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Abstract

The paper4] shows that the model checking problem for (weakly extenéRrdyess Rewrite Systems and properties given
by LTL formulae with temporal operatosdrict eventuallyandstrict alwaysis decidable. The same paper contains an open
guestion whether the problem remains decidable even if venexhe set of properties by allowing also past counterpérts
the mentioned operators. The current paper gives a positseex to this question.
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1 Introduction

To specify (the classes of) infinite-state systems we employ term rewritarsy/sialed
Process Rewrite SysterfRRS) [L6]. PRS subsume a variety of the formalisms studied in
the context of formal verification, e.gPetri nets(PN), pushdown process€®DA), and
process algebras like PA. Moreover, they are suitable to model clsoéimiare systems
with restricted forms of dynamic creation and synchronization of concupecesses or
recursive procedures or both. The relevance of PRS (and thaitasss) for modelling
and analysing programs is shown, for example,7n for automatic verification we refer
to surveys b,19].

Another merit of PRS is that threachability problems decidable for PRSLg]. In[13],
we have presentagleakly extended PR&PRS), where a finite-state control unit with self-
loops as the only loops is added to the standard PRS formalism (addition o eagnite-
state control unit makes PRS Turing powerful). This control unit ensi¢teS by abilities
to model a bounded number of arbitrary communication events and glolhies whose
values are changed only a bounded number of times during any computst®mave
shown that the reachability problem remains decidable for wHRS [

1 Supported by the Academy of Sciences of the Czech Repubtint fo. 1ET408050503.
2 Supported by the research centre “Institute for TheoreBeanputer Science (ITI)”, project No. 1M0545.
3 Supported by Ministry of Education of the Czech Republiojgrt No. MSM0021622419.
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One of the mainstreams in an automatic verification of programs is model checking
Here we focus orinear Temporal LogidLTL). Recall that LTL model checking is de-
cidable for both PDAEXPTIME-complete ]) and PN (at least as hard as the reachability
problem for PN 6]). Conversely, LTL model checking is undecidable for all the classes
subsuming PAZ,15]. So far, there are few positive results for these classes. Modekehe
ing of infinite runs is decidable for the PA class and the fragnsenple PLTlg, see P],
and also for the PRS class and a fragment of LTL expressing exactig$aiproperties].
Recently, the model checking problem has been shown decidable ®R&vand proper-
ties given by an LTL fragment LT(F, G;), i.e. that with operatorstrict eventuallyand
strict alwaysonly, see 4.

Our contribution: As a main result we extend a proof technique usedjnvjth past
modalities and show that the model checking problem stays decidable eweRRS and
LTL (Fs,Ps), i.e. an LTL fragment with modalitiestrict eventuallyand eventually in the
strict past(and wherestrict alwaysandalways in the strict pastan be used as derived
modalities). We note that a role of past operators in program verificatiodviscated
e.g. in [14,9]. Let us mention that the expressive power of the fragment(EJIPs) seman-
tically coincides with formulae of First-Order Monadic Logic of Order coritagrat most
2 variables and no successor predicﬁ@ztk]), see ] for effective translations. Thus we
also positively solve the model checking problem for the wPRS cIasE@ﬁ[ek].

2 Preliminaries

2.1 Weakly extended PRS (WPRS)

Let Const= {X,...} be a set oprocess constantsA set7 of process terms is defined
by the abstract syntaix::= ¢ | X | t.t | t||t, wheree is theempty term X € Const and
. and ||’ meansequentiabndparallel compositionsrespectively. We always work with
equivalence classes of terms modulo commutativity and associativity,atssociativity
of ', and neutrality of, i.e.et =t.e=t|e=t.

