
Refining the Undecidability Border
of Weak Bisimilarity

Mojmı́r Křet́ınský 1 Vojtěch Řehák 2 Jan Strejček 3

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno,

Czech Republic
{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract

Weak bisimilarity is one of the most studied behavioural equivalences. This equiva-
lence is undecidable for pushdown processes (PDA), process algebras (PA), and
multiset automata (MSA, also known as parallel pushdown processes, PPDA). Its
decidability is an open question for basic process algebras (BPA) and basic paral-
lel processes (BPP). We move the undecidability border towards these classes by
showing that the equivalence remains undecidable for weakly extended versions of
BPA and BPP. In fact, we show that the weak bisimulation equivalence problem
is undecidable even for normed subclasses of BPA and BPP extended with a finite
constraint system.

Key words: weak bisimulation, infinite-state systems, decidability

1 Introduction

Equivalence checking is one of the main streams in verification of concurrent
systems. It aims at demonstrating some semantic equivalence between two
systems, one of which is usually considered as representing the specification,
the other as its implementation or refinement. The semantic equivalences
are designed to correspond to the system behaviours at the desired level of
abstraction; the most prominent ones being strong and weak bisimulations.

Current software systems often exhibit an evolving structure and/or oper-
ate on unbounded data types. Hence automatic verification of such systems
usually requires modelling them as infinite-state ones. Various specification

1 Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
2 Supported by the research centre “Institute for Theoretical Computer Science (ITI)”,
project No. 1M0021620808.
3 Supported by the Academy of Sciences of the Czech Republic, grant No. 1ET408050503.

Submitted to INFINITY 2005.

Křet́ınský et al.

formalisms have been developed with their respective advantages and limita-
tions. Petri nets (PN), pushdown processes (PDA), and process algebras like
BPA, BPP, or PA all serve to exemplify this. Here we employ the classes
of infinite-state systems defined by term rewrite systems and called Process
Rewrite Systems (PRS) as introduced by Mayr [12]. PRS subsume a variety
of the formalisms studied in the context of formal verification (e.g. all the
models mentioned above). The relevance of various subclasses of PRS for
modelling and analysing programs is shown, for example, in [5]; for automatic
verification we refer to surveys [2,22].

The relative expressive power of various process classes has been studied,
especially with respect to strong bisimulation; see [3,16] and also [12] showing
the strictness of the hierarchy of PRS classes. Adding a finite-state con-
trol unit to the PRS rewriting mechanism results in so-called state-extended
PRS (sePRS) classes, see for example [8]. We have extended the PRS hi-
erarchy by sePRS classes and refined this extended hierarchy by introducing
restricted state extensions of two types: PRS with a weak finite-state control
unit (wPRS, inspired by weak automata [17]) [11,10] and PRS with a finite
constraint system (fcPRS) [24].

Research on the expressive power of process classes has been accompanied
by exploring algorithmic boundaries of various verification problems. In this
paper we focus on the equivalence checking problem taking weak bisimilarity
as the notion of behavioral equivalence.

State of the art: Regarding sequential systems, i.e. those without parallel
composition, the weak bisimilarity problem is undecidable for PDA even for
the normed case [19]. However, it is conjectured [13] that weak bisimilarity
is decidable for basic process algebras (BPA); the best known lower bound is
EXPTIME -hardness [13].

Considering parallel systems, even strong bisimilarity is undecidable for
multiset automata (MSA, also known as parallel pushdown processes or state-
extended BPP) [16] using the technique introduced in [6]. However, it is
conjectured [7] that the weak bisimilarity problem is decidable for basic parallel
processes (BPP); the best known lower bound is PSPACE -hardness [20].

For the simplest systems combining both parallel and sequential operators,
called PA processes [1], the weak bisimilarity problem is undecidable [21].
It is an open question for the normed PA; the best known lower bound is
EXPTIME -hardness [13].

Our contribution: We move the undecidability border of the weak bisim-
ilarity problem towards the classes of BPA and BPP, where the problem is
conjectured to be decidable. Section 3 shows undecidability of the considered
problem for the weakly extended versions of BPA (wBPA) and BPP (wBPP).
In Section 4, we strengthen the result for even more restricted systems, namely
for normed fcBPA and normed fcBPP systems. In fact, the result is not new
for wBPA due to the following reasons: Mayr [13] has shown that adding a

2

Křet́ınský et al.

finite-state unit of the minimal non-trivial size 2 to a BPA process already
makes weak bisimilarity undecidable. Our inspection of his proof shows that
the result is valid for wBPA as well.

2 Preliminaries

We recall the definitions of labelled transition system and weak bisimilarity.
Then we define the syntax of process rewrite systems, (weak) finite-state unit
extensions of PRS, and PRS with finite constraint systems. Their semantics
is given in terms of labelled transition systems.

Definition 2.1 Let Act = {a, b, . . .} be a set of actions such that Act contains
a distinguished silent action τ . A labelled transition system is a pair (S,−→),
where S is a set of states and −→⊆ S × Act × S is a transition relation.

We write s1
a−→ s2 instead of (s1, a, s2) ∈−→. The transition relation is

extended to finite words over Act in the standard way. Further, we extend

the relation to language L ⊆ Act∗ such that s1
L−→ s2 if s1

w−→ s2 for some

w ∈ L. Moreover, we write s1 −→∗ s2 instead of s1
Act∗−→ s2. The weak

transition relation =⇒⊆ S × Act × S is defined as
τ

=⇒=
τ∗
−→ and

a
=⇒=

τ∗aτ∗
−→

for all a 6= τ .

