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Abstract

Process Rewrite Systems (PRS) are widely accepted as a formalism for the descrip-
tion of infinite-state systems. It is known that the reachability problem for PRS is
decidable. The problem becomes undecidable when PRS are extended with a finite-
state control unit. In this paper we show that the problem remains decidable when
PRS are extended with a weak (i.e. acyclic except for self-loops) finite-state control
unit. We also present some applications of this decidability result.

1 Introduction

Automatic verification of current software systems often needs to model them
as systems with an evolving structure and/or operating on unbounded data
types, i.e. as infinite-state systems.

Infinite-state systems can be specified in a number of ways with their respec-
tive advantages and limitations. Petri nets, pushdown processes, and process
algebras like BPA, BPP, or PA all serve to exemplify this. Here we employ
the classes of infinite-state systems defined by term rewrite systems and called
Process Rewrite Systems (PRS) as introduced by Mayr [2]. PRS subsume a
variety of the formalisms studied in the context of formal verification (e.g. all
the models mentioned above).

A PRS is a finite set of rules of the form ¢ <> ¢/, where a is an action under
which a subterm ¢ can be reduced to a subterm ¢'. Terms are built up from an
empty process € and a set of process constants using (associative) sequential

* Some parts of this work have been reported in a conference paper [1].
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“” and (associative and commutative) parallel operators. The semantics
of PRS can be defined by labelled transition systems (LTS) — labelled directed
graphs whose nodes (states of the system) correspond to terms modulo struc-
tural congruence induced by neutrality of € and properties of “.” and “||”, and
whose edges correspond to individual actions (computation steps) which can
be performed in a given state. The relevance of various subclasses of PRS for
modelling and analysing programs is shown e.g. in [3], for automatic verifica-
tion see e.g. surveys [4,5].

Mayr [2] has also shown that the reachability problem (i.e. given terms ¢,¢":
is ¢ reducible to t'?) for PRS is decidable. Most research (with some recent
exceptions, e.g. [6,3]) has been devoted to the PRS classes from the lower
part of the PRS hierarchy depicted in Figure 1, especially to pushdown pro-
cesses (PDA), Petri nets (PN) and their respective subclasses. We mention
the successes of PDA in modeling recursive programs (without process cre-
ation), PN in modeling dynamic creation of concurrent processes (without
recursive calls), and commaunicating pushdown systems (CPDS) [7] in model-
ing both features. All of these formalisms subsume a notion of a finite-state
control unit (FSU) keeping some kind of global information which is accessible
to the redexes (the components that can be reduced) of a PRS term — hence
an FSU can regulate rewriting. On the other hand, using an FSU to extend
the PRS rewriting mechanism is very powerful since the reachability problem
becomes undecidable for a state-extended version of PA processes (sePA) [8],

and CPDS as well.

This paper deals with a hierarchy of PRS classes and their respective exten-
sions of two types: weakly extended PRS (wPRS) [9,1] classes (i.e. PRS systems
equipped with weak FSU inspired by weak automata [10]) and state-extended
PRS classes [11]. In this paper we omit the extension introduced in [12] under
the name PRS with finite constraint unit (fcPRS). However, decidability of the
reachability problem for wPRS carries over to fcPRS as every fcPRS system
can be translated into an isomorphic wPRS system in a straightforward way.
For more information about fcPRS and its expressiveness the reader is referred
to [12,9]. The classes in the hierarchy (depicted in Figure 1) are related by
their expressive power with respect to (strong) bisimulation equivalence. As
the main contribution of the paper we show that the reachability problem re-
mains decidable for the very expressive class of wPRS. This result determines
the decidability borderline of the reachability problem in the mentioned hier-
archy: the problem is decidable for all classes except the sePA class and its
superclasses. Moreover, the result has several applications. In this paper, two
of them are discussed in more detail, namely

e decidability of some safety properties over wPRS and
e semi-decidability of weak trace non-equivalence for wPRS.



The outline of the paper is as follows: Section 2 recalls syntax and semantics
of PRS. Extended versions of PRS are defined in Section 3. This section also
presents the hierarchy reflecting relative expressiveness of PRS classes and
their extended versions with respect to bisimulation equivalence. In Section 4
we show that the reachability problem is decidable for weakly extended PRS.
Section 5 is devoted to the applications of our decidability result. The last
section summarises our results.