LetM = {o, p,q,...} be a set otontrol states< be a partial ordering on this set, and
Act={a,b,c,...} be a set ohctions An wPRS(weakly extended process rewrite sygtem
Ais a tuple(R, po,to), where

» Ris a finite set ofrewrite rulesof the form (p,t1) &, (g,t2), wherets,tp € 7, t1 # &,
ac Act, andp,q € M satisfyp < q,

¢ the pair(po,to) € M x 7 forms the distinguishedhitial state

By Act(A), ConstA), andM(A) we denote the respective sets of actions, process constants,
and control states occurring in the rewrite rules or the initial state of
AWPRSA = (R, po,tp) induces a labelled transition system, whose states are(jpatijs
such thatp € M(A) andt is a process term ovéZonstA). The transition relation— is
the least relation satisfying the following inference rules:
()2 @L)eR  (pt) - @t) () (qb)

a a

(Pt) = (at2)  (pult) = (@tlt)  (ptt) = (g tat])

To shorten our notation we writgt in lieu of (p,t). A statept is calledterminalif there
is no statep't’ and no actiora such thatpt -2 p't’. Here, we always consider only such
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systems where the initial state is not terminal. A (finite or infinite) sequence
a0 a an an
0 = Polo — p1t1—1> e — pn+1tn+1(—+l> )

is called arun of A over the word u= apa; . .. an(any1. . ) if it starts in the initial state and,
provided it is finite, ends in a terminal state. Furth€r)) denotes the set of wordssuch
that there is a run o overu.

If M(A) is a singleton, then wPRSIs called gorocess rewrite syste(PRS [16]. PRS,
WPRS, and their respective subclasses are discussed in more detdjl in [

2.2 Linear Temporal Logic (LTL) and the studied problems
The syntax oLinear Temporal Logi¢LTL) [17] is defined as follows

o u=tt]al ¢ [oAd|Xo | OUS[Y | SO,

whereX, U are future modal operatorextanduntil, while Y, S are their past counterparts
previouslyand since anda ranges oveAct The logic is interpreted over infinite and
nonempty finite pointed words of actions. Given a ware ugujU;. .. € Act* U Act®, |u|
denotes the length of the word (we $et=  if u is infinite). A pointed wordis a pair
(u,i) of a nonempty wordi and aposition0 < i < |u| in this word.

The semantics of LTL formulae is defined inductively as follows:

(U,i) = tt

(u,l)):a iff u=a

(U,i) = =0 iff - (ui) = o

(ui)E=d1Ad2 iff  (ui) =61 and (u,i) = ¢2

(ui) = X¢ iff i+1<|u and(ui+1)=¢d

(ui)Ed1Udp iff  Ji<k<|ul.((uk) Eod2 andVi<j<k. (uj)=o1)
(Ui) =Ye iff 0<iand(ui-1)F¢

(

Ui)E¢1S¢2 iff JO<k<i.((uk)Ed2 andVk<j<i.(u,j)F=¢d1)

We say that a nonempty wordsatisfies, writtenu |= ¢, whenever(u,0) = ¢. Given a
set of wordd., we writeL = ¢ if u|= ¢ holds for allu € L. We say that a ruo over a word
u satisfiesp, writteno = ¢, wheneveu = ¢.

Formulaed, Y are (initially) equivalent written ¢ =; , iff, for all words u, it holds
uE ¢ < ul= Y. Formulaep, Y areglobally equivalentwritten$ = (, iff, for all pointed
words (u,i), it holds (u,i) = ¢ <= (u,i) = . Clearly, if two formulae are globally
equivalent then they are also initially equivalent.

The following table defines some of the derived future operators ando@stiicounter-
parts.

future modality meaning past modality meaning
F¢ eventually to P¢ eventually in the past $dp

G always =F=¢ H¢ always in the past -P-d

Fs¢ strict eventually XFé Ps¢ eventually in the strict pastYP¢

Gsd strict always —-Fs—¢ | Hsd always in the strict past  —P;—¢

°|-3¢ infinitely often  GF¢ o initially HP¢
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LTL (U, X) = _. FO?

