϕ3) ∧ tt U (nf(Gϕ5)).

• Fϕ3 nf(GFFϕ3) = nf(GFϕ3)

• Gϕ3 As GFGϕ3 ≡ FGϕ3, we set nf(GFGϕ3) = tt U (nf(Gϕ3)).

– ϕ1 ∨ ϕ2 The situation is similar to the Case GF(ϕ3∧ϕ4). Hence, either ϕ1∨ϕ2 ∈
LTL() (this has been already solved in Case Gα), or we can assume that ϕ2 has
the form ϕ3 ∧ ϕ4 or Fϕ3 or Gϕ3. We proceed according to the structure of ϕ2.

• ϕ3 ∧ ϕ4 As G(ϕ1 ∨ (ϕ3 ∧ ϕ4)) ≡ G(ϕ1 ∨ ϕ3) ∧ G(ϕ1 ∨ ϕ4), we set

nf(G(ϕ1 ∨ (ϕ3 ∧ ϕ4))) = nf(G(ϕ1 ∨ ϕ3)) ∧ nf(G(ϕ1 ∨ ϕ4)).

• Fϕ3 As G(ϕ1 ∨ Fϕ3) ≡ (Gϕ1) ∨ F(ϕ3 ∧ XGϕ1) ∨ GFϕ3, we set

nf(G(ϕ1 ∨ Fϕ3)) = nf(Gϕ1) ∨ tt U (nf(ϕ3) ∧ X(nf(Gϕ1))) ∨ nf(GFϕ3).

• Gϕ3 nf(G(ϕ1 ∨ Gϕ3)): We can assume that ϕ1 is an LTL() formula or a
formula of the form Gϕ′ or a disjunction of such formulae (all other possibilities
are covered by the previous two cases). Hence, the whole subformula ϕ1 ∨Gϕ3

can be seen either as
∨
ϕ′∈G Gϕ′ or as α ∨

∨
ϕ′∈G Gϕ′.

·
∨
ϕ′∈G Gϕ′ As G(

∨
ϕ′∈G Gϕ′) ≡

∨
ϕ′∈G(Gϕ′), we set

nf(G(
∨
ϕ′∈G Gϕ′)) =

∨
ϕ′∈G nf(Gϕ′).

· α ∨
∨
ϕ′∈G Gϕ′ As G(α ∨

∨
ϕ′∈G Gϕ′) ≡ (Gα) ∨ (αU (

∨
ϕ′∈G Gϕ′)), we set

nf(G(α ∨
∨
ϕ′∈G Gϕ′)) = (Gα) ∨ (αU (

∨
ϕ′∈G nf(Gϕ′))).

– Gϕ1 nf(GGϕ1) = nf(Gϕ1)

4.2. Automata construction for LIO formulae in normal form

States of the constructed automata correspond to finite sets of nLIO formulae. Given
an nLIO formula ϕ0, the initial state of the corresponding ALBA is the singleton {ϕ0}.
Transitions and other states of the automaton are computed by a function R. To every
nLIO formula ϕ, the function assigns a finite set R(ϕ) of pairs of the form (α, S), where
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α ∈ LTL() and S is a finite set of nLIO formulae. The set R(ϕ) satisfies

ϕ ≡
∨

(α,S)∈R(ϕ)

(α ∧ X
∧
σ∈S

σ).

In other words, a word u satisfies ϕ if and only if there is some pair (α, S) ∈ R(ϕ)
such that the first letter of u satisfies α and the suffix u1 satisfies all nLIO formulae in
S. Intuitively, every pair (α, S) ∈ R(ϕ) encodes a transition {ϕ} α→ S and the set S
semantically corresponds to conjunction of its elements.

The set R(ϕ) is defined recursively according to the structure of ϕ.

— α R(α) = {(α, ∅)}
In the remaining cases we assume that ϕ 6∈ LTL().

— ϕ1 ∨ ϕ2 R(ϕ1 ∨ ϕ2) = R(ϕ1) ∪R(ϕ2)

— ϕ1 ∧ ϕ2 R(ϕ1 ∧ ϕ2) = {(α1 ∧ α2, S1 ∪ S2) | (α1, S1) ∈ R(ϕ1), (α2, S2) ∈ R(ϕ2)}

— Fϕ0 R(Fϕ0) = {(tt, {Fϕ0})} ∪R(ϕ0)

— Xϕ0 R(Xϕ0) = {(tt, {ϕ0})}

— αUϕ0 R(αUϕ0) = {(α, {αUϕ0})} ∪R(ϕ0)

— Gα R(Gα) = {(α, {Gα})}
— GFα R(GFα) = {(tt, {GFα})}

We extend the functions R and size to finite sets of nLIO formulae. For every nonempty
finite set S = {ϕ1, ϕ2, . . . , ϕk} of nLIO formulae, we define

R(S) = R(
∧

1≤i≤k

ϕi) size(S) =
∑

1≤i≤k

size(ϕi)

and for the empty set we define R(∅) = {(tt, ∅)} and size(∅) = 0.

Remark 5. One can readily confirm that for each (α, S) ∈ R(ϕ), the set S contains
only subformulae of ϕ (possibly including the whole formula). Moreover, for a nonempty
set S = {ϕ1, ϕ2, . . . , ϕk} of nLIO formulae it holds

R(S) =
{

(
∧

1≤i≤k

αi,
⋃

1≤i≤k

Si) | (αi, Si) ∈ R(ϕi) for each 1 ≤ i ≤ k
}
.

Hence, for each (α, S′) ∈ R(S), the set S′ contains only subformulae of ϕ1, ϕ2, . . . , ϕk
(possibly including the whole formulae).

Before we give a precise description of the automata construction, we formulate and
prove three lemmata that are crucial for proving finiteness and ALBA structure of the
constructed automata.