Related work: In the context of reachability analysis one can see at least
two approaches: (i) abstraction (approximate) analysis techniques on ’stronger’
models such as sePA and its superclasses with undecidable reachability, e.g. see
a recent work [7], and (ii) precise techniques for computing the set of states
that are reachable from a given regular set of states, e.g. [13,14,6]. In the latter
approach, the sets are represented symbolically and various term structural
equivalences are considered. The papers dealing with this approach usually
work with the classes PA or PAD rather than with general PRS systems.

2 Preliminaries

A labelled transition system (LTS) L is a tuple (S, Act,—, ), where S
is a set of states or processes, Act is a set of atomic actions or labels, — C
Sx Act x S is a transition relation (written a —— (3 instead of (o, a, 3) €—),
and ag € S is a distinguished initial state.

We use the natural generalizations o« —— 3 for finite sequence of actions
o € Act*. Next, &« — [3 means @ — (3 for some a € Act, and o« —* 3
means o — (3 for some o € Act*. A state 3 is reachable from a state o if
o —* 3. Further, (3 is reachable if it is reachable from the initial state.

A binary relation R on a set of states S is a bisimulation [15] iff for each
(a, B) € R the following conditions hold:

eVa eSacAt:a-—"d = 3 cS:8-3FN(3)€ER)
eVl eSacAd -3 =3/ eS:a-d A, 3)€R)

Bisimulation equivalence (or bisimilarity) on an LTS is the union of all bisim-
ulations (i.e. the largest bisimulation).

Let Const = {X, ...} be a set of process constants. The set T of process terms
(ranged over by t,...) is defined by the abstract syntax t = ¢ | X | t1.ta | t1]|t2,
where ¢ is the empty term, X € Const is a process constant (used as an atomic
process), ’||” and ’.” mean parallel and sequential compositions respectively.



The set Const(t) is the set of all constants occurring in the process term t.
We always work with equivalence classes of terms modulo commutativity and
associativity of ’||’, associativity of ".’; and neutrality of ¢, i.e. et = = t.e
and t|je = t.

We distinguish four classes of process terms as:

1 — terms consisting of a single process constant only, in particular € ¢ 1,

S — sequential terms - terms without parallel composition, e.g. X.Y.Z,

P — parallel terms - terms without sequential composition, e.g. X||Y|Z,

G — general terms - terms with arbitrarily nested sequential and parallel com-
positions, e.g. (X.(Y]|2))||W.

Definition 1 Let Act = {a,b,-- -} be a set of atomic actions, o, § € {1,5, P,G}
such that o C . An («, 5)-PRS (process rewrite system) A is defined as a
pair (R, t), where

e R is a finite set of rewrite rules of the form t, < to, where t; € o, t # ¢,
ty € B are process terms and a € Act is an atomic action,
e ty € (3 is the initial state.

Given a PRS A we define Const(A) as the set of all constants occurring in
the rewrite rules of A or in its initial state, and Act(A) as the set of all actions

occurring in the rewrite rules of A. We usually write (t; <= t,) € A instead of
(tl < tQ) € R where A = (R, to)

The semantics of A is given by the LTS (S, Act(A), —a, to), where S = {t €
B | Const(t) C Const(A)} is the set of states, o is the initial state and —

is the least relation satisfying the inference rules?

(t, <> ty) € A t1 A t) t —2oat]

t —5 Aty ti|ts 2o a th|te t .ty —2op th ity

If no confusion arises, we sometimes speak about a “process rewrite system”
meaning the “labelled transition system generated by a process rewrite sys-
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tem”.
Some classes of («, 3)-PRS correspond to widely known models: the (1,1)-
PRS class corresponds to finite state systems (FS), (1, P)-PRS is the class of

basic parallel processes (BPP), the (1, 5)-PRS class is known as basic process
algebras (BPA), (1, G)-PRS is the process algebra (PA) class, the (5,.5)-PRS

! Note that parallel composition is commutative and, thus, the inference rule for
the parallel composition also holds with ¢; and to exchanged.



class corresponds to pushdown processes (PDA, see [16] for justification), and
(P, P)-PRS is the class of Petri nets (PN). The other classes (5,G)-PRS,
(P,G)-PRS, and (G, G)-PRS were introduced (and named as PAD, PAN, and
PRS) by Mayr [2]. The correspondence between («, 3)-PRS classes and the
acronyms just mentioned can be seen in Figure 1 as well.