LTL U,F.,S,P,)

LTL(F,X,P Y) = FO? LTL(U,F)

LTL(F,X) LTL (Fs,Py) _Fo2

LTL(F LTL(F,P)
LTL(F,G)
LTL(X) LTL (F)
LTL()

Fig. 1. The hierarchy of basic LTL fra?ments with respect wititial equivalence. The dashed line shows the desidbili
boundary of the model checking problem for wPRS

Given a set{Oq,...,0n} of modalities, then LTIO;,...,0y,) denotes an LTL frag-
ment containing all formulae with modaliti€3;, ..., 0, only. Such a fragment is called
basicif it contains future operators only or with each future operator it contiéngast
counterpart. For example, the fragment L(FLS) is not basic. Figurd shows an expres-
siveness hierarchy of all studied basic LTL fragments. Indeedyédasic LTL fragment
using standarfl modalities is equivalent to one of the fragments in the hierarchy, where
equivalence between fragments means that every formula of one fragareibe effec-
tively translated into an initially equivalent formula of the other fragment and versa.
We also mind the result of] stating that each LTL formula can be converted to the one
which employs future operators only, i.e. LTUL X) =; LTL(U,S,X,Y). However note
that LTL(Fs, Ps, Gs, Hs) = LTL (Fs, Ps) is strictly more expressive than LTE, Gs) as can be
exemplified by a formul&(b A Hsa) =; aA X(aUb). We refer to R0] for greater detail.

This paper deals with the following two verification problems. |Jetbe an LTL
fragment. Themodel checking problerfor F and wPRS is to decide, for any given
formula ¢ € # and any given wPRS systesh, whetherL(A) = ¢ holds. Further,
given any formulap € ¥, any wPRS system, and any nonterminal staiget of A, the
pointed model checking probleior 7 and wPRS is to decide whethiefpt,A) = ¢; here

4 By standard modalities we mean the ones defined here and atsccothmonly used modalities likgtrict until, release
weak unti] etc. However, it is well possible that one can define a new fitgdauch that there is a basic fragment not
equivalent to any of the fragments in the hierarchy.
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L(pt,A) denotes the set of all pointed worflg i) such thath has a (finite or infinite) run
poto % paty 5 .. 8 ity s L satisfyingu = UgUqUp . .. and pt = pit;.

3 Main result

In [4], we have shown that the model checking problem is decidable fo(ETGs). Be-
fore we prove that the problem remains decidable even for a more sk@mdsagment
LTL (Fs, Ps), we recall the basic structure of the proof for L(R, Gs).

First, the proof shows that every LTE,Gs) formula can be effectively translated
into an equivalent disjunction of so-calledformulae which are defined below. Note
that LTL() denotes the fragment of formulae without any modality, i.e. boolean combi-
nations of actions. In what follows, we uge U, ¢, to abbreviatehs A X(¢1Ud2). Let
0 = 01016020,...6,046,:1, Wheren > 0, each6; € LTL(), O, is ‘AG¢’, and, for each
i <n,Oiseither U or ‘U, or*AX'. Further, letB C LTL () be a finite set. Am-formula
is defined as

a(d,B) = (9101(9202 .. (BnOnBny1) - )) A /\ GsR .
weB

Hence, a wordu satisfiesa (0, B) iff u can be written as a concatentaionv,...vn 1 of
words, where

» each wordy; consists only of actions satisfyirf and
- vil>0ifi=n+1o0rQis ‘U,
- il >0if Oyis ‘U,
- il =1if Gjis‘AX or *AG',

e andvy, 1 satisfiesGsFsW for everyy € B.

Second, decidability of the model checking problem for [HL.G;) is then a direct
consequence of the following theorem.

Theorem 3.1 (4]) The problem whether any given wPRS systems has a run satisfying any
givena-formula is decidable.

To prove decidability for LTICF, Ps), we show that every LT(F, Ps) formula can be
effectively translated into a disjunction Béi-formulae. Intuitively, aPa-formula is a con-
junction of ana-formula and a past version of tleeformula. A formal definition of a
Pa-formula makes use df1 S, ¢, to abbreviateh; AY (¢1S9>).