Lemma 6. Let ϕ be an nLIO formula. For every (α, S) ∈ R(ϕ), either S = {ϕ} or
size(S) < size(ϕ).

Proof. Let ϕ be an nLIO formula and S be a set such that (α, S) ∈ R(ϕ) for some α.
The proof is done by induction on size(ϕ).
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— If size(ϕ) = 1, then ϕ ∈ LTL(). As R(α) = {(α, ∅)}, we get that S = ∅ and the
statement clearly holds: size(∅) = 0 < size(ϕ) = 1.

— If size(ϕ) > 1, we distinguish four cases according to the structure of ϕ.

– If ϕ has the form Gα or GFα , then the definition of R(ϕ) implies that S = {ϕ}.
– If ϕ has the form ϕ1 ∨ ϕ2 , then S comes from R(ϕ1)∪R(ϕ2). Let us assume that

S comes from R(ϕ1). As size(ϕ) > 1, we know that ϕ 6∈ LTL(). Hence, size(ϕ1) <
size(ϕ) and we can apply induction hypothesis to get size(S) ≤ size(ϕ1). This
implies size(S) < size(ϕ). The analogous arguments prove the statement for ϕ of
the form Xϕ0 .

– If ϕ has the form Fϕ0 or αUϕ0 , then either S = {ϕ} or S comes from R(ϕ0)
where size(ϕ0) < size(ϕ) and the statement follows directly from the induction
hypothesis.

– If ϕ has the form ϕ1 ∧ ϕ2 , then S = S1∪S2 where (α1, S1) ∈ R(ϕ1) and (α2, S2) ∈
R(ϕ2). As size(ϕ) > 1, we know that ϕ 6∈ LTL() and hence size(ϕ) > size(ϕ1) +
size(ϕ2). Induction hypothesis gives us size(S1) ≤ size(ϕ1) and size(S2) ≤ size(ϕ2).
We are done as size(S) = size(S1) + size(S2) ≤ size(ϕ1) + size(ϕ2) < size(ϕ).

Lemma 7. Let S be a finite set of nLIO formulae. For every (α, S′) ∈ R(S) it holds
that S′ = S or size(S′) < size(S).

Proof. The lemma clearly holds for S = ∅. Let us assume that S = {ϕ1, ϕ2, . . . , ϕk} is
nonempty. The definition of R(S) implies that each S′ is of the form S′ = S1∪S2∪. . .∪Sk
where, for every 1 ≤ i ≤ k, (αi, Si) ∈ R(ϕi) for some αi. Lemma 6 says that each Si
satisfies either Si = {ϕi} or size(Si) < size(ϕi). If Si = {ϕi} holds for all Si, then S′ = S.
Otherwise, size(Si) < size(ϕi) for some Si and then

size(S′) ≤
∑

1≤i≤k

size(Si) <
∑

1≤i≤k

size(ϕi) = size(S).

Lemma 8. Let S be a finite set of nLIO formulae. It holds that

S ⊆ {Gα,GFα | α ∈ LTL()} ⇐⇒ ∀ (α′, S′) ∈ R(S) . S′ = S.

Proof. The implication “=⇒” follows immediately from the definition ofR(Gα),R(GFα),
and R(ϕ1 ∧ ϕ2).

We prove the contraposition of the implication “⇐=”. We assume that there exists
a formula σ in S r {Gα,GFα | α ∈ LTL()}. With Lemma 6 in mind, one can easily
observe that the set R(σ) contains a pair (α1, S1) such that size(S1) < size(σ). Further,
let (α2, S2) be an arbitrary element of R(S r {σ}). Lemma 7 implies that size(S2) ≤
size(S r {σ}). Then R(S) contains a pair (α1 ∧ α2, S1 ∪ S2) and

size(S1 ∪ S2) ≤ size(S1) + size(S2) < size(σ) + size(S r {σ}) = size(S).

Hence, S1 ∪ S2 6= S.
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Now we are ready to present the automata construction. Let ϕ be an nLIO formula.
First we construct a labelled transition system Tϕ = (Q,Σ, δ), where Q is a set of states,
Σ is an alphabet of transition labels, and δ : Q × Σ → 2Q is a transition function. This
transition system is later slightly modified into an ALBA corresponding to ϕ. (Terminal)
strongly connected components of transition systems are defined precisely in the same
way like for Büchi automata.

For a given nLIO formula ϕ, we define a transition system Tϕ = (Q,Σ, δ), where

— Q is the smallest subset of 2nLIO satisfying two conditions:

(i) {ϕ} ∈ Q
(ii) for every S ∈ Q it holds that (α, S′) ∈ R(S) implies S′ ∈ Q,

— Σ = 2AP(ϕ),
— for each e ∈ Σ and S ∈ Q, we set δ(S, e) = {S′ | (α, S′) ∈ R(S) and e |= α}.

The following lemma summarizes basic properties of Tϕ. The lemma is a direct corollary
of properties of the function R and Lemmata 7 and 8.

Lemma 9. Let ϕ be an nLIO formula. Then transition system Tϕ = (Q,Σ, δ) has the
following properties.

— For every S ∈ Q and every word u = u(0)u(1)u(2) . . . ∈ Σω it holds that

u |=
∧
σ∈S

σ ⇐⇒ u1 |=
∧
σ∈S′

σ for some S′ ∈ δ(S, u(0)).

— The set Q is finite.
— Every strongly connected component of Tϕ contains just one state.
— Every state S ∈ Q satisfying S ⊆ {Gα,GFα | α ∈ LTL()} is a terminal strongly

connected component and vice versa.

The labelled transition system Tϕ = (Q,Σ, δ) is modified into a Büchi automaton
Aϕ = (Q′,Σ, δ′, {q0}, F ) as follows. Every state S ⊆ {Gα,GFα | α ∈ LTL()} (i.e. every
terminal SCC) is replaced by a strongly connected component corresponding to the
formula

(G
∧

Gα∈S

α) ∧
∧

GFα∈S

GFα.

