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Abstract

The paper [4] shows that the model checking problem for (weakly extended)Process Rewrite Systems and properties given
by LTL formulae with temporal operatorsstrict eventuallyandstrict alwaysis decidable. The same paper contains an open
question whether the problem remains decidable even if we extend the set of properties by allowing also past counterpartsof
the mentioned operators. The current paper gives a positive answer to this question.
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1 Introduction

To specify (the classes of) infinite-state systems we employ term rewrite systems called
Process Rewrite Systems(PRS) [16]. PRS subsume a variety of the formalisms studied in
the context of formal verification, e.g.Petri nets(PN), pushdown processes(PDA), and
process algebras like PA. Moreover, they are suitable to model currentsoftware systems
with restricted forms of dynamic creation and synchronization of concurrent processes or
recursive procedures or both. The relevance of PRS (and their subclasses) for modelling
and analysing programs is shown, for example, in [7]; for automatic verification we refer
to surveys [5,19].

Another merit of PRS is that thereachability problemis decidable for PRS [16]. In [13],
we have presentedweakly extended PRS(wPRS), where a finite-state control unit with self-
loops as the only loops is added to the standard PRS formalism (addition of a general finite-
state control unit makes PRS Turing powerful). This control unit enriches PRS by abilities
to model a bounded number of arbitrary communication events and global variables whose
values are changed only a bounded number of times during any computation.We have
shown that the reachability problem remains decidable for wPRS [12].

1 Supported by the Academy of Sciences of the Czech Republic, grant No. 1ET408050503.
2 Supported by the research centre “Institute for Theoretical Computer Science (ITI)”, project No. 1M0545.
3 Supported by Ministry of Education of the Czech Republic, project No. MSM0021622419.



Křet́ınský et al.

One of the mainstreams in an automatic verification of programs is model checking.
Here we focus onLinear Temporal Logic(LTL). Recall that LTL model checking is de-
cidable for both PDA (EXPTIME-complete [1]) and PN (at least as hard as the reachability
problem for PN [6]). Conversely, LTL model checking is undecidable for all the classes
subsuming PA [2,15]. So far, there are few positive results for these classes. Model check-
ing of infinite runs is decidable for the PA class and the fragmentsimple PLTL2, see [2],
and also for the PRS class and a fragment of LTL expressing exactly fairness properties [3].
Recently, the model checking problem has been shown decidable for (w)PRS and proper-
ties given by an LTL fragment LTL(Fs,Gs), i.e. that with operatorsstrict eventuallyand
strict alwaysonly, see [4].

Our contribution: As a main result we extend a proof technique used in [4] with past
modalities and show that the model checking problem stays decidable even for wPRS and
LTL(Fs,Ps), i.e. an LTL fragment with modalitiesstrict eventuallyandeventually in the
strict past(and wherestrict alwaysandalways in the strict pastcan be used as derived
modalities). We note that a role of past operators in program verification is advocated
e.g. in [14,9]. Let us mention that the expressive power of the fragment LTL(Fs,Ps) seman-
tically coincides with formulae of First-Order Monadic Logic of Order containing at most
2 variables and no successor predicate (FO

2[<]), see [8] for effective translations. Thus we
also positively solve the model checking problem for the wPRS class andFO

2[<].

2 Preliminaries

2.1 Weakly extended PRS (wPRS)

Let Const= {X, . . .} be a set ofprocess constants. A setT of process terms tis defined
by the abstract syntaxt ::= ε | X | t.t | t‖t, whereε is theempty term, X ∈ Const, and
’ .’ and ’‖’ meansequentialandparallel compositions, respectively. We always work with
equivalence classes of terms modulo commutativity and associativity of ’‖’, associativity
of ’ .’, and neutrality ofε, i.e.ε.t = t.ε = t‖ε = t.

Let M = {o, p,q, . . .} be a set ofcontrol states, ≤ be a partial ordering on this set, and
Act= {a,b,c, . . .} be a set ofactions. An wPRS(weakly extended process rewrite system)
∆ is a tuple(R, p0, t0), where

• R is a finite set ofrewrite rulesof the form(p, t1)
a
→֒ (q, t2), wheret1, t2 ∈ T , t1 6= ε,

a∈ Act, andp,q∈ M satisfyp≤ q,

• the pair(p0, t0) ∈ M×T forms the distinguishedinitial state.

By Act(∆), Const(∆), andM(∆) we denote the respective sets of actions, process constants,
and control states occurring in the rewrite rules or the initial state of∆.