Definition 3.2 Letn = 11P112P, ... imPmims-1, wherem > 0, each j € LTL (), and, for each
j <m, Pjis either S’ or ‘S." or ‘AY’. Further, leta(,8) be ana-formula. Then a
Pa-formulais defined as

Pa(n,d, B) = (11PL(12P2. .. (lmPmlms1) - ) A (3, B) .
Note that the definition of &a-formula does not contain any past counterpart of

NyesGsFsP as every history is finite — the semantics of LTL is given in terms of words
with a fixed beginning.
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Therefore, a pointed wor¢u, k) = Pa(n,d,8) if and only if (u,k) satisfiesa(d, B)
andup...Ux_1Ux can be written as a concatenatigf 1.Vm. . . V2.v1, Where each wordg;
consists only of actions satisfyingand

o |vi| >0ifi=m+1orRis‘S,

o |vi| >0if Bis‘S;’,

o [vi|=1if Ris‘AY or‘AH{".

The proof of the following lemma is intuitively clear but it is quite a technical eiser, see
[18] for some hints.

Lemma 3.3 Let ¢ be a Ri-formula and pc LTL(). FormulaeXd, Y¢, pUd, pS¢é, Fd,
Ps(¢), as well as, a conjunction obPformulae can be effectively converted into a globally
equivalent disjunction ofdformulae.

Theorem 3.4 Every LTI, Ps) formula ¢ can be translated into a globally equivalent
disjunction of -formulae.

Proof. As F,Gs and Ps,H; are dual modalities, we can assume thatis an
LTL (Fs, Gs, Ps,Hs) formula containing negations in front of actions only. We construct
a finite setAy of Pa-formulae such thap is globally equivalent to a disjunction of formu-
lae in Ay. Our proof looks like a proof by induction on the structurepofhowever it is
done by induction on the length ¢f Thus, if¢ ¢ LTL (), then we assume that, for each
LTL (Fs, Gs, Ps,Hs) formula¢’ shorter tharp, we can construct the corresponding Agt

Let p be a formula of LTL). The structure ob fits into one of the following cases.

ep Casep: In this caseg is equivalent tgp A Gstt. HenceAy = {Po(tt A Hstt, pA Gstt, 0) }.
o\ Case¢;V ¢o: Due to induction hypothesis, we can assume that we havé\getsd

Ay,. Clearly,Ay = Ay, UA,.
o/ Casedy A ¢2: Due to LemmaB.3 Ay can be constructed from the séig andAy,.

oF, CaseFs¢1: Due to LemmaB.3 the setd, can be constructed from the g, .
oP; CaseP;¢1: Due to LemmaB.3, the seth, can be constructed from the g}, .

oG, CaseGg0; is divided into the following subcases according to the structurg of
op CaseGsp: As Gspis equivalent tdt A Gsp, we setAy = {Pa(tt A Hstt, tt A Gsp,0) }.
oA CaseGs(p2A3): As Gs(P2AP3) = (Gsh2) A (Gsd3), the setdy can be constructed
from Ag.¢, andAc_ ¢, using LemmaB.3. Note thatAg_ ¢, andAg ¢, can be constructed
becausé& ¢, andGs¢3 are shorter thaGs(dp2 A ¢3).
oFs CaseGsF;¢,: This case is again divided into the following subcases.
—p CaseGsFsp: As p e LTL(), we directly sey = {Pa(tt A Htt, tt A Gstt, {p})}.
—V Case GsFs(P3 V ¢a): As GsFs(93V da) = (GsFsd3) V (GsFsha), we setAy =
AG.F.03 UAG,F.0s-
—N\ CaseGsFs(d3A dy4): This case is also divided into subcases depending on the
formulaeds andd,.
xp CaseGsFs(p3A pa): As ps/Aps € LTL(), this subcase has already been covered
by CaseGsFp.
«\/ Case GsFs(d3 A (§5 V ¢6)):  As GsFs(d3 A (ds5 V §6)) = GsFs(d3 A §5) Vv
GsFs(93/A P6), We SeWg = AG.F, (9305) U AG.F. (ha15) -
xFs CaseGsFs(¢p3 A Fsds): As GsFs(d3 A Fsds) = (GsFshs) A (GsFsds), the sethy
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can be constructed frolg, r ¢, andAg,r.¢s Using LemmeB.3.