Definition 2.2 A binary relation R on states of a labelled transition system
is a weak bisimulation iff whenever (s1, s2) ∈ R then for any a ∈ Act :

• if s1
a−→ s′1 then s2

a
=⇒ s′2 for some s′2 such that (s′1, s

′
2) ∈ R and

• if s2
a−→ s′2 then s1

a
=⇒ s′1 for some s′1 such that (s′1, s

′
2) ∈ R.

States s1 and s2 are weakly bisimilar, written s1 ≈ s2, iff (s1, s2) ∈ R for some
weak bisimulation R.

We use a characterization of weak bisimilarity in terms of a bisimulation
game, see e.g. [23]. This is a two-player game between an attacker and a
defender played in rounds on pairs of states of a considered labelled transition
system. In a round starting at a pair of states (s1, s2), the attacker first chooses
i ∈ {1, 2}, an action a ∈ Act , and a state s′i such that si

a−→ s′i. The defender
then has to choose a state s′3−i such that s3−i

a
=⇒ s′3−i. The states s′1, s

′
2 form

a pair of starting states for the next round. A play is a maximal sequence of
pairs of states chosen by players in the given way. The defender is the winner
of every infinite play. A finite game is lost by the player who cannot make
any choice satisfying the given conditions. It can be shown that two states
s1, s2 of a labelled transition system are not weakly bisimilar if and only if the
attacker has a winning strategy for the bisimulation game starting in these
states.

Let Const = {X, . . .} be a set of process constants. The set of process

3

Křet́ınský et al.

terms (ranged over by t, . . .) is defined by the abstract syntax

t ::= ε | X | t.t | t‖t

where ε is the empty term, X ∈ Const is a process constant; and ’.’ and ’‖’
mean sequential and parallel composition respectively. We always work with
equivalence classes of terms modulo commutativity and associativity of ’‖’,
associativity of ’.’, and neutrality of ε, i.e. ε.t = t.ε = t‖ε = t. We distinguish
four classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 6∈ 1,
S – sequential terms - terms without parallel composition, e.g. X.Y.Z,
P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,
G – general terms - terms with arbitrarily nested sequential and parallel com-

positions, e.g. (X.(Y ‖Z))‖W .

Definition 2.3 Let α, β be classes of process terms α, β ∈ {1, S, P,G} such
that α ⊆ β. An (α, β)-PRS (process rewrite system) ∆ is a finite set of rewrite

rules of the form t1
a

↪→ t2, where t1 ∈ α r {ε}, t2 ∈ β are process terms and
a ∈ Act is an action.

Given a PRS ∆, let Const(∆) and Act(∆) be the respective (finite) sets
of all constants and all actions which occur in the rewrite rules of ∆.

An (α, β)-PRS ∆ determines a labelled transition system where states are
process terms t ∈ β over Const(∆). The transition relation −→ is the least
relation satisfying the following inference rules (recall that ‘‖’ is commutative):

(t1
a

↪→ t2) ∈ ∆

t1
a−→ t2

t1
a−→ t2

t1‖t
a−→ t2‖t

t1
a−→ t2

t1.t
a−→ t2.t

The formalism of process rewrite systems can be extended to include
a finite-state control unit in the following way.

Definition 2.4 Let M = {m,n, . . .} be a set of control states. Let α, β be
classes of process terms α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-sePRS
(state extended process rewrite system) ∆ is a finite set of rewrite rules of the

form (m, t1)
a

↪→ (n, t2), where t1 ∈ α r {ε}, t2 ∈ β, m, n ∈ M , and a ∈ Act .

M(∆) denotes the finite set of control states which occur in ∆.

An (α, β)-sePRS ∆ determines a labelled transition system where states
are the pairs of the form (m, t) such that m ∈ M(∆) and t ∈ β is a process
term over Const(∆). The transition relation −→ is the least relation satisfying
the following inference rules:

((m, t1)
a

↪→ (n, t2)) ∈ ∆

(m, t1)
a−→ (n, t2)

(m, t1)
a−→ (n, t2)

(m, t1‖t)
a−→ (n, t2‖t)

(m, t1)
a−→ (n, t2)

(m, t1.t)
a−→ (n, t2.t)

4

Křet́ınský et al.

To shorten our notation we write mt in lieu of (m, t).

Definition 2.5 An (α, β)-sePRS ∆ is called a process rewrite system with a
weak finite-state control unit or just a weakly extended process rewrite system,
written (α, β)-wPRS, if there exists a partial order ≤ on M(∆) such that every

rule (m, t1)
a

↪→ (n, t2) of ∆ satisfies m ≤ n.

Finally, we recall the extension of process rewrite systems with finite con-
straint systems introduced in [24]. This extension has been directly motivated
by constraint systems used in concurrent constraint programming (CCP), for
example, see [18].

Definition 2.6 A finite constraint system is a bounded lattice (C,≥,∧, tt, ff),
where C is a finite set of constraints, ≥ (called entailment) is a partial ordering
on this set, ∧ is the least upper bound operation, and tt (true), ff (false) are
the least and the greatest elements of C respectively (ff ≥ tt and tt 6= ff).