3 Extended PRS

In this section we recall the definitions of two extensions of process rewrite
systems, namely state-extended PRS (sePRS) [11] and weakly extended PRS
(wPRS) [9].

sePRS State-extended PRS corresponds to PRS extended with a finite-
state control without any other restrictions. The well-known example of this
extension is the state-extended BPA class (also known as pushdown processes).

wPRS The notion of weakness employed in the wPRS formalism corresponds
to that of weak automata [10] in automata theory. The behaviour of a weak
state control is acyclic except for self-loops, i.e. the control states are ordered
and non-increasing during every sequence of transitions. As the control is
finite, its state can be changed only finitely many times during every sequence
of transitions.

We first define the syntax of sePRS and wPRS systems and then we give a
semantics for both these PRS extensions.

Definition 2 Let Act = {a,b, -} be a set of atomic actions, a, 3 € {1, S, P,G}
such that a C (3. An («, §)-sePRS A is a tuple (M, R, mg,ty), where

e M is a finite set of the control states,

e R is a finite set of rewrite rules of the form (m,t,) <> (n,t), where t; € a,
ty#e, to €8, myne M, and a € Act,

e a pair (mg,ty) € M x 8 forms a distinguished initial state of the system.

An («a, B)-wPRS A is a tuple (M, <, R,mq, to), where the set of states (M, <)
is partially ordered and each rewrite rule (m,t,) <> (n,ty) in R satisfies n <
m; the other symbols have the same meaning as above.

To shorten our notation we write mt instead of (m,t). As in the PRS case, in-
stead of (mt, <5 nty) € Rwhere A = (M, R, mq, to) (or A = (M, <,R,mq, t)),
we usually write (mt; <> nty) € A. The meaning of Const(A) (process con-
stants used in rewrite rules or in ¢y) and Act(A) (actions occurring in rewrite
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Fig. 1. The hierarchy of classes defined by (extended) rewrite formalisms.

rules) for a given extended PRS A is also the same as in the PRS case.

The semantics of an extended (a, 3)-PRS system A is given by the corre-
sponding labelled transition system (S, Act(A), —a, moto), where

S =M x{tep|Const(t) C Const(A)}

and the relation — A is defined as the least relation satisfying the inference
rules

(mity < nty) € A mt, ——a nt mt, ——a nth

mt; — A nty m(ty||ty) —=a n(t)|t2)’ m(ty.ty) —=a n(t).ty)’

where t1,t9,t) € T and m,n € M.

Instead of (1,5)-sePRS, (1,S5)-wPRS, ...we use a more natural notation
seBPA, wBPA, etc. The class seBPP is also known as multiset automata
(MSA) or parallel pushdown automata (PPDA), see [17].

Figure 1 describes the hierarchy of PRS classes and their extended counter-
parts with respect to bisimulation equivalence. More precisely, the classes of



(extended) PRS systems are here interpreted as the sets of their underlying la-
belled transition systems. The depicted hierarchy is then the upward oriented
Hasse diagram of a partial order relation ‘C’ between these sets of labelled
transition systems modulo bisimulation equivalence. In other words, a line
connecting X and Y with Y placed higher than X means that every transi-
tion system definable in X can be (up to bisimulation equivalence) defined
in Y while the reverse does not hold — we write X C Y. The dotted lines
represent the facts X C Y, where the relation X C Y is only our conjecture.

Some observations (even up to isomorphism) are immediate, for example

(1) the classes F'S, PDA, and PN coincide with their extended analogues,
(2) if X €Y then seX C seY and wX C wY, and
(3) (o, B)-PRS C (v, B)-wPRS C (a, 5)-sePRS for all («, 3)-PRS.

All the relations represented in the hierarchy have been proven in [1,18,2,12,9]
(see [1] for more detailed comments).