A wPRS∆ = (R, p0, t0) induces a labelled transition system, whose states are pairs(p, t)
such thatp ∈ M(∆) andt is a process term overConst(∆). The transition relation−→ is
the least relation satisfying the following inference rules:

((p, t1)
a
→֒ (q, t2)) ∈ R

(p, t1)
a

−→ (q, t2)

(p, t1)
a

−→ (q, t2)

(p, t1‖t ′1)
a

−→ (q, t2‖t ′1)

(p, t1)
a

−→ (q, t2)

(p, t1.t ′1)
a

−→ (q, t2.t ′1)

To shorten our notation we writept in lieu of (p, t). A statept is calledterminal if there
is no statep′t ′ and no actiona such thatpt

a
−→ p′t ′. Here, we always consider only such
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systems where the initial state is not terminal. A (finite or infinite) sequence

σ = p0t0
a0−→ p1t1

a1−→ . . .
an−→ pn+1tn+1

(

an+1
−→ . . .

)

is called arun of ∆ over the word u= a0a1 . . .an(an+1 . . .) if it starts in the initial state and,
provided it is finite, ends in a terminal state. Further,L(∆) denotes the set of wordsu such
that there is a run of∆ overu.

If M(∆) is a singleton, then wPRS∆ is called aprocess rewrite system(PRS) [16]. PRS,
wPRS, and their respective subclasses are discussed in more detail in [18].

2.2 Linear Temporal Logic (LTL) and the studied problems

The syntax ofLinear Temporal Logic(LTL) [ 17] is defined as follows

ϕ ::= tt | a | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ,

whereX,U are future modal operatorsnextanduntil, while Y,S are their past counterparts
previouslyand since, anda ranges overAct. The logic is interpreted over infinite and
nonempty finite pointed words of actions. Given a wordu = u0u1u2 . . . ∈ Act∗ ∪Actω, |u|
denotes the length of the word (we set|u| = ∞ if u is infinite). A pointed wordis a pair
(u, i) of a nonempty wordu and aposition0≤ i < |u| in this word.

The semantics of LTL formulae is defined inductively as follows:

(u, i) |= tt
(u, i) |= a iff ui = a
(u, i) |= ¬ϕ iff (u, i) 6|= ϕ
(u, i) |= ϕ1∧ϕ2 iff (u, i) |= ϕ1 and (u, i) |= ϕ2

(u, i) |= Xϕ iff i +1 < |u| and (u, i +1) |= ϕ
(u, i) |= ϕ1Uϕ2 iff ∃i ≤ k < |u| .((u,k) |= ϕ2 and ∀ i ≤ j < k. (u, j) |= ϕ1)

(u, i) |= Yϕ iff 0 < i and (u, i−1) |= ϕ
(u, i) |= ϕ1Sϕ2 iff ∃0≤ k≤ i .((u,k) |= ϕ2 and ∀k < j ≤ i . (u, j) |= ϕ1)

We say that a nonempty wordu satisfiesϕ, written u |= ϕ, whenever(u,0) |= ϕ. Given a
set of wordsL, we writeL |= ϕ if u |= ϕ holds for allu∈ L. We say that a runσ over a word
u satisfiesϕ, writtenσ |= ϕ, wheneveru |= ϕ.

Formulaeϕ,ψ are (initially) equivalent, written ϕ ≡i ψ, iff, for all words u, it holds
u |= ϕ ⇐⇒ u |= ψ. Formulaeϕ,ψ areglobally equivalent, writtenϕ≡ψ, iff, for all pointed
words (u, i), it holds (u, i) |= ϕ ⇐⇒ (u, i) |= ψ. Clearly, if two formulae are globally
equivalent then they are also initially equivalent.

The following table defines some of the derived future operators and theirpast counter-
parts.

future modality meaning past modality meaning

Fϕ eventually ttUϕ Pϕ eventually in the past ttSϕ
Gϕ always ¬F¬ϕ Hϕ always in the past ¬P¬ϕ
Fsϕ strict eventually XFϕ Psϕ eventually in the strict pastYPϕ
Gsϕ strict always ¬Fs¬ϕ Hsϕ always in the strict past ¬Ps¬ϕ
∞
Fϕ infinitely often GFϕ Iϕ initially HPϕ
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Křet́ınský et al.

LTL(U,X) ≡i FO
3
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Fig. 1. The hierarchy of basic LTL fragments with respect to the initial equivalence. The dashed line shows the desidability
boundary of the model checking problem for wPRS.

Given a set{O1, . . . ,On} of modalities, then LTL(O1, . . . ,On) denotes an LTL frag-
ment containing all formulae with modalitiesO1, . . . ,On only. Such a fragment is called
basic if it contains future operators only or with each future operator it containsits past
counterpart. For example, the fragment LTL(F,S) is not basic. Figure1 shows an expres-
siveness hierarchy of all studied basic LTL fragments. Indeed, every basic LTL fragment
using standard4 modalities is equivalent to one of the fragments in the hierarchy, where
equivalence between fragments means that every formula of one fragment can be effec-
tively translated into an initially equivalent formula of the other fragment and vice versa.
We also mind the result of [9] stating that each LTL formula can be converted to the one
which employs future operators only, i.e. LTL(U,X) ≡i LTL(U,S,X,Y). However note
that LTL(Fs,Ps,Gs,Hs)≡ LTL(Fs,Ps) is strictly more expressive than LTL(Fs,Gs) as can be
exemplified by a formulaFs(b∧Hsa) ≡i a∧X(aUb). We refer to [20] for greater detail.