Example 2.7 An example of a constraint system given by its Hasse diagram.

ff

~~
~~ >>

>>

m
CC

CC n
}}

}}

tt

Definition 2.8 Let α, β be classes of process terms, α, β ∈ {1, S, P,G}, such
that α ⊆ β. Let (C(∆),≥,∧, tt, ff) be a finite constraint system. An (α, β)-
fcPRS (PRS with a finite constraint system) ∆ is a finite set of rewrite rules

of the form (m, t1)
a

↪→ (n, t2), where t1 ∈ α, t1 6= ε, t2 ∈ β are process terms,
a ∈ Act , and m, n ∈ C(∆) are constraints.

An (α, β)-fcPRS ∆ determines a labelled transition system where states
are the pairs of the form (m, t) such that m ∈ C(∆) r {ff} and t ∈ β is a
process term over Const(∆). The transition relation −→ is the least relation
satisfying the following inference rules:

((m, t1)
a

↪→ (n, t2)) ∈ ∆

(o, t1)
a−→ (o ∧ n, t2)

if o ≥ m and o ∧ n 6= ff,

(o, t1)
a−→ (p, t2)

(o, t1‖t)
a−→ (p, t2‖t)

,
(o, t1)

a−→ (p, t2)

(o, t1.t)
a−→ (p, t2.t)

.

To shorten our notation we write mt in lieu of (m, t).

As in CCP, the constraint system describes possible behaviour of a store.
The constraint m in a state mt represents a current value of the store. The
two side conditions of the first inference rule are also very close to principles

used in CCP. The first one (o ≥ m) ensures the rule (mt1
a

↪→ nt2) ∈ ∆ can

5

Křet́ınský et al.

be used only if the current value of the store o entails m (it is similar to
ask(m) in CCP). The second condition (o ∧ n 6= ff) guarantees that the store
stays consistent after the application of the rule (analogous to a consistency
requirement when processing tell(n) in CCP).

An important observation is that the value of a store can move in a lattice
only upwards as o ∧ n always entails o. Intuitively, partial information can
only be added to the store, but never retracted (the store is monotonic).

We note that an execution of a transition which starts in a state with o
on the store and which is generated by a rule (mt1

a
↪→ nt2) ∈ ∆ implies that

for every subsequent value of the store p the conditions p ≥ m and p ∧ n 6= ff
are satisfied (and thus the use of the rule cannot be forbidden by a value of
the store in the future). The first condition p ≥ m comes from the monotonic
behaviour of the store. The second condition comes from two following facts:
the constraint n of the rule can only change the store in the first application
of the rule; and p ∧ n = p holds for any subsequent state p of the store.

Definition 2.9 An (α, β)-fcPRS ∆ is normed in a state m0t0 of ∆ if and only
if, for all states mt satisfying m0t0 −→∗ mt, it holds that mt −→∗ oε for some
o ∈ C(∆).

Some classes of (α, β)-PRS correspond to widely known models as finite-
state systems (FS), basic process algebras (BPA), basic parallel processes (BPP),
process algebras (PA), pushdown processes (PDA, see [4] for justification), and
Petri nets (PN). The other (α, β)-PRS classes were introduced and named as
PAD, PAN, and PRS by Mayr [12]. The correspondence between (α, β)-PRS
classes and the acronyms is given in Figure 1. Instead of (α, β)-sePRS, (α, β)-
wPRS, and (α, β)-fcPRS we use the prefixes ‘se-’, ‘w-’, and ‘fc-’ in connection
with the acronym for the corresponding (α, β)-PRS class. For example, we
use wBPA and wBPP rather than (1, S)-wPRS and (1, P)-wPRS, respectively.
Finally, we note that seBPP are also known as multiset automata (MSA) or
parallel pushdown processes (PPDA).

Figure 1 depicts relations between the expressive power of the considered
classes. The expressive power of a class is measured by the set of labelled
transition systems that are definable (up to strong bisimulation equivalence)
by the class. A solid line between two classes means that the upper class is
strictly more expressive than the lower one. A dotted line means that the
upper class is at least as expressive as the lower class (and the strictness is
just our conjecture). Details can be found in [11,10].

3 Undecidability of Weak Bisimilarity

In this section, we show that weak bisimilarity is undecidable for the classes
wBPA and wBPP. More precisely, we study the following problems for ex-
tended (α, β)-PRS classes.

6

Křet́ınský et al.

sePRS

wPRS

sssssssssssssssssssssss

IIIIIIIIIIIIIIIIIIIIII

fcPRS

sssssssssssssssssssssss

IIIIIIIIIIIIIIIIIIIIII
PRS

(G, G)-PRS

ssssssssssssssssssssss

IIIIIIIIIIIIIIIIIIIII

sePAD sePAN

wPAD

KKKKKKKKKKKKKKKKKKKKKKK wPAN

uuuuuuuuuuuuuuuuuuuuuu
fcPAD

KKKKKKKKKKKKKKKKKKKKKKK fcPAN

uuuuuuuuuuuuuuuuuuuuuu
PAD

(S, G)-PRS

JJJJJJJJJJJJJJJJJJJJJJ
PAN

(P, G)-PRS

vvvvvvvvvvvvvvvvvvvvv
sePA

nnnnnnnnnnnnnnnnnn

NNNNNNNNNNNNNNNNN

wPA

ttttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHHH

fcPA

ttttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHHH
{se,w,fc}PDA=PDA=seBPA

(S, S)-PRS
PA

(1, G)-PRS

tttttttttttttttttttttt

HHHHHHHHHHHHHHHHHHHHH
{se,w,fc}PN=PN

(P, P)-PRS

seBPP=MSA

wBPA wBPP
↑undecidable

\\\\\\\\\\\

bbbbbbbbbb
fcBPA fcBPP
BPA

(1, S)-PRS

SSSSSSSSSSSSSSSS
BPP

(1, P)-PRS

llllllllllllll

↓decidable
aaaaaaaa ______________________________

{se,w,fc}FS=FS
(1, 1)-PRS

Fig. 1. The hierarchy with (un)decidability boundaries of weak bisimilarity.