The two lines leaving sePA down to the left and down to the right deserve
further comments. The classes (5,.5)-PRS and seBPA on the left-hand side
collapse (up to isomorphism) due to Caucal [16]. The situation on the right-
hand side is different due to the relations MSA C PN and PN C sePA estab-
lished in [18] and [1] respectively. (Strictness of the last relation follows from
incomparability of the classes PDA and PN.)

4 Reachability for wPRS is decidable

In this section we show that for a given wPRS A and its states rtq, sty it is
decidable whether st is reachable from rt;, i.e. whether rt; —, sto. This is
called the reachability problem for wPRS.

Our proof exhibits a similar structure to the proof of decidability of the reach-
ability problem for PRS [2]; first we reduce the general problem to the reach-
ability problem for wPRS with rules containing at most one occurrence of a
sequential or parallel operator, and then we solve this subproblem using the
fact that the reachability problems for both PN and PDA are decidable [19,20].
The latter part of our proof is based on a new idea of passive steps presented
later.

To get just a sketch of the entire proof we suggest to read the definitions and
statements (skipping their technical proofs). Several of them are preceded by
comments that provide some intuition. As the labels on rewrite rules are not
relevant here, we omit them in this section.



Definition 3 Let A be a wPRS. A rewrite rule in A is parallel or sequential
if it has one of the following forms:

parallel rules: pX — q(Y||Z) p(X||Y)— q¢Z pX —qY pX < ¢e,
sequential rules: pX — q(Y.Z) p(XY)—qZ pX —qY pX — ¢z,

where X, Y, Z are process constants and p, q are control states. A rule is trivial
if it is both parallel and sequential (i.e. it has the form pX — qY or pX — qe).
A wPRS A is in normal form if every rewrite rule in A is either parallel or
sequential.

Lemma 4 Given a wPRS A with terms t; and ty, we can effectively construct
a wPRS A" in normal form over the same control states, along with terms t)
and th, such that rty —5 sty iff rt] —\ sth.

PROQOF. In this proof we assume that the sequential composition is left-
associative. It means that the term X.Y.Z is considered as (X.Y).Z, hence its
proper subterms are X, Y, Z, and X.Y', but not Y.Z. However, the term Y'||Z
is a subterm of X.(Y||Z).

Let size(t) denote the number of sequential and parallel operators in a term ¢.
We put size(pt — qt') = size(t) + size(t'). Given any wPRS A| let k; be the
number of rules (pt < ¢t') € A that are neither parallel nor sequential and
size(pt — qt') = i. Thus, A is in normal form iff k; = 0 for all ¢. In this case,
let n = 0. Otherwise, let n be the largest ¢ such that k; # 0 (n exists as the
set of rules is finite). We define norm(A) to be the pair (n, k,).

We now describe a procedure transforming any given wPRS A which is not
in normal form and terms ¢, into a wPRS A’ and terms ¢/, t, such that
Tty —% sty <= rt) — sty and norm(A’) < norm(A) with respect to
the lexicographical ordering on norms as pairs of integers.

Let us assume that a wPRS A is not in normal form. Then there is a rule
that is neither sequential nor parallel and has the maximal size. If the rule is
a of the form p(X;.X5) — ¢q(Y1]|Ys) or p(Y1]|Y3) — ¢(X71.X3), let ¢ be X;.X;
otherwise, let ¢t be a non-atomic and proper subterm of this rule. Now, replace
every occurrence of the subterm ¢ in rewrite rules of A and in the terms %1, to
by a fresh constant X;. Then add two rules pX; — pt and pt — pX, for each
control state p. This yields a new wPRS A’ and terms ¢} and ¢, where the
constant X; serves as an abbreviation for the term ¢. By the definition of norm
we get norm(A’) < norm(A). The correctness of our transformation remains
to be demonstrated, namely that

Tty — sty <= rt] —\ sth.

The implication <= is obvious. For the opposite direction we show that every



rewriting step in A from pl; to gly under the rule (pl — ¢l’) € A corresponds
to a sequence of several rewriting steps in A’ leading from pl} to ql}, where
I}, 15 are equal to [y, ly with all occurrences of ¢ replaced by X;. Let us assume
the rule pl — ¢’ modifies a subterm ¢ of pl;, and/or a subterm ¢ appears in
qly after the rule application (the other cases are trivial). If the rule modifies
a subterm t of [; then there are two cases.