This paper deals with the following two verification problems. LetF be an LTL
fragment. Themodel checking problemfor F and wPRS is to decide, for any given
formula ϕ ∈ F and any given wPRS system∆, whetherL(∆) |= ϕ holds. Further,
given any formulaϕ ∈ F , any wPRS system∆, and any nonterminal statept of ∆, the
pointed model checking problemfor F and wPRS is to decide whetherL(pt,∆) |= ϕ; here

4 By standard modalities we mean the ones defined here and also other commonly used modalities likestrict until, release,
weak until, etc. However, it is well possible that one can define a new modality such that there is a basic fragment not
equivalent to any of the fragments in the hierarchy.
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L(pt,∆) denotes the set of all pointed words(u, i) such that∆ has a (finite or infinite) run
p0t0

u0−→ p1t1
u1−→ . . .

ui−1
−→ piti

ui−→ . . . satisfyingu = u0u1u2 . . . andpt = piti .

3 Main result

In [4], we have shown that the model checking problem is decidable for LTL(Fs,Gs). Be-
fore we prove that the problem remains decidable even for a more expressive fragment
LTL(Fs,Ps), we recall the basic structure of the proof for LTL(Fs,Gs).

First, the proof shows that every LTL(Fs,Gs) formula can be effectively translated
into an equivalent disjunction of so-calledα-formulae, which are defined below. Note
that LTL() denotes the fragment of formulae without any modality, i.e. boolean combi-
nations of actions. In what follows, we useϕ1U+ ϕ2 to abbreviateϕ1∧X(ϕ1Uϕ2). Let
δ = θ1O1θ2O2 . . .θnOnθn+1, wheren > 0, eachθi ∈ LTL(), On is ‘∧Gs’, and, for each
i < n, Oi is either ‘U’ or ‘ U+’ or ‘∧X’. Further, letB ⊆ LTL() be a finite set. Anα-formula
is defined as

α(δ,B) =
(

θ1O1(θ2O2 . . .(θnOnθn+1) . . .)
)

∧
^

ψ∈B

GsFsψ .

Hence, a wordu satisfiesα(δ,B) iff u can be written as a concatentaionv1.v2 . . .vn+1 of
words, where

• each wordvi consists only of actions satisfyingθi and
· |vi | ≥ 0 if i = n+1 orOi is ‘U’,
· |vi | > 0 if Oi is ‘U+’,
· |vi | = 1 if Oi is ‘∧X’ or ‘∧Gs’,

• andvn+1 satisfiesGsFsψ for everyψ ∈ B.

Second, decidability of the model checking problem for LTL(Fs,Gs) is then a direct
consequence of the following theorem.

Theorem 3.1 ([4]) The problem whether any given wPRS systems has a run satisfying any
givenα-formula is decidable.

To prove decidability for LTL(Fs,Ps), we show that every LTL(Fs,Ps) formula can be
effectively translated into a disjunction ofPα-formulae. Intuitively, aPα-formula is a con-
junction of anα-formula and a past version of theα-formula. A formal definition of a
Pα-formula makes use ofϕ1S+ ϕ2 to abbreviateϕ1∧Y(ϕ1Sϕ2).

Definition 3.2 Let η = ι1P1ι2P2 . . . ιmPmιm+1, wherem> 0, eachι j ∈ LTL(), and, for each
j < m, Pj is either ‘S’ or ‘ S+’ or ‘∧Y’. Further, letα(δ,B) be anα-formula. Then a
Pα-formula is defined as

Pα(η,δ,B) =
(

ι1P1(ι2P2 . . .(ιmPmιm+1) . . .)
)

∧ α(δ,B) .

Note that the definition of aPα-formula does not contain any past counterpart of
∧ψ∈BGsFsψ as every history is finite — the semantics of LTL is given in terms of words
with a fixed beginning.
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Therefore, a pointed word(u,k) |= Pα(η,δ,B) if and only if (u,k) satisfiesα(δ,B)

andu0 . . .uk−1uk can be written as a concatenationvm+1.vm. . .v2.v1, where each wordvi

consists only of actions satisfyingιi and

• |vi | ≥ 0 if i = m+1 orPi is ‘S’,

• |vi | > 0 if Pi is ‘S+’,

• |vi | = 1 if Pi is ‘∧Y’ or ‘∧Hs’.

The proof of the following lemma is intuitively clear but it is quite a technical exercise, see
[18] for some hints.

Lemma 3.3 Let ϕ be a Pα-formula and p∈ LTL(). FormulaeXϕ, Yϕ, pUϕ, pSϕ, Fsϕ,
Ps(ϕ), as well as, a conjunction of Pα-formulae can be effectively converted into a globally
equivalent disjunction of Pα-formulae.