*xPs CaseGsFs(p3 A Psds): As GsFs(P3 A Psds) = (GsFsdhs) A (GsFsPsds), the set
Ay can be constructed frolg r.¢, andAg,r.p,¢5 USINg LemméB.3.

*Gs CaseGsFs(P3 A Gshs): As GsFs(P3 A Gsds) = (GsFsd3) A (GsFsGsds), the set
Ay can be constructed fromg k¢, andAg,F.c.05 USINg Lemmas.3,

xHs CaseGsFs(p3 A Hshs): As GsFs(d3 A Hsds) = (GsFsds) A (GsFsHsds), the set
Ay can be constructed frolg,r.¢, andAg,F.H,0s USINg LemmaB.3,

—Fs CaseGsFFsd3: As GsFsFsdz = GsFsds, we sethy = Ag,F.¢,-

—Ps CaseGsFPsd3: A pointed word(u,i) satisfiesGsFsPs¢3 iff i = |uj—1 oruis
an infinite word satisfyind-¢3. Note thatG—tt is satisfied only by finite words at
their last position. Further, a wordsatisfieg Fstt) A (GsFstt) iff uis infinite. Thus,
GsFsPsd3 = (Gstt) V ¢' whered’ = (Fstt) A (GsFstt) A (3 V Psd3 vV Fsds). Hence,
Ay = Ac.-1t UAy WhereAy is constructed fromg i, Ac,r.tt, andAg, UAp ¢, UAF ¢,
using Lemmad.3.

—Gs CaseGsFsGsds: A pointed word(u,i) satisfiesGsFsGs¢s iff i = |u|—1 oru
is an infinite word satisfyindGs¢3. Thus,GsFGsds = (Gs—tt) VvV ¢’ whered’ =
(Fstt) A (GsFstt) A (FsGsd3). Hence Ay = Ag, -t UAy WhereAy is constructed from
Ar.it, A,F.tt, andAr g ¢, USINg LemmaB.3.

—Hs CaseGFsHsds: A pointed word(u,i) satisfiesGsFsHsd3 iff i = |u|—1 oruis
an infinite word satisfyin@:¢3. Thus,GsFHs03 = (Gs—tt) V ¢' whered’ = (Ftt) A
(GsFstt) A (03 A Hshz A Gsd3). Hence Ay = Ag. -t UAy WhereAy is constructed
from Ar.tt, AG.F.tt: Adss AH.s, @aNdAG ¢, USINg LemmeB. 3.

oPs CaseGsPs$2: A pointed word(u,i) satisfiesGsPs¢2 iff i = |u] — 1 or (u,i) satisfies
Pdo. Hence Ay = Ag,—tt U Ay, UAp.p,.

oV CaseGs(¢2V ¢3): According to the structure dfi; and¢s, there are the following
subcases.

*xp CaseGs(p2V p3): As p2V ps € LTL(), this subcase has already been covered by
CaseGqp.

*\ CaseGs(h2V (paAds5)): ASGs(d2V (daAds5)) = Gs(d2V da) AGs(d2V d5), the
setAy can be constructed frofg, (¢,v¢,) aNdAg, (¢,v¢s) USiNg LemmaB.3.

*Fs CaseGs(§2 Vv Fda): It holds thatGs(do V Fsda) = (Gsd2) V Fs(Fsba A Gsd2) V
GsFst4. Therefore, the sefy can be constructed #;.¢, UAF, (F.9,1G.02) U AGF.4»
WhereA (r.¢,1G.0,) IS created fronAg 4, andAg,y, due to LemmaB.3.

*H CaSGGS(d)z vV Hs¢4)i As GS(¢2 \Y Hs¢4) = (qu)z) V FS(HS¢4 A Gs(l)z) V GsHs®4.
Hence Ay = A4, UAF, (H.panGs2) U AGH.pa) WHETEAE (1 9,1G.0,) CAN bE created
from An ¢, andAg ¢, Using LemmaB.3,

*Gs, Ps CaseGs(d2V Gsd4V Pds): There are only the following five subcases (the
others fit to some of the previous cases).