(1) Let ! include the whole ¢t. Then the corresponding rule in A’ (with ¢
replaced by X;) can be applied directly on pl].

(2) Let [ contain a part of ¢ only. Due to the left-associativity of a sequential
operator, t is not a subterm of the right part of any sequential composition
in ;. Thus we apply the added rule pX; < pt on pl} first and then we
apply the rule in A’ corresponding to the rule pl — ¢l’.

The situation when ¢ appears in gly after the application of the considered
rule is similar. Either [ includes the whole ¢ and then the application of the
corresponding rule in A’ results directly in ¢l}, or ¢ is not a subterm of the
right part of any sequential composition in [, and thus the application of
the corresponding rule in A’ is followed by an application of the added rule
gt — qX, reaching the state ql}.

By repeating this procedure we finally get a wPRS A” in normal form and
terms t7,t satisfying rt; —% sto <= rt] —", st}. O

Mayr’s proof for PRS now transforms the PRS A in normal form into the PRS
A’ in so-called transitive normal form satisfying (X — Y) € A’ whenever
X —* Y. This step employs the fact that rewriting under sequential rules
in a parallel environment (or vice versa) has “local effect” only. Intuitively,
whenever there is a rewriting sequence

XY — (X0 X0)||Y —% (X1.X0)[|1Z — Xo||Z

in a PRS in normal form, then the rewriting of each parallel component is
independent in the sense that there are also rewriting sequences X —
X1.Xo —% Xy and Y —% Z. This does not hold for wPRS in normal
form as the rewriting in one parallel component can influence the rewriting in
other parallel components via a weak control. To get this independence back
we introduce the concept of passive steps emulating the changes of a control
state produced by the environment.

Definition 5 A finite sequence of control state pairs PS = {(p;, q;) }i-y satis-
fying p1 > q1 > p2 > qo > -+ > pn > qn 1S called a sequence of passive steps,
or just passive steps for short.

Let A be a wPRS and PS be passive steps. By AT we denote the system



A with an added rule pX — qX for each (p,q) in PS and X € Const(A).
Further, we define Ayiny, Aseq, and Apq, to be the subset of trivial, sequential,
and parallel rules of A, respectively.

Informally, rt; —"\rs st means that the state r¢; can be rewritten into the
state sty provided a control state can be passively changed from p to ¢ for
every passive step (p,q) in PS. Please note that there is only a finite number
of different sequences of passive steps for a given wPRS system.

Definition 6 Let wPRS A be in normal form. If for every X, Y € Const(A),
control states r, s, and passive steps PS it holds that

rX —ps Y = rX —"ps sY then A is in flat normal form,

triv

rX —ps 8Y = rX —" ps sY then A is in sequential flat normal form,
seq

triv

rX _>*A{g’§r sY = rX _’*Afs, sY then A is in parallel flat normal form.
The following lemma says that it is sufficient to check reachability via sequen-
tial rules and via parallel rules in order to construct a wPRS in flat normal
form. This allows us to reduce the reachability problem for wPRS to the reach-
ability problems for wPN and wPDA, i.e. to the reachability problems for PN
and PDA.

Lemma 7 If a wPRS is in both sequential and parallel flat normal form then
it 1s in flat normal form as well.

PROOF. We assume the contrary and derive a contradiction. Let A be a
wPRS in sequential and parallel flat normal form. Let us choose passive steps
PS and a rewriting sequence rX — ps sY such that rX 74’255 sY and
the number of applications of non-trivial rewrite rules applied in threwsequence
is minimal. As the wPRS A is in both sequential and parallel flat normal
form, rX %ngq sY and rX %255,“ sY. Hence, both sequential and parallel

operators occur in the rewriting sequence. There are two following cases.