Theorem 3.4 Every LTL(Fs,Ps) formula ϕ can be translated into a globally equivalent
disjunction of Pα-formulae.

Proof. As Fs,Gs and Ps,Hs are dual modalities, we can assume thatϕ is an
LTL(Fs,Gs,Ps,Hs) formula containing negations in front of actions only. We construct
a finite setAϕ of Pα-formulae such thatϕ is globally equivalent to a disjunction of formu-
lae in Aϕ. Our proof looks like a proof by induction on the structure ofϕ, however it is
done by induction on the length ofϕ. Thus, if ϕ 6∈ LTL(), then we assume that, for each
LTL(Fs,Gs,Ps,Hs) formulaϕ′ shorter thanϕ, we can construct the corresponding setAϕ′ .
Let p be a formula of LTL(). The structure ofϕ fits into one of the following cases.

•p Casep: In this case,ϕ is equivalent top∧Gstt. HenceAϕ = {Pα(tt∧Hstt, p∧Gstt, /0)}.

•∨ Caseϕ1∨ϕ2: Due to induction hypothesis, we can assume that we have setsAϕ1 and
Aϕ2. Clearly,Aϕ = Aϕ1 ∪Aϕ2.

•∧ Caseϕ1∧ϕ2: Due to Lemma3.3, Aϕ can be constructed from the setsAϕ1 andAϕ2.

•Fs CaseFsϕ1: Due to Lemma3.3, the setAϕ can be constructed from the setAϕ1.

•Ps CasePsϕ1: Due to Lemma3.3, the setAϕ can be constructed from the setAϕ1.

•Gs CaseGsϕ1 is divided into the following subcases according to the structure ofϕ1 :
◦p CaseGsp: As Gsp is equivalent tott∧Gsp, we setAϕ = {Pα(tt∧Hstt, tt∧Gsp, /0)}.
◦∧ CaseGs(ϕ2∧ϕ3): As Gs(ϕ2∧ϕ3) ≡ (Gsϕ2)∧ (Gsϕ3), the setAϕ can be constructed

from AGsϕ2 andAGsϕ3 using Lemma3.3. Note thatAGsϕ2 andAGsϕ3 can be constructed
becauseGsϕ2 andGsϕ3 are shorter thanGs(ϕ2∧ϕ3).

◦Fs CaseGsFsϕ2: This case is again divided into the following subcases.
−p CaseGsFsp: As p∈ LTL(), we directly setAϕ = {Pα(tt∧Hstt, tt∧Gstt,{p})}.
−∨ Case GsFs(ϕ3 ∨ ϕ4): As GsFs(ϕ3 ∨ ϕ4) ≡ (GsFsϕ3) ∨ (GsFsϕ4), we setAϕ =

AGsFsϕ3 ∪AGsFsϕ4.
−∧ CaseGsFs(ϕ3 ∧ϕ4): This case is also divided into subcases depending on the

formulaeϕ3 andϕ4.
∗p CaseGsFs(p3∧ p4): As p3∧ p4 ∈ LTL(), this subcase has already been covered

by CaseGsFsp.
∗∨ Case GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)): As GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)) ≡ GsFs(ϕ3 ∧ ϕ5) ∨

GsFs(ϕ3∧ϕ6), we setAϕ = AGsFs(ϕ3∧ϕ5)∪AGsFs(ϕ3∧ϕ6).
∗Fs CaseGsFs(ϕ3∧Fsϕ5): As GsFs(ϕ3∧Fsϕ5) ≡ (GsFsϕ3)∧ (GsFsϕ5), the setAϕ
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can be constructed fromAGsFsϕ3 andAGsFsϕ5 using Lemma3.3.
∗Ps CaseGsFs(ϕ3∧Psϕ5): As GsFs(ϕ3∧Psϕ5) ≡ (GsFsϕ3)∧ (GsFsPsϕ5), the set

Aϕ can be constructed fromAGsFsϕ3 andAGsFsPsϕ5 using Lemma3.3.
∗Gs CaseGsFs(ϕ3∧Gsϕ5): As GsFs(ϕ3∧Gsϕ5) ≡ (GsFsϕ3)∧ (GsFsGsϕ5), the set

Aϕ can be constructed fromAGsFsϕ3 andAGsFsGsϕ5 using Lemma3.3.
∗Hs CaseGsFs(ϕ3∧Hsϕ5): As GsFs(ϕ3∧Hsϕ5) ≡ (GsFsϕ3)∧ (GsFsHsϕ5), the set