The new terminal strongly connected components can be constructed for example in the
style of Figure 4. The set F of accepting states is the union of sets of accepting states of
the new terminal strongly connected components.

Theorem 10. Given an nLIO formula ϕ, we can effectively construct an ALBA A such
that L(ϕ) = L(A).

Proof. Let A be the automaton Aϕ constructed above. Lemma 9 and the construction
of the automaton from Tϕ imply that the resulting automaton A is ALBA. It remains to
show that L(ϕ) = L(A).

Let us recall that Aq stands for the automaton A where the initial state is changed to
the state q. Further, for each state q we also define its distance to terminal SCCs, written
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dist(q), as the maximal length of an acyclic path leading from q to a terminal SCC. In
particular, for each state q of a terminal SCCs we set dist(q) = 0.

We prove by induction on dist(q) that every state q represents the correct language,
i.e. L(Aq) = L(

∧
σ∈S σ), where S = q if q is not in terminal SCC; otherwise S ⊆

{Gα,GFα | α ∈ LTL()} is the state of Tϕ corresponding to the terminal SCC containing q.
If dist(q) = 0, then q is a state of a terminal SCC. The correctness follows from the

modification of Tϕ into Aϕ and the fact that the following equivalence holds for each
S ⊆ {Gα,GFα | α ∈ LTL()}:∧

σ∈S
σ ⇐⇒ (G

∧
Gα∈S

α) ∧
∧

GFα∈S

GFα

If dist(q) > 0, then q is directly a finite set S of nLIO formulae. Our induction hypoth-
esis says that every successor q′ of S (such that q′ 6= S) represents the correct language.
If there is no loop on S, the relation L(AS) = L(

∧
σ∈S σ) follows directly from the first

property of Lemma 9 and the induction hypothesis. Otherwise, S has a loop and the
definition of R(S) implies that S ⊆ {Fϕ0, αUϕ0,Gα,GFα | α ∈ LTL(), ϕ0 ∈ nLIO}.
Further, the construction of the automaton implies that S 6⊆ {Gα,GFα | α ∈ LTL()}.
The correctness follows again from the induction hypothesis and Lemma 9.

4.3. Complexity of the translation

In this subsection we show that the number of states of the constructed ALBA is at most
double exponential in the size of the input LIO formula ϕ. First, we prove an exponential
upper bound on the size of the nLIO formula nf(ϕ). Then we prove an exponential upper
bound on the size of the resulting ALBA in the size of a given nLIO formula. Finally, we
provide a parametrized LIO formula showing that the double exponential upper bound
is tight up to a constant factor.

Lemma 11. Given a formula ϕ of LTL(F,G), we can effectively construct an equivalent
nLIO formula nf(ϕ) such that size(nf(ϕ)) ≤ 2size(ϕ).

Proof. The proof is again done by induction to the size of ϕ and exhibits the same
structure as the proof of Lemma 4.

— α size(nf(α)) = size(α) = 1 < 2 = 2size(α)

In the remaining cases we assume that ϕ 6∈ LTL().
— ϕ1 ∨ ϕ2 size(nf(ϕ1 ∨ ϕ2)) = size(nf(ϕ1) ∨ nf(ϕ2)) =

size(nf(ϕ1)) + 1 + size(nf(ϕ2)) ≤ 2size(ϕ1) + 1 + 2size(ϕ2) < 2size(ϕ1)+1+size(ϕ2) =
2size(ϕ1∨ϕ2)

— ϕ1 ∧ ϕ2 Similarly to the previous case.

— Fϕ0 size(nf(Fϕ0)) = size(tt U (nf(ϕ0))) = 2 + size(nf(ϕ0)) ≤ 2 + 2size(ϕ0) ≤
2size(ϕ0)+1 = 2size(Fϕ0)

— Gϕ0 This case is divided into the following subcases according to the structure
of ϕ0:



Almost Linear Büchi Automata 17

– α size(nf(Gα)) = size(Gα) = 2 < 22 = 2size(Gα)

In the remaining cases we assume that ϕ0 6∈ LTL().

– ϕ1 ∧ ϕ2 size(nf(G(ϕ1 ∧ ϕ2))) = size(nf(Gϕ1) ∧ nf(Gϕ2)) = size(nf(Gϕ1)) +

1 + size(nf(Gϕ2))) ≤ 2size(Gϕ1) + 1 + 2size(Gϕ2) = 2size(ϕ1)+1 + 1 + 2size(ϕ2)+1 <

2size(ϕ1)+2+size(ϕ2) = 2size(G(ϕ1∧ϕ2))

– Fϕ1 This case is again divided into the following subcases according to the
structure of ϕ1:

• α size(nf(GFα)) = size(GFα) = 3 < 23 = 2size(GFα)

In the remaining cases we assume that ϕ1 6∈ LTL().

• ϕ3 ∨ ϕ4 size(nf(GF(ϕ3 ∨ ϕ4))) = size(nf(GFϕ3) ∨ nf(GFϕ4)) =

size(nf(GFϕ3)) + 1 + size(nf(GFϕ4)) ≤ 2size(GFϕ3) + 1 + 2size(GFϕ4) =
22+size(ϕ3) + 1 + 22+size(ϕ4) < 2size(ϕ3)+3+size(ϕ4) = 2size(GF(ϕ3∨ϕ4))

• ϕ3 ∧ ϕ4 We proceed according to the structure of ϕ4.