(1) Assume that a sequential operator appears first. The parallel operator
is then introduced by a rule of the form pU < ¢(T|S) applied to a
state p(U.t), where t is a (possibly empty) sequential term. Note that
q((T)|S).t) —*\rs sY and recall the fact that at most one process con-
stant can be removed in one rewriting step. Hence, first of all the term
TS is rewritten onto some single process constant V' in the rest of the
sequence considered. Let o be a control state after this rewriting. Using
the same rewriting steps as in the original sequence, pU can be rewritten
to oV in system AT, Let PS” = PS.

(2) Assume that a parallel operator appears first. The sequential operator
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is then introduced by a rule of the form pU < ¢(T.S) applied to a
state p(U||t), where t is a (possibly empty) parallel term. The rest of
the sequence subsumes steps rewriting the term 7.S onto some single
process constant V. Let o be a control state in the state where T.S is
rewritten to V. Contrary to the previous case, the mentioned steps can
be interleaved with steps rewriting the parallel component ¢ and possibly
changing a control state. Let PS’ be a sequence of control state pairs
corresponding to the changes of control states caused by rewriting of
the parallel component t. We merge PS’ with the subsequence of PS
containing only the steps employed in the considered rewriting sequence.
As the result we get one sequence of passive steps denoted as PS”. Please
note that the elimination of the unused steps of PS ensures that PS”
satisfies the definition of passive steps. Now, making use of the passive
steps PS” and the steps rewriting U to V in the original sequence, we
construct a rewriting sequence in system A" leading from pU to oV .

Thus we have obtained a rewriting sequence in AP from pU to oV with fewer
applications of non-trivial rewrite rules — we omit at least the first application
of a non-trivial rewrite rule in the original sequence. Further, at least the
first step of the new sequence is an application of a non-trivial rewrite rule.
Moreover, as the number of applications of non-trivial rewrite rules used in
the original sequence is minimal, we get pU 7L>*A s OV This contradicts our

triv
initial assumptions about the choices of PS and the rewriting sequence in
AFPS O

Example 8 Here, we illustrate a possible change of passive steps (PS to PS")

described in the second case of the proof above. Let us consider a wPRS A with
control statesr >p >q>1t>v > 0> s and the following rewrite rules

rX — p(U||Z) pU — q(T.S) v(T.8) — oV
qZ — tY o(V]|Y) = sY

as well as the following sequence in ATS where PS = {(t,v)}

r X —ars pUNZ)  —ar q(T.5)]|Z) —ars

passive

——APS ﬂ(TS)HY) — APS U((LS)HY) ——APS 0(%) ——APS sY

where redexes are underlined. The sequence of passive steps constructed due
to the case 2 is PS" = {(q,1), (t,v)} and the constructed rewriting sequence is

pQ —APS” Q(TS) pcim;eAPS" E(TS) p(im;eAPs” U(LS) —APS” oV.
The following lemma employs the algorithms deciding the reachability problem
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for PDA and PN. Recall that the classes PDA and PN coincide with the classes
of wPDA and wPN, respectively.

Lemma 9 For every wPRS A in normal form, terms ti,ty over Const(A),
and control states r,s of A, a wPRS A" can be constructed such that A’ is in
flat normal form and satisfies rt; —%\ sta <= rt; —'\, sta.

PROOF. To obtain A" we enrich A by trivial rewrite rules transforming the
system into sequential and parallel flat normal form, which suffices thanks to
Lemma 7.

Using the algorithms deciding reachability for PDA and PN, our algorithm
checks if there are some control states r, s, constants X,Y € Const(A), and
passive steps PS = {(p;, ¢;) }i; (satisfying r > p; and ¢, > s as control states
pairs out of this range are of no use here) such that rX —/%r sY, but

trzu

rX —* N sY or r X —* N sY hold. We finish if the answer is negative.
Otherwise we add to A the rules rX — p1 7y, ¢;Z; — piy1Ziq for @ =
1,...,n—1, and ¢, Z, — sY, where 71, ..., Z, are fresh process constants; if
n = 0 then we add just the rule rX < sY. Hence, X —,ps sY where A"

triv

is the system A with the new rules.