Problem: Weak bisimilarity problem for an extended (α, β)-PRS class
Instance: An extended (α, β)-PRS system ∆ and two of its

states mt, m′t′

Question: Are the two states mt and m′t′ weakly bisimilar?

3.1 wBPA

In [13] Mayr studied the question of how many control states are needed in
PDA to make weak bisimilarity undecidable.

Theorem 3.1 ([13], Theorem 29) Weak bisimilarity is undecidable for push-
down automata with only 2 control states.

The proof is done by a reduction of Post’s correspondence problem to the
weak bisimilarity problem for PDA. The constructed PDA has only two control
states, p and q. Quick inspection of the construction shows that the resulting
pushdown automata are in fact wBPA systems as there is no transition rule
changing q to p and each rule has only one process constant on the left hand

7

Křet́ınský et al.

side. Hence Mayr’s theorem can be reformulated as follows.

Theorem 3.2 Weak bisimilarity is undecidable for wBPA systems with only
2 control states.

3.2 wBPP

We show that the non-halting problem for Minsky 2-counter machines can be
reduced to the weak bisimilarity problem for wBPP. First, let us recall the
notions of Minsky 2-counter machine and the non-halting problem.

A Minsky 2-counter machine, or a machine for short, is a finite sequence

N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt

where n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction for

• increment : ck:= ck+1; goto lr, or

• test-and-decrement : if ck>0 then ck:= ck-1; goto lr else goto ls

where k ∈ {1, 2} and 1 ≤ r, s ≤ n.

The semantics of a machine N is given by a labelled transition system the
states of which are configurations of the form (lj, v1, v2) where lj is a label of
an instruction to be executed and v1, v2 are nonnegative integers representing
current values of counters c1 and c2, respectively. The transition relation is
the smallest relation satisfying the following conditions: if ij is an instruction
of the form

• c1:= c1+1; goto lr, then (lj, v1, v2)
inc−→ (lr, v1 + 1, v2) for all v1, v2 ≥ 0;

• if c1>0 then c1:= c1-1; goto lr else goto ls, then (lj, v1 + 1, v2)
dec−→

(lr, v1, v2) and (lj, 0, v2)
zero−→ (ls, 0, v2) for all v1, v2 ≥ 0;

and the analogous condition for instructions manipulating c2. We say that
the (computation of) machine N halts if there are numbers v1, v2 ≥ 0 such
that (l1, 0, 0) −→∗ (ln, v1, v2). Let us note that the system is deterministic,
i.e. for every configuration there is at most one transition leading from the
configuration.

The non-halting problem is to decide whether a given machine N does not
halt. The problem is undecidable [15].

Let us fix a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt. We
construct a wBPP system ∆ such that its states simL1 and simL′

1 are weakly
bisimilar if and only if N does not halt. Roughly speaking, we create a set
of wBPP rules allowing us to simulate the computation of N by two separate
sets of terms. If the instruction halt is reached in the computation of N ,
the corresponding term from one set can perform the action halt , while the
corresponding term from the other set can perform the action halt ′. Therefore,
the starting terms are weakly bisimilar if and only if the machine does not
halt.

8

Křet́ınský et al.

The wBPP system ∆ we are going to construct uses five control states,
namely sim, check 1, check

′
1, check 2, check

′
2. We associate each label lj and

each counter ck with process constants Lj, L
′
j and Xk, Yk respectively. A

parallel composition of x copies of Xk and y copies of Yk, written Xx
k ‖Y

y
k ,

represents the fact that the counter ck has the value x − y. Hence, terms
simLj‖Xx1

1 ‖Y
y1

1 ‖Xx2
2 ‖Y

y2

2 and simL′
j‖X

x1
1 ‖Y

y1

1 ‖Xx2
2 ‖Y

y2

2 are associated with
a configuration (lj, x1 − y1, x2 − y2) of the machine N . Some rules contain
auxiliary process constants. In what follows, β stands for a term of the form
β = Xx1

1 ‖Y
y1

1 ‖Xx2
2 ‖Y

y2

2 . The control states checkk, check
′
k for k ∈ {1, 2} are

intended for testing emptiness of the counter ck. The only rules applicable in
these control states are:

check 1X1
chk1
↪→ check 1ε check 2X2

chk2
↪→ check 2ε

check ′
1Y1

chk1
↪→ check ′

1ε check ′
2Y2

chk2
↪→ check ′

2ε

One can readily confirm that checkkβ ≈ check ′
kβ if and only if the value of ck

represented by β equals zero.

In what follows we construct a set of wBPP rules for each instruction of the
machine N . At the same time we argue that the only chance for the attacker
to win is to simulate the machine without cheating as every cheating can be
punished by the defender’s victory. This attacker’s strategy is winning if and
only if the machine halts.