Aϕ can be constructed fromAGsFsϕ3 andAGsFsHsϕ5 using Lemma3.3.
−Fs CaseGsFsFsϕ3: As GsFsFsϕ3 ≡ GsFsϕ3, we setAϕ = AGsFsϕ3.
−Ps CaseGsFsPsϕ3: A pointed word(u, i) satisfiesGsFsPsϕ3 iff i = |u| − 1 or u is

an infinite word satisfyingFϕ3. Note thatGs¬tt is satisfied only by finite words at
their last position. Further, a wordu satisfies(Fstt)∧ (GsFstt) iff u is infinite. Thus,
GsFsPsϕ3 ≡ (Gs¬tt)∨ϕ′ whereϕ′ = (Fstt)∧ (GsFstt)∧ (ϕ3∨Psϕ3∨Fsϕ3). Hence,
Aϕ = AGs¬tt∪Aϕ′ whereAϕ′ is constructed fromAFstt, AGsFstt, andAϕ3 ∪APsϕ3 ∪AFsϕ3

using Lemma3.3.
−Gs CaseGsFsGsϕ3: A pointed word(u, i) satisfiesGsFsGsϕ3 iff i = |u| − 1 or u

is an infinite word satisfyingFsGsϕ3. Thus,GsFsGsϕ3 ≡ (Gs¬tt)∨ϕ′ whereϕ′ =

(Fstt)∧ (GsFstt)∧ (FsGsϕ3). Hence,Aϕ = AGs¬tt∪Aϕ′ whereAϕ′ is constructed from
AFstt, AGsFstt, andAFsGsϕ3 using Lemma3.3.

−Hs CaseGsFsHsϕ3: A pointed word(u, i) satisfiesGsFsHsϕ3 iff i = |u|−1 or u is
an infinite word satisfyingGϕ3. Thus,GsFsHsϕ3 ≡ (Gs¬tt)∨ϕ′ whereϕ′ = (Fstt)∧
(GsFstt)∧ (ϕ3∧Hsϕ3∧Gsϕ3). Hence,Aϕ = AGs¬tt ∪Aϕ′ whereAϕ′ is constructed
from AFstt, AGsFstt, Aϕ3, AHsϕ3, andAGsϕ3 using Lemma3.3.

◦Ps CaseGsPsϕ2: A pointed word(u, i) satisfiesGsPsϕ2 iff i = |u|−1 or (u, i) satisfies
Pϕ2. Hence,Aϕ = AGs¬tt ∪Aϕ2 ∪APsϕ2.

◦∨ CaseGs(ϕ2∨ϕ3): According to the structure ofϕ2 andϕ3, there are the following
subcases.
⋆p CaseGs(p2∨ p3): As p2∨ p3 ∈ LTL(), this subcase has already been covered by

CaseGsp.
⋆∧ CaseGs(ϕ2∨ (ϕ4∧ϕ5)): As Gs(ϕ2∨ (ϕ4∧ϕ5)) ≡ Gs(ϕ2∨ϕ4)∧Gs(ϕ2∨ϕ5), the

setAϕ can be constructed fromAGs(ϕ2∨ϕ4) andAGs(ϕ2∨ϕ5) using Lemma3.3.
⋆Fs CaseGs(ϕ2 ∨ Fsϕ4): It holds thatGs(ϕ2 ∨ Fsϕ4) ≡ (Gsϕ2)∨ Fs(Fsϕ4 ∧Gsϕ2)∨

GsFsϕ4. Therefore, the setAϕ can be constructed asAGsϕ2 ∪AFs(Fsϕ4∧Gsϕ2)∪AGsFsϕ4,
whereAFs(Fsϕ4∧Gsϕ2) is created fromAFsϕ4 andAGsϕ2 due to Lemma3.3.

⋆Hs CaseGs(ϕ2∨Hsϕ4): As Gs(ϕ2∨Hsϕ4) ≡ (Gsϕ2)∨Fs(Hsϕ4∧Gsϕ2)∨GsHsϕ4.
Hence,Aϕ = AGsϕ2 ∪AFs(Hsϕ4∧Gsϕ2) ∪A(GsHsϕ4) whereAFs(Hsϕ4∧Gsϕ2) can be created
from AHsϕ4 andAGsϕ2 using Lemma3.3.

⋆Gs,Ps CaseGs(ϕ2∨Gsϕ4∨Psϕ5): There are only the following five subcases (the
others fit to some of the previous cases).
(i) CaseGs(

W

ϕ′∈GGsϕ′): It holds thatGs(
W

ϕ′∈GGsϕ′) ≡ (Gs¬tt)∨
W

ϕ′∈G(XGsϕ′).
Therefore, the setAϕ can be constructed asAGs¬tt ∪

S

ϕ′∈GAXGsϕ′ where each
AXGsϕ′ is created fromAGsϕ′ using Lemma3.3.