The algorithm then repeats this procedure on the system A” with one dif-
ference: the X,Y range over the constants of the original system A. This is
sufficient as the new constants occur only in trivial rules. Thus, if the system
with added rules is not in sequential or parallel flat normal form, then there
is a counterexample with the constants X,Y of the original system A. The
algorithm eventually terminates as the number of iterations is bounded by
the number of pairs of states rX, sY of A, times the number of sequences of
passive steps PS. The correctness follows from the fact that the added rules
only duplicate existing rewrite sequences between states of A. a

Theorem 10 The reachability problem for wPRS is decidable.

PROOF. Let A be a wPRS with states rt;, sto. We want to decide whether
rty —* sto or not. We assume that rt; # sty (the other case is trivial).

Clearly 1ty —\ sty <= rX —"\» sY, where X, Y are fresh constants and
A" arises from A by the addition of the rules rX < rt; and sty — sY (ifty = ¢
then the latter rule is not correct rule; in this case we add to A” a rule pt — qY
for each rule (pt — ¢e) € A instead). Lemma 4 and Lemma 9 successively
reduce the question whether X —, sY to the question whether rX —,,
sY, where A’ is in flat normal form — note that the algorithm in the proof
of Lemma 4 does not change terms ti,t, if they are process constants. The
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definition of flat normal form implies rX —, sY <= rX —, sY.

Finally the relation rX —7,, sY is easy to check. o
triv

5 Applications

In this section we discuss some applications of the decidability result presented
in the previous section.

5.1 Model checking some safety properties

In the context of verification, one often formulates a property expressing that
some “bad” states are not reachable. These properties are called safety prop-
erties. If the number of bad states is finite, the problem can be directly solved
using reachability problem; but it is usually not the case. Usually, the bad
states are characterized as those satisfying some specific property, e.g. to be a
deadlock state, an internal variable x is equal to zero, stack overflows, division
by zero is perfomed, etc. In what follows, we solve model checking for wPRS
and only such safety properties that express the bad states as those where
a transition with a given label is enabled. In particular, we solve a problem
whether, for given wPRS A and its action bad, there is a reachable state in
which a transition with the label bad is enabled.

Lemma 11 Given a wPRS A and bad € Act(A), it is decidable whether there
exists a reachable state mt such that mt MA nt’ for some state nt'.

PROOQOF. The proof is done by reduction to the reachability problem. Let
A = (M, <, R,mg,ty). We construct a wPRS A" = (M', <", R/, my, ty), where
(M',<")is (M, <) extended with a new control state r which is the least with
respect to < and where R’ arises from R by adding the following rewrite rules:

(1) mty 24 rty for all (mitq 2 nty) € A,

(2) rX 2re  forall X € Const(A).

The rules of type (1) allow us to change any control state to r whenever a
bad transition is enabled in the original system. Entering the control state r,
a term can be rewritten to ¢ using the rules of type (2). Hence, a state mt

such that mt %A nt' for some state nt’ is reachable in A if and only if the
state re is reachable in A/ O
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Therefore, our decidability result can be seen as a contribution to an automatic
verification of infinite-state systems as well.

5.2 Semi-decidability of weak trace non-equivalence

Weak trace equivalence is a familiar notion which can already be found, for
instance, in [21]. It is one of the semantic equivalences with a silent action.
These equivalences are based on a notion of observable behaviour of systems:
only the interactions of the system with the environment (observer) are ob-
servable. The internal structure of the system is not considered observable
and system internal activities are modelled by silent (7) actions which can
precede and/or follow any observable action. For an overview of equivalences
with silent moves and more general setting with respect to various testing
scenarios we refer to [22]. Here we employ a more straightforward definition
of weak trace equivalence, for instance see [23].

Given a labelled transition system (S, Act, —, ap) with a distinguished action
T € Act, we define the weak trace set of a state s € S as

wtr(s) = {w € (Act < {7})* | s ==t for some t € S},

where s =%  means that there is some w’ € Act* such that s - ¢ and w
is equal to w’ with its 7 actions deleted. Two states of a system are said to
be weak trace equivalent if they have the same weak trace sets. It is already
known that weak trace non-equivalence is semi-decidable for Petri nets (see
e.g. [24]), pushdown processes (due to [20]), and PA processes (due to [13]).
Before we strengthen the result to wPRS and all its subclasses, we prove an
auxiliary lemma stating that the weak trace sets are recursive.