Halt: ln : halt

Halt instruction is translated into the following two rules:

simLn
halt
↪→ simε simL′

n

halt ′

↪→ simε

Clearly, the states simLn‖β and simL′
n‖β are not weakly bisimilar.

Increment: lj : ck:= ck+1; goto lr

For each such an instruction of the machine N we add the following rules to ∆:

simLj
inc
↪→ simLr‖Xk simL′

j

inc
↪→ simL′

r‖Xk

Obviously, every round of the bisimulation game starting at states simLj‖β
and simL′

j‖β ends up in states simLr‖Xk‖β and simL′
r‖Xk‖β.

Test-and-decrement: lj : if ck>0 then ck:= ck-1; goto lr else goto ls

For any such instruction of the machine N we add two sets of rules to ∆, one
for the ck > 0 case and the other for the ck = 0 case. The wBPP formalism
has no power to rewrite a process constant corresponding to a label lj and to

9

Křet́ınský et al.

check whether ck > 0 at the same time. Therefore, in the bisimulation game it
is the attacker who has to decide whether ck > 0 holds or not, i.e. whether he
will play an action dec or an action zero. We show that whenever the attacker
tries to cheat, the defender can win the game.

At this point our construction of wBPP rules uses a variant of the technique
called defender’s choice [9]. In a round starting at the pair of states s1, s2,
the attacker is forced to choose one specific transition (indicated by a wavy
arrow henceforth). If he chooses a different transition, say sk

a−→ s where
k ∈ {1, 2}, then there exists a transition s3−k

a−→ s that enables the defender
to reach the same state and win the play. The name of this technique refers
to the fact that after the attacker chooses the specific transition, the defender
can choose an arbitrary transition with the same label. These transitions are
indicated by solid arrows. The dotted arrows stands for auxiliary transitions
which compel the attacker to play the specific transition.

First, we discuss the following rules designed for the ck > 0 case:

simLj
dec
↪→ simAk,r simAk,r

dec
↪→ checkkε simBk,r

dec
↪→ simLr‖Yk

simLj
dec
↪→ simBk,r simAk,r

dec
↪→ simL′

r‖Yk simBk,r
dec
↪→ simL′

r‖Yk

simL′
j

dec
↪→ simAk,r simAk,r

dec
↪→ check ′

kε simBk,r
dec
↪→ check ′

kε

simL′
j

dec
↪→ simBk,r simCk,r

dec
↪→ simL′

r‖Yk

simL′
j

dec
↪→ simCk,r simCk,r

dec
↪→ check ′

kε

The situation can be depicted as follows.

simLj‖β

dec

����
��

��
��

��
��

�

dec

��:
::

::
::

::
::

::
simL′

j‖β
dec

uu

dec

��

dec

��
�]

�]
�]

�]
�]

�]
�]

�]

simAk,r‖β

dec

�� �D
�D
�D
�D
�D
�D
�D
�D

dec

))

dec

++

simBk,r‖β
dec

�� �A
�A
�A
�A
�A
�A
�A
�A
�A

dec

��

dec

((

simCk,r‖β
dec

����
��

��
��

��
��

�
dec

��5
55

55
55

55
55

5

checkkβ simLr‖Yk‖β simL′
r‖Yk‖β check ′

kβ

Let us assume that in a round starting at states simLj‖β, simL′
j‖β the

attacker decides to perform the action dec. Due to the principle of defender’s

choice employed here, the attacker has to play the transition simL′
j‖β

dec−→
simCk,r‖β, while the defender can choose between the transitions leading from
simLj‖β either to simAk,r‖β or to simBk,r‖β. Thus, the round will finish
either in states simAk,r‖β, simCk,r‖β or in states simBk,r‖β, simCk,r‖β. Using
the defender’s choice again, one can easily see that the next round ends up in
checkkβ or simLr‖Yk‖β, and simL′

r‖Yk‖β or check ′
kβ. The exact combination

10

Křet́ınský et al.

is chosen by the defender. The defender will not choose any pair of states
where one control state is sim and the other is not as such states are clearly not
weakly bisimilar. Hence, the two considered rounds of the bisimulation game
end up in a pair of states either simLr‖Yk‖β, simL′

r‖Yk‖β or checkkβ, check ′
kβ.

The latter pair is weakly bisimilar iff the value of ck represented by β is zero,
i.e. iff the attacker cheats when he decides to play an action dec. This means
that if the attacker cheats, the defender wins. If the attacker plays the action
dec correctly, the only chance for either player to force a win is to finish these
two rounds in states simLr‖Yk‖β, simL′

r‖Yk‖β corresponding to the correct
simulation of an test-and-decrement instruction with a label lj.