· ϕ5 ∨ ϕ6 size(nf(GF(ϕ3 ∧ (ϕ5 ∨ ϕ6)))) =
size(nf(GF(ϕ3 ∧ ϕ5)) ∨ nf(GF(ϕ3 ∧ ϕ6))) =
size(nf(GF(ϕ3 ∧ ϕ5))) + 1 + size(nf(GF(ϕ3 ∧ ϕ6))) ≤
2size(GF(ϕ3∧ϕ5)) + 1 + 2size(GF(ϕ3∧ϕ6)) =
23+size(ϕ3)+size(ϕ5) + 1 + 23+size(ϕ3)+size(ϕ6) <

24+size(ϕ3)+size(ϕ5)+size(ϕ6) = 2size(GF(ϕ3∧(ϕ5∨ϕ6)))

· Fϕ5 size(nf(GF(ϕ3 ∧ Fϕ5))) = size(nf(GFϕ3) ∧ nf(GFϕ5)) =

size(nf(GFϕ3)) + 1 + size(nf(GFϕ5)) ≤ 2size(GFϕ3) + 1 + 2size(GFϕ5) =
22+size(ϕ3) + 1 + 22+size(ϕ5) < 24+size(ϕ3)+size(ϕ5) = 2size(GF(ϕ3∧Fϕ5))

· Gϕ5 size(nf(GF(ϕ3 ∧ Gϕ5))) = size(nf(GFϕ3) ∧ tt U (nf(Gϕ5))) =

size(nf(GFϕ3)) + 3 + size(nf(Gϕ5)) ≤ 2size(GFϕ3) + 3 + 2size(Gϕ5) =
22+size(ϕ3) + 3 + 21+size(ϕ5) < 24+size(ϕ3)+size(ϕ5) = 2size(GF(ϕ3∧Gϕ5))

• Fϕ3 size(nf(GFFϕ3)) = size(nf(GFϕ3)) ≤ 2size(GFϕ3) = 22+size(ϕ3) <

23+size(ϕ3) = 2size(GFFϕ3)

• Gϕ3 size(nf(GFGϕ3)) = size(tt U (nf(Gϕ3))) = 2 + size(nf(Gϕ3)) ≤
2 + 2size(Gϕ3) = 2 + 21+size(ϕ3) < 23+size(ϕ3) = 2size(GFGϕ3)

– ϕ1 ∨ ϕ2 We proceed according to the structure of ϕ2.

• ϕ3 ∧ ϕ4 size(nf(G(ϕ1 ∨ (ϕ3 ∧ ϕ4)))) =
size(nf(G(ϕ1 ∨ ϕ3)) ∧ nf(G(ϕ1 ∨ ϕ4))) =
size(nf(G(ϕ1 ∨ ϕ3))) + 1 + size(nf(G(ϕ1 ∨ ϕ4))) ≤
2size(G(ϕ1∨ϕ3)) + 1 + 2size(G(ϕ1∨ϕ4)) =
22+size(ϕ1)+size(ϕ3) + 1 + 22+size(ϕ1)+size(ϕ4) =
23+size(ϕ1)+size(ϕ3)+size(ϕ4) = 2size(G(ϕ1∨(ϕ3∧ϕ4)))

• Fϕ3 size(nf(G(ϕ1 ∨ Fϕ3))) =
size(nf(Gϕ1) ∨ tt U (nf(ϕ3) ∧ X(nf(Gϕ1))) ∨ nf(GFϕ3)) =
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6 + size(nf(Gϕ1)) + size(nf(ϕ3)) + size(nf(Gϕ1)) + size(nf(GFϕ3)) ≤
6 + 2size(Gϕ1) + 2size(ϕ3) + 2size(Gϕ1) + 2size(GFϕ3) =
6+2∗21+size(ϕ1)+2size(ϕ3)+22+size(ϕ3) = 6+22+size(ϕ1)+2size(ϕ3)+22+size(ϕ3) <

4 ∗ 21+size(ϕ1)+size(ϕ3) = 23+size(ϕ1)+size(ϕ3) = 2size(G(ϕ1∨Fϕ3))

• Gϕ3 Here we consider only the following two structures of the whole subfor-
mula:

·
∨
ϕ′∈G Gϕ′ size(nf(G(

∨
ϕ′∈G Gϕ′))) = size(

∨
ϕ′∈G nf(Gϕ′)) =

|G| − 1 +
∑
ϕ′∈G size(nf(Gϕ′)) ≤ |G| − 1 +

∑
ϕ′∈G 2size(Gϕ′) <

21+|G|−1+
P

ϕ′∈G size(Gϕ′) = 2size(G(
W

ϕ′∈G Gϕ′))

· α ∨
∨
ϕ′∈G Gϕ′ size(nf(G(α ∨

∨
ϕ′∈G Gϕ′))) =

size((Gα)∨(αU (
∨
ϕ′∈G nf(Gϕ′)))) = 5+|G|−1+

∑
ϕ′∈G size(nf(Gϕ′)) ≤ 5+

|G|− 1 +
∑
ϕ′∈G 2size(Gϕ′) < 23+|G|−1+

P
ϕ′∈G size(Gϕ′) = 2size(G(α∨

W
ϕ′∈G Gϕ′))

– Gϕ1 size(nf(GGϕ1)) = size(nf(Gϕ1)) ≤ 2size(Gϕ1) < 2size(GGϕ1)

The definition of normal form and Lemma 11 directly imply the same result for general
LIO formulae.

Corollary 12. For every LIO formula ϕ, we can effectively construct an equivalent nLIO
formula nf(ϕ) such that size(nf(ϕ)) ≤ 2size(ϕ).

Lemma 13. Given an nLIO formula ϕ, we can effectively construct an ALBA automaton
A such that L(ϕ) = L(A) and the number of states of A is at most 2size(ϕ).

Proof. Let ϕ be an nLIO formula and Tϕ be the transition system constructed from
ϕ. By |Tϕ| we denote the number of its states. Due to Remark 5, one can easily see that
states of Tϕ are sets of subformulae of ϕ.