(ii) Case Gs(p2 ∨
W

ϕ′∈GGsϕ′): As Gs(p2 ∨
W

ϕ′∈GGsϕ′) ≡ (Gsp2) ∨
W

ϕ′∈G(X(p2U(Gsϕ′))). Therefore, the setAϕ can be constructed as
AGs p2 ∪

S

ϕ′∈GAX(p2U(Gsϕ′)) where eachAX(p2U(Gsϕ′)) is created fromAGsϕ′

using Lemma3.3.
(iii ) Case Gs(

W

ϕ′′∈PPsϕ′′): It holds that Gs(
W

ϕ′′∈PPsϕ′′) ≡ (Gs¬tt) ∨

7
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W

ϕ′′∈P(XPsϕ′′). Therefore, the setAϕ can be constructed asAGs¬tt∪
S

ϕ′′∈PAXPsϕ′′

where eachAXPsϕ′′ is created fromAPsϕ′′ using Lemma3.3.
(iv) Case Gs(p2 ∨

W

ϕ′′∈PPsϕ′′): As Gs(p2 ∨
W

ϕ′′∈PPsϕ′′) ≡ (Gsp2) ∨
W

ϕ′′∈P(X(p2U(Psϕ′′))). Therefore, the setAϕ can be constructed as
AGs p2 ∪

S

ϕ′′∈PAX(p2U(Psϕ′′)) where eachAX(p2U(Psϕ′′)) is created fromAPsϕ′′

using Lemma3.3.
(v) Case Gs(p2 ∨

W

ϕ′∈GGsϕ′ ∨
W

ϕ′′∈PPsϕ′′): As Gs(p2 ∨
W

ϕ′∈GGsϕ′ ∨
W

ϕ′′∈PGsϕ′′) ≡ (Gsp2) ∨
W

ϕ′∈G(X(p2U(Gsϕ′))) ∨
W

ϕ′′∈P(X(p2U(Psϕ′′))).
Therefore, the setAϕ can be constructed asAGs p2 ∪

S

ϕ′∈GAX(p2U(Gsϕ′)) ∪
S

ϕ′′∈PAX(p2U(Psϕ′′)) where eachAX(p2U(Gsϕ′)) is created fromAGsϕ′ and each
AX(p2U(Psϕ′′)) is created fromAPsϕ′′ using Lemma3.3.

◦Gs CaseGsGsϕ2: As Gs(Gsϕ2) ≡ (Gs¬tt)∨ (XGsϕ2), the setAϕ can be constructed as
AGs¬tt ∪AXGsϕ2 whereAXGsϕ2 is created fromAGsϕ2 using Lemma3.3.

◦Hs CaseGsHsϕ2: A pointed word(u, i) satisfiesGs(Hsϕ2) iff i = |u|−1 or (u, |u|−1)

satisfiesHsϕ2 or u is infinite and all its positions satisfyϕ2. Hence,Aϕ = AGs¬tt ∪

AFs((Gs¬tt)∧(Hsϕ2)) ∪A(Hsϕ2)∧ϕ2∧(Gsϕ2) whereAFs((Gs¬tt)∧(Hsϕ2)) and A(Hsϕ2)∧ϕ2∧(Gsϕ2) is
created fromAGs¬tt, AHsϕ2, Aϕ2, andAGsϕ2 using Lemma3.3.

•Hs CaseHsϕ1: This case is divided into the following subcases according to the structure
of ϕ1.
◦p CaseHsp: As Hsp is equivalent tott∧Hsp, we setAϕ = {Pα(tt∧Hsp, tt∧Gstt, /0)}.
◦∧ CaseHs(ϕ2∧ϕ3): As Hs(ϕ2∧ϕ3)≡ (Hsϕ2)∧(Hsϕ3), the setAϕ can be constructed

from AHsϕ2 andAHsϕ3 using Lemma3.3.
◦Fs CaseHsFsϕ2: A pointed word(u, i) satisfiesHsFsϕ2 iff i = 0 or (u, i) satisfiesFϕ2.

Note thatHs¬tt is satisfied by(u, i) only if i = 0. Therefore,Aϕ = AHs¬tt∪Aϕ2 ∪AFsϕ2.
◦Ps CaseHsPsϕ2: Every run has to start in the initial state, and so, every history is finite.

Hence, a pointed word(u, i) satisfiesHsPsϕ2 iff i = 0. Therefore,Aϕ = AHs¬tt.
◦∨ CaseHs(ϕ2∨ϕ3): According to the structure ofϕ2 andϕ3, there are the following

subcases.
⋆p CaseHs(p2∨ p3): As p2∨ p3 ∈ LTL(), this subcase has already been covered by

CaseHsp.
⋆∧ CaseHs(ϕ2∨ (ϕ4∧ϕ5)): As Hs(ϕ2∨ (ϕ4∧ϕ5))≡Hs(ϕ2∨ϕ4)∧Hs(ϕ2∨ϕ5), the

setAϕ can be constructed fromAHs(ϕ2∨ϕ4) andAHs(ϕ2∨ϕ5) using Lemma3.3.
⋆Ps CaseHs(ϕ2 ∨Psϕ4): It holds thatHs(ϕ2 ∨Psϕ4) ≡ (Hsϕ2)∨Ps(Psϕ4 ∧Hsϕ2).