Now, we focus on the following rules designed for the ck = 0 case:

simLj
zero
↪→ simDk,s simDk,s

zero
↪→ checkkε simEk,s

zero
↪→ simLs

simLj
zero
↪→ simEk,s simDk,s

zero
↪→ simL′

s simEk,s
zero
↪→ simL′

s

simL′
j

zero
↪→ simDk,s simDk,s

zero
↪→ simGk simEk,s

zero
↪→ simGk

simL′
j

zero
↪→ simEk,s simFk,s

zero
↪→ simL′

s simGk
τ

↪→ simGk‖Yk

simL′
j

zero
↪→ simFk,s simFk,s

zero
↪→ simGk simGk

τ
↪→ check ′

kYk

The situation can be depicted as follows.

simLj‖β

zero

����
��

��
��

��
��

�
zero

��6
66

66
66

66
66

66
simL′

j‖β
zero

vv

zero

��

zero

���Z
�Z

�Z
�Z

�Z
�Z

�Z
�Z

simDk,s‖β

zero

�� �D
�D
�D
�D
�D
�D
�D
�D

zero

((

zero

++

simEk,s‖β
zero

�� �C
�C
�C
�C
�C
�C
�C
�C

zero

��

zero

((

simFk,s‖β
zero

����
��

��
��

��
��

zero

��;
;;

;;
;;

;;
;;

;;

checkkβ simLs‖β simL′
s‖β simGk‖β

τm

��
check ′

kY
m
k ‖β

Let us assume that the attacker decides to play the action zero. The
defender’s choice technique allows the defender to control the two rounds of
the bisimulation game starting at states simLj‖β and simL′

j‖β. The two
rounds end up in a pair of states simLs‖β, simL′

s‖β or in a pair of the form
checkkβ, check ′

kY
m
k ‖β where m ≥ 1; all the other choices of the defender

lead to his loss. As in the previous case, the latter possibility is designed to
punish any possible attacker’s cheating. The attacker is cheating if he plays

11

Křet́ınský et al.

the action zero and the value of ck represented by β, say vk, is positive.4

In such a case, the defender can control the two rounds to end up in states
checkkβ, check ′

kY
vk
k ‖β which are weakly bisimilar. If the attacker plays cor-

rectly, i.e. the value of ck represented by β is zero, then the defender has to
control the two discussed rounds to end up in states simLs‖β, simL′

s‖β as
the states checkkβ, check ′

kY
m
k ‖β are not weakly bisimilar for any m ≥ 1. To

sum up, the attacker’s cheating can be punished by defender’s victory. If the
attacker plays correctly, the only chance for both players to win is to end up
after the two rounds in states simLs‖β, simL′

s‖β corresponding to the correct
simulation of the considered instruction.

It has been argued that if each of the two players wants to win, then
both players will correctly simulate the computation of the machine N . The
computation is finite if and only if the machine halts. The states simL1 and
simL′

1 are not weakly bisimilar in this case. If the machine does not halt,
the play is infinite and the defender wins. Hence, the two states are weakly
bisimilar in this case. In other words, the states simL1 and simL′

1 of the
constructed wBPP ∆ are weakly bisimilar if and only if the Minsky 2-counter
machine N does not halt. Hence, we have proved the following theorem.

Theorem 3.3 Weak bisimilarity is undecidable for wBPP systems.

4 Weak Bisimilarity for More Restricted Classes

Here, we strengthen the results of the previous section. We will show that
weak bisimilarity remains undecidable for both fcBPP and fcBPA systems.
Moreover, this holds even for their respective normed versions (i.e. if, in an
instance of the weak bisimilarity problem, a given fcBPP/fcBPA system is
normed in both given states). Hence, weak bisimilarity is undecidable for
normed wBPP and normed wBPA as well.

4.1 Normed fcBPP

In this subsection, we show that weak bisimilarity is undecidable for normed
fcBPP systems.

Let ∆ be the wBPP system constructed in Subsection 3.2. We recall that
given any fixed Minsky machine N , we have constructed a wBPP system ∆
such that its states simL1 and simL′

1 are weakly bisimilar if and only if N
does not halt.

Based on ∆, we now construct a fcBPP ∆′ and two of its states simL1‖D
and simL′

1‖D such that they satisfy the same condition as given in the previous
paragraph and moreover ∆′ is normed in both of the states simL1‖D and
simL′

1‖D.

4 We do not have to consider the case when β represents a negative value of ck as such a
state is reachable in the game starting in states simL1, simL′

1 only by unpunished cheating.

12

Křet́ınský et al.

The constraint system of ∆′ is defined as follows.

ff

del

hhhhhhhhhhhhh

sss
ss KKKKK

VVVVVVVVVVVVV

check 1

VVVVVVVVVVVVV check ′
1

KKK
KK

check 2

sssss
check ′

2

hhhhhhhhhhhhh

sim

tt

Let Const(∆′) = {D}∪Const(∆) and Act(∆′) = {norm}∪Act(∆), where
D 6∈ Const(∆) is a fresh process constant and norm 6∈ Act(∆) is a fresh
action.

The set ∆′ consists of all the rewrite rules in ∆ and the following rules:

(1) ttD
norm
↪→ delD,

(2) delX
τ

↪→ delε for all X ∈ Const(∆′),

(3) delX
a

↪→ delX for all X ∈ Const(∆′) and a ∈ Act(∆).

The process constant D enables the norm action changing the value of the
store onto del . Starting in the state simL1‖D or simL′

1‖D, every reachable
state includes the process constant D or the current value of the store has
been already changed onto del . Whenever the value of the store is set to del ,
the rules of type (2) can be used to make the state normed. Hence, ∆′ is
normed in both of the states simL1‖D and simL′

1‖D.

The rewrite rules of the type (3) have been introduced as the result of the
fact that one cannot forbid any further applications of the original rules taken
from ∆ in the considered fcBPP systems.