Further, some subformulae of ϕ cannot appear in these sets, for example strict sub-
formulae of α or Gα or GFα formulae. Let g and f denote the number of subformulae of
ϕ of the form Gα and GFα, respectively. We get that at most size(ϕ)− g − 2f different
subformulae of ϕ can appear in states of Tϕ. Hence,

|Tϕ| ≤ 2size(ϕ)−g−2f .

If f = 0, we are done as the transformation of Tϕ to Aϕ does not change the number of
states. Thus, the automaton has at most 2size(ϕ)−g ≤ 2size(ϕ) states.

Now assume that f > 0. The transformation of Tϕ to Aϕ replaces every state S ⊆
{Gα,GFα | α ∈ LTL()} of Tϕ by a strongly connected component with at most 2f

states (this size estimation holds even for the strongly connected components of the type
presented by Figure 5). Each Tϕ has at most 2g+f such terminal components. Hence, the
transformation of Tϕ to Aϕ adds at most 2g+f ·2f = 2g+2f states. In total, the automaton
Aϕ has at most 2size(ϕ)−g−2f + 2g+2f states. We are done as f > 0 and size(ϕ) > g+ 2f
implies 2size(ϕ)−g−2f + 2g+2f ≤ 2size(ϕ).

The following theorem directly follows from Corollary 12 and Lemma 13.
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Theorem 14. Given a LIO formula ϕ, we can effectively construct an ALBA automaton
A such that L(ϕ) = L(A) and the number of states of A is at most 22size(ϕ)

.

Finally, we present a parametric formula showing that the double exponential upper
bound given in the previous corollary is tight up to a constant factor.

Lemma 15. For every n ≥ 1, let ϕn be a LIO formula G(α ∨
∨n
i=1(Gβi ∧ Fγi)), where

α, βi, γi ∈ LTL() for 1 ≤ i ≤ n. The number of states of Aϕn
is at least 22n

while
size(ϕn) = 2 + 6 ∗ n.

Proof. During the transformation to normal form, we first apply the rule G(ϕ1 ∨ (ϕ3 ∧
ϕ4)) ≡ G(ϕ1∨ϕ3)∧G(ϕ1∨ϕ4) and obtain an equivalent formula ϕ′n =

∧
I⊆{1,...,n} G(α∨∨

i∈I Gβi ∨
∨
i 6∈I Fγi), which consists of 2n (mutually different) conjuncts. Then each of

the conjuncts is transformed using the rule G(ϕ1∨Fϕ3) ≡ Gϕ1∨tt U (ϕ3∧X(Gϕ1))∨GFϕ3

and finally using the rule for G(α ∨
∨
ϕ′∈G Gϕ′). This transforms every conjunct into a

long disjunction. The resulting normal form formula is of the form

nf(ϕn) =
∧

I⊆{1,...,n}

(Gα ∨
∨
i∈I

Gβi ∨
∨
i 6∈I

GFγi ∨ ΦI ∨ . . . )

where ΦI is a unique subformula of nf(ϕn) for every I ⊆ {1, . . . , n}. The formula ΦI
is obtained as a tt U (ϕ3 ∧ X(Gϕ1)) part of the transformation rule for G(ϕ1 ∨ Fϕ3). (In
case of I = {1, . . . , n}, there is no F operator in the conjunct, and so, the transformation
rule is not used at all. Therefore, we set Φ{1,...,n} equal to αU (

∨
i∈{1,...,n} Gβi) which is

obtained by the transformation rule for G(α∨
∨
ϕ′∈G Gϕ′) and is also a unique subformula

of nf(ϕn).)
The transformation into ALBA continues by the construction of sets R(.). For every

I ⊆ {1, . . . , n} there is a formula α′I ∈ LTL() such that we add (except of others) an
item (α′I , {ΦI}) into the set R(.) of the conjunct induced by I. Hence, the set R(nf(ϕn))
generates at least 22n

pairs with unique second element. Hence, the ALBA automaton
for ϕ contains at least 22n

states.

5. Implementation and experimental results

We decided to implement the translation presented in the previous section in order to
answer the following three questions:

1. Is our translation applicable on a substantial part of formulae from the verification
practice?

2. Are the ALBA automata produced by our translation comparable (in the sense of
their size) with the automata produced by standard LTL to BA translations?

3. Are the resources (time and memory) needed for our translation comparable to the
resources needed for standard translations?

We compare our LIO to ALBA translation with the LTL to BA translation introduced
by Gastin and Oddoux in (Gastin & Oddoux, 2001). This LTL to BA translation uses al-
ternating co-Büchi automata and generalized Büchi automata as intermediate formalisms
and it is considered to be one of the best known LTL to BA translation algorithm: it is
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fast and the produced automata are small. In fact, we compare our implementation of
LIO to ALBA translation with two implementations of the considered LTL to BA transla-
tion: the original implementation ltl2ba (Gastin & Oddoux, 2001) and ltl2ba-divine,
which is the implementation employed in distributed model checker DiVinE (Barnat
et al., 2006). Although the two implementations use the same algorithm, they do not
always give the same results. The reason is that ltl2ba uses some on-the-fly optimiza-
tions that do not work the same way in ltl2ba-divine and ltl2ba-divine applies also
post-optimizations described in (Etessami & Holzmann, 2000) whereas ltl2ba does not.
Our implementation of LIO to ALBA translation uses some parts of ltl2ba-divine, in
particular the pre- and post-optimizations.