Therefore, the setAϕ can be constructed asAHsϕ2 ∪ APs(Psϕ4∧Hsϕ2), where
APs(Psϕ4∧Hsϕ2) is created fromAPsϕ4 andAHsϕ2 due to Lemma3.3.

⋆Gs CaseHs(ϕ2∨Gsϕ4): As Hs(ϕ2∨Gsϕ4) ≡ (Hsϕ2)∨Ps(Gsϕ4∧Hsϕ2). Hence,Aϕ
is constructed asAHsϕ2 ∪APs(Gsϕ4∧Hsϕ2) whereAPs(Gsϕ4∧Hsϕ2) is created fromAGsϕ4

andAHsϕ2) using Lemma3.3.
⋆Fs,Hs CaseHs(ϕ2∨Fsϕ4∨Hsϕ5): There are only the following five subcases (the

others fit to some of the previous cases).
(i) CaseHs(

W

ϕ′∈F Fsϕ′): It holds thatHs(
W

ϕ′∈F Fsϕ′) ≡ (Hs¬tt)∨
W

ϕ′∈F(YFsϕ′).
Therefore, the setAϕ can be constructed asAHs¬tt ∪

S

ϕ′∈F AYFsϕ′ where each
AYFsϕ′ is created fromAFsϕ′ using Lemma3.3.

(ii) Case Hs(p2 ∨
W

ϕ′∈F Fsϕ′): As Hs(p2 ∨
W

ϕ′∈F Fsϕ′) ≡ (Hsp2) ∨
W

ϕ′∈F(Y(p2S(Fsϕ′))). Therefore, the setAϕ can be constructed as
AHs p2 ∪

S

ϕ′∈F AY(p2S(Fsϕ′)) where eachAY(p2S(Fsϕ′)) is created fromAFsϕ′

8
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using Lemma3.3.
(iii ) Case Hs(

W

ϕ′′∈H Hsϕ′′): It holds that Hs(
W

ϕ′′∈H Hsϕ′′) ≡ (Hs¬tt) ∨
W

ϕ′′∈H(YHsϕ′′). Therefore, the setAϕ can be constructed asAHs¬tt ∪
S

ϕ′′∈H AYHsϕ′′ where eachAYHsϕ′′ is created fromAHsϕ′′ using Lemma3.3.
(iv) Case Hs(p2 ∨

W

ϕ′′∈H Hsϕ′′): As Hs(p2 ∨
W

ϕ′′∈H Hsϕ′′) ≡ (Hsp2) ∨
W

ϕ′′∈H(Y(p2S(Hsϕ′′))). Therefore, the setAϕ can be constructed as
AHs p2 ∪

S

ϕ′′∈H AY(p2S(Hsϕ′′)) where eachAY(p2S(Hsϕ′′)) is created fromAHsϕ′′

using Lemma3.3.
(v) Case Hs(p2 ∨

W

ϕ′∈F Fsϕ′ ∨
W

ϕ′′∈H Hsϕ′′): As Hs(p2 ∨
W

ϕ′∈F Fsϕ′ ∨
W

ϕ′′∈H Hsϕ′′) ≡ (Hsp2) ∨
W

ϕ′∈F(Y(p2S(Fsϕ′))) ∨
W

ϕ′′∈H(Y(p2S(Hsϕ′′))).
Therefore, the setAϕ can be constructed asAHs p2 ∪

S

ϕ′∈F AY(p2S(Fsϕ′)) ∪
S

ϕ′′∈H AY(p2S(Hsϕ′′)) where eachAY(p2S(Fsϕ′)) is created fromAFsϕ′ and each
AY(p2S(Hsϕ′′)) is created fromAHsϕ′′ using Lemma3.3.

◦Gs CaseHsGsϕ2: A pointed word(u, i) satisfiesHs(Gsϕ2) iff i = 0 or (u,0) satisfies
Gsϕ2. Hence,Aϕ = AHs¬tt ∪APs((Hs¬tt)∧(Gsϕ2)) whereAPs((Hs¬tt)∧(Gsϕ2)) is created from
AHs¬tt andAGsϕ2 using Lemma3.3.

◦Hs CaseHsHsϕ2: As Hs(Hsϕ2) ≡ (Hs¬tt)∨ (YHsϕ2), the setAϕ can be constructed as
AHs¬tt ∪AYHsϕ2 whereAYHsϕ2 is created fromAHsϕ2 using Lemma3.3.

2

Remark 3.5 In other words, we have just shown that LTL(Fs,Ps) is a semantic subset (with
respect to global equivalence) of every formalism that is (i) able to expressp, Gsp, Hsp, and
GsFsp, wherep∈ LTL(); and (ii) is closed under disjunction, conjunction, and applications
of X , Y , pU , andpS , wherep∈ LTL().