Using the norm action in the game, weakly bisimilar states are received.
As only the attacker can decide for the action, this reconstruction of ∆ onto
∆′ does not change the winning strategies discussed in Subsection 3.2. Hence
the Theorem 3.3 can be strengthen as follows.

Theorem 4.1 Weak bisimilarity is undecidable for normed fcBPP systems.

4.2 Normed fcBPA

In this subsection, we show that the problem remains undecidable for normed
fcBPA. Our proof is a slightly extended translation of the proof for PDA
of [13] into fcBPA framework. We used the notation of [13] to make the proof
comparable.

The proof is based on a reduction of Post’s correspondence problem, which
is known to be undecidable [14].

13

Křet́ınský et al.

Problem: Post’s Correspondence problem (PCP)
Instance: A non-unary alphabet Σ and two ordered sets of words

A = {u1, . . . , un} and B = {v1, . . . , vn} where ui, vi ∈ Σ+

Question: Do there exist finitely many indices i1, . . . , im ∈ {1, . . . , n}
such that ui1 . . . uim = vi1 . . . vim?

Given any instance of PCP we now construct a normed fcBPA ∆ and two
of its states pTB, pT ′B such that pTB and pT ′B are weakly bisimilar if and
only if the instance of PCP has a solution.

A constraint system of ∆ contains elements tt, p, check 1, check 2, del , and
ff that are ordered as follows.

ff

del
mmmmmm

QQQQQQ

check 1

QQQQQQQ check 2

mmmmmmm

p

tt

We use process constants T, T ′, T1, T
′
1, T2, T

′
2, Gl, Gr, B and Ui, Vi for each

1 ≤ i ≤ n. Actions of ∆ are a, b, c, τ, norm, 1, . . . , n and the letters of Σ. In
what follows, U stands for a sequential term of process constants of {Ui | 1 ≤
i ≤ n} and similarly V stands for a sequential term of process constants of
{Vi | 1 ≤ i ≤ n}.

Now, we construct a set of rewrite rules ∆. The rules of types (1)–(10)
are exactly the same as those of Mayr’s proof and forms a defender’s choice
construction.

(1) pT
a

↪→ pT1

(2) pT
τ

↪→ pGr

(3) pT ′ τ
↪→ pGr

(4) pGr
τ

↪→ pGrVi for all i ∈ {1, . . . , n}

(5) pGr
a

↪→ pT ′
1

(6) pT1
a

↪→ pGl

(7) pT ′
1

a
↪→ pGlB

(8) pT ′
1

a
↪→ pT ′

2

(9) pGl
τ

↪→ pGlUi for all i ∈ {1, . . . , n}

(10) pGl
τ

↪→ pT2

14

Křet́ınský et al.

pTB

a

��
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K
�K

τ

))

pT ′B

τ

��9
99

99
99

99
9

pGrB

τ∗

��

τ∗ //

...
τ∗

##HHHHHHHHHHHHHHH

pGrVB

a

��
pT1B

a

��

pT ′
1VB

a

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

a

xx
pGlB

τ∗

��

τ∗oo

...
τ∗

{{vvvvvvvvvvvvvvv
≈ pGlBVB

pGl UB

τ

��
pT2 UB pT ′

2VB

Fig. 2. The first two rounds of the bisimulation game.

If there is a solution of the instance of PCP, the defender can use these
rules to finish the first two rounds of the bisimulation game (starting in pTB
and pT ′B) in states pT2 UB and pT ′

2VB, where U and V form a solution of
the PCP instance. The discussed first two rounds of the bisimulation game are
depicted in Figure 2. We use the same notation for arrows as in Subsection 3.2.

The following six rules form two subsequent rounds of the bisimulation
game and allow attacker to decide whether to check equality of indices or
equality of the words of U and V . In the first case, the attacker uses action b
leading to the constraint check 1, while the second possibility is labelled by c
and ends in the constraint check 2. The rewrite rules are as follows.

(11) pT2
a

↪→ pT3 (12) pT ′
2

a
↪→ pT ′

3

(13) pT3
b

↪→ check 1ε (14) pT ′
3

b
↪→ check 1ε

(15) pT3
c

↪→ check 2ε (16) pT ′
3

c
↪→ check 2ε

Now, we list the rules that serve for the checking phases mentioned in the
previous paragraph. In rules (19) and (20), we use a short notation that can

15

Křet́ınský et al.

be easily expressed by standard rules. The rewrite rules are as follows.

(17) check 1Ui
i

↪→ check 1ε for all i ∈ {1, . . . , n}

(18) check 1Vi
i

↪→ check 1ε for all i ∈ {1, . . . , n}

(19) check 2Ui
ui
↪→ check 2ε for all i ∈ {1, . . . , n}

(20) check 2Vi
vi
↪→ check 2ε for all i ∈ {1, . . . , n}

Finally, we add rules that make the system normed. The construction of
rules (21) and (22) is also discussed in Remark 30 of [13]. The rules of type
(21) enables the norm action changing the value of the store onto del . In any
state, whenever the value of the store is set to del , the rules of type (3) can
be used to make the state normed. Hence, ∆ is normed in all of its states.
The rules of type (23) make all states composed of the constraint del and a
non-empty term weakly bisimilar.

(21) ttX
norm
↪→ delX for all X ∈ Const(∆)

(22) delX
τ

↪→ delε for all X ∈ Const(∆)

(23) delX
x

↪→ delX for all X ∈ Const(∆) and x ∈ Act(∆)

Hence, we have strengthen the Mayr’s result [13], Theorem 29 (also refor-
mulated as Theorem 3.2 of this paper) as follows.