As we are interested in practical relevance of LIO to ALBA translation, we do not evalu-
ate the translation on any randomly generated formulae. We simply use publicly available
specification formulae of two different sources: Spec Patterns (Dwyer et al., 1998) (con-
tains 55 LTL formulae available online†; we refer to these formulae as ϕ1, ϕ2, . . . , ϕ55) and
BEEM: benchmark for explicit model checkers (Pelánek, 2007) containing the following
20 LTL formulae.
ψ1 = G(a→ Fb) ψ11 = ¬(¬(a ∨ b) U c) ∧ G(d→ ¬(¬(a ∨ b) U c))
ψ2 = ((GFa) ∧ (GFb))→ (GFc) ψ12 = (G¬a)→ (G¬b)
ψ3 = G(a→ (b ∧ (cU d))) ψ13 = G(a→ ((G¬b) ∨ (¬cU b)))
ψ4 = F(a ∨ b) ψ14 = G(a→ (bR (¬c ∨ b)))
ψ5 = GF(a ∨ b) ψ15 = G((a ∧ b)→ (¬bR (a ∨ ¬b)))
ψ6 = (aU b)→ ((cU d) ∨ Gc) ψ16 = G(a→ (F(b ∧ c)))
ψ7 = G(a→ (¬bU (bU (b ∧ c)))) ψ17 = G(a→ (¬bU (bU (¬b ∧ (cR¬b)))))
ψ8 = G(a→ (bR¬c)) ψ18 = G(a→ (¬bU (bU (¬bU (bU (b ∧ c))))))
ψ9 = G(¬a→ Fa) ψ19 = (GFa)→ (GFb)
ψ10 = G(a→ F(b ∨ c)) ψ20 = GF(a ∨ b) ∧ GF(c ∨ b)

Note that we do not translate directly the specification formulae, but their negations as
model checking algorithms usually need automata representing behaviours violating the
specification.

A careful manual analysis show that negations of 49 out of 55 formulae from Spec
Patterns can be translated into ALBA automata (and hence these negations can be
expressed in LIO). However, only 10 of these negations are syntactically in LIO (it is due
to the fact that negation can appear in a LIO formula only in subformulae of LTL(F,G)).
Similarly, only 14 negations of 20 BEEM formulae are syntactically in LIO.

To increase the number of potential input formulae for the LIO to ALBA translation,
we have extended the syntax of LIO with temporal operators R and W as mentioned
in Subsection 2.3. Further, we employ the following equivalences to rewrite a non-LIO
formula into an equivalent LIO formula.

¬(ϕWψ) ≡ ¬ψU (¬ϕ ∧ ¬ψ) ¬(ϕUψ) ≡ (G¬ψ) ∨ (¬ψU (¬ϕ ∧ ¬ψ))

† http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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ϕU (Fψ) ≡ Fψ ¬(ϕU (Fψ)) ≡ G¬ψ
ϕU (Gψ) ≡ FGψ ∧ G(ϕ ∨ Gψ) ¬(ϕU (Gψ)) ≡ GF¬ψ ∨ F(¬ϕ ∧ F¬ψ)
ϕW (Fψ) ≡ Gϕ ∨ Fψ ¬(ϕW (Fψ)) ≡ F¬ϕ ∧ G¬ψ
ϕW (Gψ) ≡ G(ϕ ∨ Gψ) ¬(ϕW (Gψ)) ≡ F(¬ϕ ∧ F¬ψ)

(Fϕ) Uψ ≡ ψ ∨ F(Xψ ∧ Fϕ) ¬((Fϕ) Uψ) ≡ ¬ψ ∧ G(X¬ψ ∨ G¬ϕ)
(Gϕ) Uψ ≡ ψ ∨ (Gϕ ∧ Fψ) ¬((Gϕ) Uψ) ≡ G¬ψ ∨ (F¬ϕ ∧ ¬ψ)
(Fϕ) Wψ ≡ GFϕ ∨ F(Xψ ∧ Fϕ) ¬((Fϕ) Wψ) ≡ FG¬ϕ ∧ G(X¬ψ ∨ G¬ϕ)
(Gϕ) Wψ ≡ ψ ∨ Gϕ ¬((Gϕ) Wψ) ≡ ¬ψ ∧ F¬ϕ

G(ϕ ∨ XGψ) ≡ Gϕ ∨ (ϕU XGψ)
G(ϕ ∨ XFψ) ≡ Gϕ ∨ XF(ψ ∧ Gϕ) ∨ GFψ

GF(ϕ ∧ XGψ) ≡ GFϕ ∧ FGψ

if ϕ→ ψ then G(ϕUψ) ≡ Gϕ ∧ GFψ

ϕU (Gψ) ≡ G(ϕU (Gψ))
ϕW (Gψ) ≡ G(ϕW (Gψ))

Using these equivalences, we can automatically translate negations of 33 out of 55
formulae from Spec Patterns and negations of 17 out of 20 formulae from BEEM. Hence,
it seems that the answer to our first question is positive.

To answer the other two questions, we executed the three implementations on the
mentioned negations of 33 Spec Patterns formulae and 17 BEEM formulae. The imple-
mentations were executed with all available optimizations in order to get the smallest
automata. It is worth mentioning that all optimizations applied in lio2alba preserve
the ALBA form of the automata.

The results are presented in Table 1 (negations of Spec Patterns formulae) and Table 2
(negations of BEEM formulae). For each formula and each implementation, tables contain
the number of states (st.) and transitions (tr.) of the resulting automaton and the memory
(mem.) and time needed for the translation. In the number of transitions, all transitions
p

e→ q for a fixed p, q are counted as one transition. The memory is measured in kB and
time is in seconds (or in minutes when indicated by “m”).

All computations were done on a server with 8 processors Intelr Xeonr X7560, 448 GiB
RAM and a 64-bit version of GNU/Linux (kernel version 2.6.32). To measure the time
needed for computation we use a build in system program time. To measure the peak
memory consumption we use the program tstime‡.

The tables show that for most of the considered inputs, all three implementations
produce automata with the same number of states and transitions. The inputs where
this is not true are indicated with “�”. For some of them, the size of the automaton
produced by lio2alba coincides with smaller of the other two produced automata. In
some cases, the ALBA produced by lio2alba is slightly bigger. Anyway, the difference
in sizes is not dramatic.