Now, using Theorem3.1, we can easily solve the problem dual to the model checking
problem, i.e. given any wPRS system and anyPα-formula, to decide whether the system
has a run satisfying the formula.

Theorem 3.6 The problem whether any given wPRS system has a run satisfying any given
Pα-formula is decidable.

Proof. A run over a wordu satisfies a formulaϕ iff (u,0) |= ϕ. Moreover, (u,0) |=

Pα(η,δ,B) iff (u0,0) |= η and (u,0) |= α(δ,B). Let η = ι1P1ι2P2 . . . ιmPmιm+1. It fol-
lows from the semantics of LTL that(u0,0) |= η if and only if (u0,0) |= ιm andPi = S for
all i < m. Therefore, the problem is to check whetherPi = S for all i < m and whether
the given wPRS system has a run satisfyingιm∧α(δ,B). As ιm∧α(δ,B) can be easily
translated into a disjunction ofα-formulae, Theorem3.1finishes the proof. 2

As LTL(Fs,Ps) is closed under negation, Theorem3.4 and Theorem3.6 give us the
following.

Corollary 3.7 The model checking problem for wPRS and LTL(Fs,Ps) is decidable.

Moreover, we can show that the pointed model checking problem is decidable for wPRS
and LTL(Fs,Ps) as well. Again, we solve the dual problem.

Theorem 3.8 Let∆ be a wPRS and pt be a reachable nonterminal state of∆. The problem
whether L(pt,∆) contains a pointed word(u, i) satisfying any given Pα-formula is decid-
able.

9
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Proof. Let ∆ = (M,≥,R, p0, t0) be a wPRS andpt be a reachable nonterminal state of
∆. We construct a wPRS∆′ = (M,≥,R′, p0, t0.X) whereX 6∈ Const(∆) is a fresh process
constant,f 6∈ Act(∆) is a fresh action,

R′ = R∪{(p(t.X)
a
→֒ pXa),(pXa

f
→֒ pYa),(pYa

a
→֒ p′t ′) | pt

a
−→ p′t ′},

andXa,Ya 6∈ Const(∆) are fresh process constants for eacha∈ Act(∆).
It is easy to see that(u, i) is in L(pt,∆) iff u0u1 . . .ui−1ui . f .ui .ui+1 . . . is in L(∆′). Hence,

for any givenPα-formulaϕ = Pα(η,δ,B) we construct aPα-formulaϕ′ = Pα(η, tt∧X f ∧
Xδ,B). We get that

L(pt,∆) |= Pα(η,δ,B) ⇐⇒ L(∆′) |= F(Pα(η, tt∧X f ∧Xδ,B))

and due to Lemma3.3and Theorem3.6the proof is done. 2

As LTL(Fs,Ps) is closed under negation and Theorem3.4 works with global equiva-
lence, Theorem3.8give us the following.

Corollary 3.9 The pointed model checking problem is decidable for wPRS and LTL(Fs,Ps).

4 Conclusion

We have examined the model checking problem for basic LTL fragments with both fu-
ture and past modalities and the PRS class, i.e. the class of infinite state system gener-
ated by Process Rewrite Systems (PRS), possibly enriched with a weak finitecontrol unit
(weakly extended PRS – wPRS). We have proved that the problem is decidable for wPRS
and LTL(Fs,Ps), i.e. the fragment with modalitiesstrict eventually, eventually in the strict
past, and derived modalitiesstrict alwaysandalways in the strict past. 5 However, both
these problems are at least as hard as the reachability problem for PN [6] (EXPSPACE-hard
without any elementary upper bound known).

Note that the expressive power of the fragment LTL(Fs,Ps) semantically coincides with
formulae of First-Order Monadic Logic of Order containing at most 2 variables and no
successor predicate (FO

2[<]), and that First-Order Monadic Logic of Order containing at
most 2 variables (FO

2) coincides with an LTL(F,X,P,Y) fragment [8]. Further, let us
recall our undecidability results for model checking of PA systems (a subclass of PRS) and

fragments LTL(
∞
F,X) and LTL(U), respectively (the former with modalitiesinfinitely often

andnextonly, the latter withuntil as the only modality), see [4].
Thus, we have located the borderline between decidability and undecidabilityof the

problem for wPRS and the LTL fragments, as well as for wPRS and First-Order Monadic
Logic of Order: it is decidable forFO

2[<] and undecidable forFO
2. For the sake of

completeness, we note that the First-Order Monadic Logic of Order containing at most
3 variables (FO

3) coincides with the set of all LTL formulae as well as with the full First-
Order Monadic Logic of Order [11,10]. Finally, we note that the decidability results are
new for the PRS class too and they are illustrated by the decidability border in Figure1.

5 In fact, we have shown that the problem is decidable even for amore expressive fragment containing negations of disjunc-
tions of so-calledPα-formulae (see Definition3.2).
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