(i) CaseGs(VyecGsd'): It holds thatGs(Veyeg Gsd') = (Gstt) V Vrea(XGsd').
Therefore, the sefy can be constructed & i U Uy ccAxc,¢r Where each
Axgc,¢' is created fromAg ¢ using LemmaB.3.

(i) Case Gs(p2 V VyesGsd'): As Gs(p2 V VypecGsd') = (Gsp2) V
Virea(X(p2U (Gs9')))- Therefore, the setAy can be constructed as
AGspz U Uq)’eGAX(ng(GSd)’)) where eachAX(pzu(qu,,)) is created fromAqu,/
using Lemma3.3.

(i) Case Gs(VgrepPsd”): It holds that Gs(VgrepPsd”) = (Gs—tt) Vv
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Vyrep(XPs0”). Therefore, the séy can be constructed &g, -1t UUgy»cp Axp,
where eacti\xp ¢ is created fronAp ¢ using LemmaB.3.

(iv) Case Gs(p2 V VgrepPsd”): As  Gs(pz2 V VgrepPsd”) = (Gsp2) V
Vrep(X(p2U (Ps9”))).  Therefore, the setA, can be constructed as
Ac.p, U Ugrep Ax(pU (Pypr)) Where eachAy p,up,gr)) is created fromAp g
using Lemma3.3.

(v) Case Gs(p2 V VyecGsd' V VyrepPsd”):  As Gs(p2 V VyreaGsd' V
VorepGsd”) = (GaP2) V Vrea(X(p2U (Ged))) V Verep(X(P2U (Psd”)))-
Therefore, the se#yy can be constructed abg,p, U UpeaAx(paU(Getr)) Y
Uprep Ax(pou (Papr)) Where eachAx p,u (c.¢)) IS created fromAgy and each
Ax(p,U (P9 is created fronAp 4 using Lemma8.3.

oGs CaseGsGsho: As Gs(Gsho) = (Gstt) vV (XGsh2), the sethy can be constructed as
Ag.-tt UAXG. ¢, WhereAxg,q, is created fronfg ¢, using LemmaB.3.

oHs CaseGsHs¢2: A pointed word(u, i) satisfiesGs(Hs¢2) iff i = |u| —1 or (u,|u] — 1)
satisfiesHs¢> or u is infinite and all its positions satisfy,. Hence,Ay = Ag -t U
AR (Gt (Hu02)) U AH2)A021(Gobz2) WIETEAR, (G-t (Hop2)) ANAAM, 027020 (Got2) 1S
created fromAc_—it, AH.0,, Ap,, aNdAg ¢, Using LemmeB.3.

eH; CaseH;: This case is divided into the following subcases according to the structure

of §1.

op CaseH;p: As Hqp is equivalent tdt A Hsp, we setAy = {Pa(tt A Hsp, tt A Gstt, 0) }.

oA CaseHs(p2Ad3): AsHs(d2AP3) = (Hsdh2) A (Hshs), the setdy can be constructed
from An, ¢, andAy_ g, Using LemmaB.3.

oFs CaseHF$2: A pointed word(u,i) satisfiesHsFs2 iff i =0 or (u,i) satisfiesF¢..
Note thatHs—tt is satisfied by(u,i) only if i = 0. ThereforeAy = An_—t U Ay, UAR ¢,

oPs CaseHPs$,: Every run has to start in the initial state, and so, every history is finite.
Hence, a pointed wortl, i) satisfiesHsPs¢» iff i = 0. ThereforeAy = An, -1t

oV CaseHs(d2V ¢3): According to the structure dfi, and¢s, there are the following
subcases.

*p CaseHs(p2V p3): As p2V ps € LTL (), this subcase has already been covered by
CaseH,p.

A\ CaseHs(92V (04 Ads)): AsH(02V (94 d5)) = H (92 §4) AHs(02V ¢5), the
setAy can be constructed froly (,¢,) @NdAH, (p,vs) USING LemmeB.3.