If we analyze the execution time of the implementations, we can see that lio2alba is
fully comparable with the other two implementations (ltl2ba seems to be a bit faster

‡ Available at http://bitbucket.org/gsauthof/tstime/overview/.
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Table 1. Results for negations of Spec Patterns formulae.

lio2alba ltl2ba-divine ltl2ba

ϕ st. tr. mem. time st. tr. mem. time st. tr. mem. time

ϕ1 2 3 1280 0.006 2 3 1272 0.009 2 3 592 0.004

ϕ2 3 5 1308 0.007 3 5 1272 0.008 3 5 616 0.005

ϕ3 3 6 1304 0.006 3 6 1276 0.050 3 6 608 0.005

ϕ4 4 8 1320 0.007 4 8 1284 0.006 4 8 632 0.005

ϕ5 3 6 1304 0.007 3 6 1288 0.007 3 6 624 0.005

ϕ6 1 1 1272 0.007 1 1 1276 0.006 1 1 580 0.005

ϕ7 2 3 1288 0.007 2 3 1272 0.006 2 3 620 0.004

ϕ8 3 6 1320 0.007 3 6 1280 0.006 3 6 620 0.005

ϕ9 3 5 1304 0.007 3 5 1284 0.007 3 5 624 0.005

� ϕ10 4 8 1304 0.006 3 5 1280 0.006 3 5 620 0.005

ϕ11 6 11 1332 0.008 6 11 1324 0.012 6 11 640 0.005

ϕ16 2 3 1284 0.006 2 3 1268 0.006 2 3 600 0.004

ϕ17 3 5 1312 0.007 3 5 1276 0.006 3 5 612 0.005

ϕ18 3 6 1300 0.006 3 6 1280 0.006 3 6 616 0.005

ϕ19 4 8 1320 0.007 4 8 1280 0.006 4 8 632 0.005

ϕ20 3 6 1300 0.007 3 6 1284 0.006 3 6 620 0.006

ϕ21 2 3 1292 0.006 2 3 1276 0.006 2 3 608 0.005

ϕ22 3 5 1316 0.007 3 5 1272 0.006 3 5 624 0.005

ϕ24 4 8 1332 0.008 4 8 1288 0.007 4 8 632 0.005

ϕ25 3 6 1308 0.007 3 6 1288 0.007 3 6 636 0.005

ϕ26 2 3 1296 0.006 2 3 1272 0.006 2 3 616 0.006

ϕ27 3 5 1332 0.008 3 5 1280 0.006 3 5 628 0.005

ϕ28 3 6 1312 0.006 3 6 1276 0.006 3 6 624 0.005

ϕ29 4 7 1348 0.009 4 8 1292 0.007 4 8 660 0.005

� ϕ30 5 12 1328 0.008 4 8 1300 0.007 4 8 660 0.005

� ϕ36 3 5 1324 0.008 3 5 1284 0.006 4 8 620 0.005

ϕ37 4 7 1340 0.008 4 7 1284 0.008 4 7 656 0.005

� ϕ39 4 7 1344 0.008 4 7 1292 0.007 5 10 664 0.005

� ϕ40 4 8 1372 0.011 4 8 1324 0.008 14 43 668 0.006

ϕ41 4 8 1324 0.006 4 8 1288 0.007 4 8 632 0.004

� ϕ46 4 8 1324 0.006 3 6 1280 0.006 3 6 624 0.005

ϕ48 4 9 1320 0.007 4 9 1280 0.007 4 9 636 0.005

� ϕ53 6 14 1324 0.008 4 10 1292 0.007 4 10 636 0.005
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Table 2. Results for negations of BEEM formulae.

lio2alba ltl2ba-divine ltl2ba

ψ st. tr. mem. time st. tr. mem. time st. tr. mem. time

ψ1 2 3 1300 0.006 2 3 1272 0.006 2 3 612 0.004

ψ2 4 10 1308 0.006 4 11 1300 0.007 4 10 624 0.005

� ψ3 4 8 1316 0.007 3 6 1284 0.006 3 6 620 0.005

ψ4 1 1 1284 0.006 1 1 1272 0.006 1 1 596 0.004

ψ5 2 3 1300 0.006 2 3 1280 0.006 2 3 616 0.005

ψ6 4 9 1296 0.007 4 9 1284 0.006 4 9 628 0.005

ψ8 3 6 1296 0.006 3 6 1276 0.007 3 6 612 0.005

ψ9 2 3 1300 0.006 2 3 1268 0.006 2 3 612 0.004

ψ10 2 3 1296 0.006 2 3 1276 0.007 2 3 612 0.006

ψ11 4 9 1308 0.007 4 9 1288 0.006 4 9 632 0.005

ψ12 2 3 1304 0.006 2 3 1276 0.006 2 3 608 0.005

ψ13 4 8 1320 0.007 4 8 1284 0.006 4 8 616 0.005

ψ14 3 6 1300 0.007 3 6 1280 0.006 3 6 620 0.004

ψ15 3 5 1300 0.006 3 5 1280 0.007 3 5 624 0.005

ψ16 2 3 1300 0.006 2 3 1280 0.006 2 3 624 0.005

ψ19 3 6 1300 0.006 3 6 1280 0.007 3 6 624 0.005

ψ20 3 5 1308 0.006 3 5 1284 0.007 3 5 620 0.004

in some cases). The memory requirements of lio2alba and ltl2ba-divine are almost
the same while ltl2ba requires roughly one half of this amount.

As the data presented by Tables 1 and 2 could awaken a feeling that results of all the
three implementations are always more or less the same, we present Table 3 comparing
the three implementations on three parametric formulae.