Theorem 4.2 Weak bisimilarity is undecidable for normed fcBPA systems.

5 Conclusion

First, we have shown that the weak bisimilarity problem remains undecid-
able for weakly extended versions of BPP (wBPP) and BPA (wBPA) process
classes.

We note that the result for wBPA is just our interpretation (in terms
of weakly extended systems) of Mayr’s proof showing that the problem is
undecidable for PDA with two control states ([13], Theorem 29).

In terms of parallel systems, our technique used for wBPP is new. To
mimic the computation of a Minsky 2-counter machine, one has to be able
to maintain its state information – the label of a current instruction and the
values of the counters c1 and c2. As a finite-state unit of wBPP is weak,
it cannot be used to store even a part of such often changing information.
Hence, contrary to the constructions in more expressive systems (PN [6] and
MSA [16]) we have made a term part to manage it as follows. In a test-
and-decrement instruction a process constant Lj, which represents a label of
the instruction, has to be changed and one of the counters c1, c2 has to be
decreased at the same time (assuming its value is positive). As two process

16

Křet́ınský et al.

constants cannot be rewritten by one wBPP rewrite rule, we introduce new
process constants Y1 and Y2 to represent “inverse elements” to X1 and X2

respectively and we make a term Xx
k ‖Y

y
k to represent the counter ck the value

of which is x− y. We note that the weak state unit allows for controlling the
correct order of the successive stages in the progress of a bisimulation game.

Moreover, we have shown that our undecidability results hold even for
more restricted classes fcBPA and fcBPP and remain valid also for the normed
versions of fcBPP and fcBPA. Hence, they hold for normed wBPP and normed
wBPA as well.

We recall that the decidability of weak bisimilarity is an open question
for BPA and BPP. Note that these problems are conjectured to be decidable
(see [13] and [7] respectively) in which case our results would establish a fine
undecidability border of weak bisimilarity.

Acknowledgements. We would like to thank Jǐŕı Srba for valuable sugges-
tions and comments.

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[3] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In Proc. of CONCUR’96, volume 1119 of LNCS, pages 247–262.
Springer, 1996.

[4] D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer
Science, 106:61–86, 1992.

[5] J. Esparza. Grammars as processes. In Formal and Natural Computing, volume
2300 of LNCS. Springer, 2002.

[6] P. Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[7] P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-complete.
In Proc. of 18th IEEE Symposium on Logic in Computer Science (LICS’03),
pages 218–227. IEEE Computer Society, 2003.

[8] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences
with finite-state processes. Theoretical Computer Science, 258:409–433, 2001.

[9] P. Jančar and J. Srba. Highly undecidable questions for process algebras. In
Proceedings of the 3rd IFIP International Conference on Theoretical Computer
Science (TCS’04), Exploring New Frontiers of Theoretical Informatics, pages
507–520. Kluwer Academic Publishers, 2004.

17

Křet́ınský et al.

[10] M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite systems:
Expressiveness and reachability. In Philippa Gardner and Nobuko Yoshida,
editors, CONCUR 2004 - Concurrency Theory, volume 3170 of LNCS, pages
355–370. Springer-Verlag, 2004.

[11] M. Křet́ınský, V. Řehák, and J. Strejček. On extensions of process rewrite
systems: Rewrite systems with weak finite-state unit. In Philippe Schnoebelen,
editor, INFINITY 2003: 5th International Workshop on Verification of Infinite-
State Systems, volume 98 of Electronic Notes in Theoret. Computer Science,
pages 75–88. Elsevier Science Publishers, 2004.

[12] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–
286, 2000.

[13] R. Mayr. Weak bisimilarity and regularity of context-free processes is
EXPTIME-hard. Theoretical Computer Science, 330(3):553–575, 2005.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[16] F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of LNCS,
pages 195–216. Springer, 1996.

[17] D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak monadic
theory of trees and its complexity. Theoret. Computer Science, 97(1–2):233–244,
1992.

[18] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of
17th POPL, pages 232–245. ACM Press, 1990.

[19] J. Srba. Undecidability of weak bisimilarity for pushdown processes.
In Proceedings of 13th International Conference on Concurrency Theory
(CONCUR’02), volume 2421 of LNCS, pages 579–593. Springer-Verlag, 2002.

[20] J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP.
Mathematical Structures in Computer Science, 13:567–587, 2003.

[21] J. Srba. Undecidability of weak bisimilarity for PA-processes. In Proceedings
of the 6th International Conference on Developments in Laguage Theory
(DLT’02), volume 2450 of LNCS, pages 197–208. Springer-Verlag, 2003.

[22] J. Srba. Roadmap of infinite results. In Current Trends In Theoretical
Computer Science, The Challenge of the New Century, Vol 2: Formal
Models and Semantics, pages 337–350. World Scientific Publishing Co., 2004.
http://www.brics.dk/~srba/roadmap/.

[23] Colin Stirling. Modal and temporal logics for processes. In Faron Moller and
Graham M. Birtwistle, editors, Banff Higher Order Workshop 1995, volume
1043 of LNCS, pages 149–237. Springer, 1996.

[24] J. Strejček. Rewrite systems with constraints, EXPRESS’01. Electronic Notes
in Theoretical Computer Science, 52, 2002.

18