*xP; Case HS((I)Q V Ps¢4): It holds thatHS(q)z V PS(|)4) = (qu)z) V PS(PS(I)4 A qu)z).
Therefore, the setAq can be constructed ad.g, U Ap,(p.ginHg,) Where
Ap,(P.danHs0,) IS Created fronfp ¢, andAy, g, due to LemmaB.3.

*Gs CaseHs (92 V Gsha): AsHs(d2V Gsba) = (Hsh2) V Ps(Gsha A Hsh2). Hence Ay
is constructed abu,¢, U Ap, (G.0snH.b,) WETEAR (G p,nH,0,) IS Created fromAg g,
andAy ,) using Lemma8.3.

*Fs,Hs CaseHs(¢2V Fs$4V Hsds): There are only the following five subcases (the
others fit to some of the previous cases).

(i) CaseHs(Vyer Fsd'): It holds thatHs(Vyer Fsd') = (Hstt) V Vyer (YRG').
Therefore, the sefy can be constructed a& ¢ U Uprer Avrgy where each
Avr,¢ Is created fromAr 4 using Lemma3.3.

(i) Case Hs(pz V Vyer Fs9'): As Hs(p2 V Vyer ') = (Hsp2) Vv
Virer (Y(p2S (Fsd'))). Therefore, the setA, can be constructed as
An.p, U Uper Av(pos(Rery) Where eachAy(p,s (ke IS created fromAgy
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using Lemma&3.3
(i) Case Hs(VgrenHsd"”): It holds that Hs(Vgren Hsd”) = (Hstt) v
vq,//eH(YHsc])”). Therefore, the sety, can be constructed asy ¢ U
Ugpren Avhg” Where eactyn g is created fromhy, ¢ using LemmeB.3
(iV) Case HS(pZ \% V¢”€H qu)”): As HS(pZ \4 \/¢”6H HS¢//) = (HspZ) \
Voren(Y(p2S(Hs9”))).  Therefore, the setd, can be constructed as
At.p, U Upren Av(pos (Hyor)) Where eachAy p,s(,97)) IS created fromAy ¢
using Lemma3.3
(v) Case Hs(p2 V Vyer Fsd' v Voren Hsd”): As Hs(p2 V Vyer Fsd' v
Voren Hsd”) = (Hsp2) V Vgrer(Y(P2S (Fs9'))) V Viren (Y (P25 (Hs9"))).
Therefore, the se#y can be constructed a8y, p, U Uyer Av(p,s(Fo)) U
U er Ay (pss (Hyo7)) Where eachAy (s (k¢ is created fromAgy and each
Ay (p,s (He)) 1S created fromhy ¢ using Lemma8.3.
oGy CaseH Gsd: A pointed word(u, i) satisfiesHs(Gs¢2) iff i = 0 or (u,0) satisfies
Gsdz. Hence Ay = A —tt U AR, (H,~tt)A(G.p2)) WHETEAP, (H.-tt)A(G.0,)) IS Created from
An -t andAg, ¢, Using LemméB.3.
oHs CaseHsHsbo: As Hs(Hsdz) = (Hstt) vV (YHsd2), the setdy can be constructed as
An—tt UAYH, 9, WhereAy g, is created fromhy ¢, using LemmeB.3.
O

Remark 3.5 In other words, we have just shown that L(A,, Ps) is a semantic subset (with
respect to global equivalence) of every formalism that is (i) able tossgpr Gsp, Hsp, and
GsFsp, wherep € LTL (); and (i) is closed under disjunction, conjunction, and applications
of X_,Y_, pU_, andpS_, wherep € LTL().

Now, using Theoren3.1, we can easily solve the problem dual to the model checking
problem, i.e. given any wPRS system and &xyformula, to decide whether the system
has a run satisfying the formula.

Theorem 3.6 The problem whether any given wPRS system has a run satisfying any given
Po-formula is decidable.