θn = ¬((GFp1 ∧ GFp2 ∧ . . . ∧ GFpn)→ G(p→ Fr))
ζn = G((Fp1 ∧ Fq1) ∨ (Fp2 ∧ Fq2) ∨ . . . ∨ (Fpn ∧ Fqn))
πn = G(p1 ∨ Fq1)) ∨ (G(p2 ∨ Fq2)) ∨ . . . ∨ (G(pn ∨ Fqn)

The formula θn is taken from (Gastin & Oddoux, 2001). Each formula illustrates a
different phenomenon:

— Formulae θn exemplify a situation where all three implementations produce automata
of the same size (only ltl2ba-divine produces automata with slightly more tran-
sitions) but the computation demands differ. More precisely, the time and memory
requirements of ltl2ba and ltl2ba-divine grow very quickly comparing these of
lio2alba. Note that after θ10, the index of the formulae grows exponentially. An
empty cell indicates that the computation does not finished in one hour. In case of
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Table 3. Results for testing formulae.

lio2alba ltl2ba-divine ltl2ba

ϕ st. tr. mem. time st. tr. mem. time st. tr. mem. time

θ5 7 28 1344 0.009 7 33 2584 0.184 7 28 696 0.033

θ6 8 36 1364 0.009 8 42 6376 1.727 8 36 744 0.220

θ7 9 45 1380 0.011 9 52 23 044 29.991 9 45 872 1.645

θ8 10 55 1404 0.012 10 63 95 392 8.59m 10 55 1136 19.591

θ9 11 66 1428 0.015 11 66 1268 3.02m

θ10 12 78 1448 0.016 12 78 1940 45.80m

θ20 22 253 1956 0.035

θ40 42 903 4964 0.236

θ80 82 3403 25 488 4.005

θ160 162 13 203 177 080 1.70m

θ320 322 52 003 1 342 464 49.54m

ζ1 4 9 1296 0.007 3 8 1280 0.007 3 8 608 0.006

ζ2 15 46 1380 0.012 35 313 1680 0.024 40 549 748 0.011

ζ3 68 236 2096 0.136 168 2970 5764 0.284 224 9450 2040 0.082

ζ4 346 1506 80 312 24.673 729 24 075 43 332 6.252 1152 139 239 15 060 2.495

π2 9 20 1332 0.011 5 12 1292 0.011 5 12 624 0.008

π3 27 76 1404 0.016 13 56 1356 0.013 13 56 640 0.009

π4 114 457 2128 0.085 40 640 3324 0.082 40 640 936 0.020

π5 324 1587 5048 0.404 96 3072 14 832 5.144 96 3072 2008 0.142

π6 922 5641 21 232 3.049 224 14 336 88 940 3.34m 224 14 336 7388 1.336

θn formulae, the post-optimizations available in ltl2ba-divine and lio2alba do
not affect the size of the produced automata. If we switch these post-optimizations
off, ltl2ba-divine translates θ8 in 7.86m and θ9 in 102.12m (which is over the one
hour limit), while lio2alba translates θ320 in 1.78m and even θ640 in 27.74m. This
shows that post-optimizations of large automata can consume a substantial part of
the computation time (e.g. 96% in the case of θ320 translated by lio2alba).

— Formulae ζn demonstrate that lio2alba can produce much smaller automata than
the other two implementations.

— Formulae πn document probably the most surprising phenomenon. The number of
states of the automata produced by lio2alba grows faster than the number of states
of automata generated by ltl2ba and ltl2ba-divine, while the opposite relation
holds for the number of transitions.
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6. Conclusion

The paper introduced a new class of Büchi automata called Almost linear Büchi automata
(ALBA) and an expressively equivalent fragment of LTL called LIO. To prove that ALBA
and LIO are equivalent, we described a translation of LIO formulae into equivalent ALBA
automata and a reverse translation. We provided a double exponential upper bound on
the size of ALBA automata produced by our translation from LIO formulae and we
show that the bound is tight. As standard LTL to Büchi automata translation are only
exponential, there is an open question whether there exists an exponential LIO to ALBA
translation.

We have implemented the LIO to ALBA translation and compared it with two imple-
mentations of a very popular translation of LTL to Büchi automata suggested by Gastin
and Oddoux (Gastin & Oddoux, 2001), namely the original implementation (ltl2ba)
and the one used in DiVinE (Barnat et al., 2006) (ltl2ba-divine). For the compari-
son we use negations of specification formulae from Spec Patterns (Dwyer et al., 1998)
and BEEM (Pelánek, 2007). If we accept the assumption that Spec Patterns and BEEM
provide a representative sample of real-life specification formulae, we can interpret the
experimental results as follows:

— Our LIO to ALBA translation (with some presented enhancements) can be applied
to a substantial part of negated specification formulae (50 out of 75 considered spec-
ification formulae).

— When applied on negated specification formulae, the translation with some standard
optimizations produces ALBA automata of approximately the same sizes as Büchi
automata produced by the mentioned reference implementations.

— When applied on negated specification formulae, the time and memory consumption
of our translation is fully comparable to ltl2ba-divine, while ltl2ba runs slightly
faster and requires approximately half the memory.

We also present some artificial formulae showing that the LIO to ALBA translation
can sometimes outperform the reference implementations in the sense of speed, memory
consumption and/or the size of the produced automata. These results provide a clear
motivation for further improvements of standard translations of LTL to Büchi automata.

To sum up, the suggested LIO to ALBA translation can generate reasonably small
ALBA automata for many negated specification formulae. The current challenge is to
develop improvements of the model checking process that profit from the specific shape
of ALBA automata.
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T. Babiak, V. Řehák, and J. Strejček 26
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CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA,

USA, August 22-25, 2000, Proceedings, volume 1877 of Lecture Notes in Computer Science

(pp. 153–167).: Springer.

Gastin, P. & Oddoux, D. (2001). Fast LTL to Büchi automata translation. In G. Berry, H.
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