Lemma 12 Given a wPRS A, its state mt, and a word w € Act(A)*, it is
decidable whether w € wtr(mt) or not.

PROOF. We show that the problem can be reduced to the reachability
problem. Let A = (M,C, R, mg,ty) be a wPRS, mt be its state, and w =
w(0)w(w(2)...w(k) € (Act ~ {7})" be a word (the case w = ¢ is trivial as
mt —% mt). We construct a wPRS A" = (M’,C', R', (my,0), o), where

o M'={e} U M x{0,1,...,k},

e isdefined ase C' e and e T’ (m, 1) for all (m,i) € M', and (n, j) T’ (m, 1)
for all (m, 1), (n,7) € M’ satisfying n = m and i < j,

e R’ consists of the following rules:
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(1) (m, i)ty < (n,4)t for all 0 < i < k and (mt; <= nty) € A,
(2) (m,i)ty i (nyi+ 1)ty for all 0 <i < k and (mt; i nty) € A,
(3) (m, k)t W e for all (mt; @ nty) € A,

(4) eX < ee for all X € Const(A).

Roughly speaking the second components of control states allow us to use
the rewrite rules of type (1) labelled with 7 while the rules of type (2) can
be used only in the order given by w. According to rules (3), the transition
corresponding to the last letter of w changes the control state to e. Rules (4)
then allow us to rewrite the current term to €. Hence, one can readily confirm
that w € wtr(mt) with respect to A if and only if the state ee is reachable
from the state (m,0)¢ in the system A’. O

Theorem 13 Weak trace non-equivalence for wPRS is semi-decidable.

PROOQOF. Let mt; and nty be states of a wPRS A. A semi-decidability al-
gorithm goes through all words w € (Act(A) ~ {7})* and tests whether
w € witr(mty) \wtr(nte) or w € witr(nty) \wtr(mt;). The membership of w in
these sets is decidable due to the previous lemma. If the algorithm finds such a
word, then two given states mt, nty are weak trace non-equivalent. Moreover,
if the states are weak trace non-equivalent, the algorithm will eventually find
a witness w. Hence, the weak trace non-equivalence is semi-decidable. O

To sum up, the border of the semi-decidability is moved up to the class of
wPRS in the hierarchy. We emphasize that the semi-decidability result is new
for classes PAN, PAD, and PRS of the original PRS hierarchy, too. As the
reachability problem is undecidable for the other classes of our refined hier-
archy (i.e. sePA and its superclasses), it is easy to see that the weak trace
non-equivalence is not even semi-decidable for them.

5.3  Other applications

The decidability of the reachability problem for wPRS has already been used
to show decidability of several other problems, in particular

e the problem whether a wPRS system contains a reachable state satisfying
a given Hennessy-Milner formula [25] and

e the model checking problem for wPRS and LTL formulae with only modal-
ities (strict) eventually, (strict) always, and their past counterparts [26].
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Our decidability result has also been applied in the area of cryptographic
protocols. Hiittel and Srba [27,28] define a replicative variant of a calculus for
Dolev and Yao’s ping-pong protocols [29]. They show that the reachability
problem for their calculus is decidable as it can be reduced to the reachability
problem for wPRS. We note that this application does not employ the full
power of our result, as all the systems produced by the reduction belong to
wPAD class.

6 Conclusions

We have shown that an extension of the Process Rewrite System mechanism
with a weak finite-state control unit (wPRS) keeps the reachability problem
decidable. Some applications of this result have been discussed as well.

Some related work concerning the reachability problem on PRS classes has
already been mentioned in the last paragraph of Section 1.

There are several directions for the future research, including decidability and
complexity issues of various problems for new subclasses. For decidability ques-
tions we note that BPP class, its two extensions, and Petri Nets form a strict
(sub)hierarchy with respect to bisimulation:

BPP C wBPP C seBPP C PN

We recall that bisimulation equivalence is decidable (even PSPACE-complete)
for BPP processes (see [30] together with [31]) and undecidable for seBPP (as
proven in [17] using Jancar’s result for PN [32]). It remains open for wBPP
class and this decidability borderline is a subject of our further research.
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