Proof. A run over a wordu satisfies a formula iff (u,0) = ¢. Moreover, (u,0) =
Pa(n,d,B) iff (Up,0) En and (u,0) = a(d,B). Letn = 11Pi12Po. . . imPrlmya. It fol-
lows from the semantics of LTL thati,0) = n if and only if (Up,0) = 1m andPR =S for
all i < m. Therefore, the problem is to check whetligee= S for all i < m and whether
the given wPRS system has a run satisfyipg\ a(8,B). AsinAd(d,B) can be easily
translated into a disjunction of-formulae, Theoren3.1finishes the proof. O

As LTL(F,Ps) is closed under negation, Theore3t and Theoren8.6 give us the
following.

Corollary 3.7 The model checking problem for wPRS and (F|P;) is decidable.

Moreover, we can show that the pointed model checking problem is deeiftt WPRS
and LTL(Fs, Ps) as well. Again, we solve the dual problem.

Theorem 3.8 LetA be a wPRS and pt be a reachable nonterminal state dhe problem
whether L(pt,A) contains a pointed wordu, i) satisfying any givendformula is decid-
able.
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Proof. Let A = (M,>,R po,tp) be a wPRS angt be a reachable nonterminal state of
A. We construct a wPRA' = (M, > R/, po,to.X) whereX ¢ ConstA) is a fresh process
constant,f ¢ Act(A) is a fresh action,

a f a g /7
R = RU{(p(t.-X) < pXa), (pPXa — P¥a), (PYa < pt’) | pt - p't'},

andXa, Ya ¢ ConstA) are fresh process constants for eachAct(A).

Itis easy to see thdt, i) isinL(pt,A) iff upus...ui—qu;i.f.u.Ui1...isinL(A"). Hence,
for any givenPa-formula¢ = Pa(n,d, B) we construct &o-formula¢’ = Pa(n, tt AXT A
Xd,B). We get that

L(pt,A) = Pa(n,8,8) <= L(&) = F(Pa(n,ttAXf AX3, B))

and due to Lemma&.3and Theoren3.6the proof is done. O

As LTL(Fs, Ps) is closed under negation and Theor8m works with global equiva-
lence, Theoren3.8give us the following.

Corollary 3.9 The pointed model checking problem is decidable for wPRS antFL.F.).

4 Conclusion

We have examined the model checking problem for basic LTL fragments withfbe
ture and past modalities and the PRS class, i.e. the class of infinite state sgstern g
ated by Process Rewrite Systems (PRS), possibly enriched with a wealcdinttel unit
(weakly extended PRS — wPRS). We have proved that the problem isabézidr wPRS
and LTL(F, Ps), i.e. the fragment with modalitiestrict eventually eventually in the strict
past and derived modalitiestrict alwaysandalways in the strict past However, both
these problems are at least as hard as the reachability problem f6t EXPSPACE-hard
without any elementary upper bound known).

Note that the expressive power of the fragment (AL Ps) semantically coincides with
formulae of First-Order Monadic Logic of Order containing at most 2 \@eis and no
successor predicaté(()z[<]), and that First-Order Monadic Logic of Order containing at
most 2 variablesHO?) coincides with an LTIF,X,P,Y) fragment B]. Further, let us
recall our undecidability results for model checking of PA systems (aasbof PRS) and

fragments LTL(OFO,X) and LTL(U ), respectively (the former with modaliti@sfinitely often
andnextonly, the latter withuntil as the only modality), sed].

Thus, we have located the borderline between decidability and undecidalbilifie
problem for wPRS and the LTL fragments, as well as for wWPRS and Fic¢rQvionadic
Logic of Order: it is decidable foFO?[<] and undecidable foFO?. For the sake of
completeness, we note that the First-Order Monadic Logic of Order camga@t most
3 variables FO?) coincides with the set of all LTL formulae as well as with the full First-
Order Monadic Logic of Order][1,10]. Finally, we note that the decidability results are
new for the PRS class too and they are illustrated by the decidability bordagtireR.

5_ In fact, we have shown that the problem is decidable even oo expressive fragment containing negations of disjunc-
tions of so-calleda-formulae (see DefinitioB.2).
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