
Fizzer with Local Space Fuzzing∗

(Competition Contribution)

Martin Jonáš , Jan Strejček , and Marek Trtík(B)

Masaryk University, Brno, Czech Republic
trtikm@mail.muni.cz

Abstract. Fizzer is a gray-box fuzzer introduced at Test-Comp 2024.
This paper summarizes the lessons learned with the original version and
describes the major changes including new analyses implemented in the
current version of Fizzer. In particular, Fizzer now uses dynamic taint-
flow analysis and local space fuzzing. We also provide experimental re-
sults showing the progress between the two versions.

Keywords: gray-box fuzzing · dynamic analysis · taint analysis

1 Test-Generation Approach

Fuzzers [8] are tools that generate test inputs for a given program with the use
of dynamic analysis. Gray-box fuzzers first instrument the given program to get
some information about each program execution (e.g., which basic blocks were
visited during the run). The instrumented program is then executed on some
input and the obtained information about the execution is used to prepare the
input for the next execution with the aim to cover some previously uncovered
code. This process is repeated until some goal or limit is reached. Fizzer focuses
solely on achieving high branch coverage and applies the same process also in the
Cover-Error category. Hence, only branch coverage is discussed in this paper.

While standard gray-box fuzzers prefer fast executions and thus gather only
a little information, Fizzer collects more information and aims to create more
targeted inputs. More precisely, Fizzer tracks the evaluation of atomic Boolean
expressions (abe) in the given program, which are the Boolean expressions built
from expressions of other types, e.g., (x > 21) or (string[i] == ’B’). Fizzer
instruments the program such that each time an abe is evaluated, the program
stores the current calling context (i.e., the sequence of function calls that are
on the call stack), the value true or false of the abe, and the distance to
the opposite value. For example, if the abe (x > 21) is evaluated to true, the
distance to false is computed as x - 21. Fizzer aims to generate tests that
evaluate each abe in each reached calling context to both true and false.

Assume that some input leads to the evaluation of an abe in some calling
context to true. The original version of Fizzer [6] applies the following steps
∗ This work has been supported by the Czech Science Foundation grant GA23-06506S.

M. Trtík—Jury member.

© The Author(s) 2025
A. Boronat and G. Fraser (Eds.): FASE 2025, LNCS 15693, pp.275–280, 2025.
https://doi.org/10.1007/978-3-031-90900-9_14

https://etaps.org/about/artifact-badges/
https://etaps.org/about/artifact-badges/
https://orcid.org/0000-0003-4703-0795
https://orcid.org/0000-0001-5873-403X
https://orcid.org/0009-0009-6122-9574
https://doi.org/10.1007/978-3-031-90900-9_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90900-9_14&domain=pdf


276 M. Jonáš et al.

to evaluate it to false. First, it runs the sensitivity analysis to detect the input
bytes that affect the distance (and thus probably also the value) of the considered
abe in the considered calling context. For each bit of input , sensitivity analysis
executes the program on input with the bit flipped. If the distance changes,
the whole byte containing the bit is marked as sensitive. As the second step,
Fizzer runs the byteshare analysis if it has seen some input ′ that evaluates the
same abe to false in a different calling context. The analysis replaces sensitive
bytes in input by the corresponding sensitive bytes of input ′ and executes the
program. If this still does not evaluate the abe in the considered calling context
to false, Fizzer applies the last step. It performs a gradient descent on the
sensitive bytes with the aim to minimize the absolute value of the distance and
thus evaluate the abe to false. We refer to the full paper [7] for more details.

The original version of Fizzer received the bronze medal in Cover-Branches
category of Test-Comp 2024. Still, we have identified some drawbacks. One of
them is that the sensitivity analysis is very slow on programs with a large input,
because it may require a program execution for each bit of the input. Moreover,
it does not detect bytes that affect the value of abe if flipping more than one bit
is needed to change the distance. In the new version of Fizzer, sensitive bytes
are computed by a dynamic taint-flow analysis. The program is executed on
input and bytes returned from each call to __VERIFIER_nondet_*() are tainted
by a fresh taint. All the taints are propagated through instructions, from their
input to output arguments. Input bytes whose taint reaches the expression of
the abe are marked as sensitive. While the original sensitivity analysis under-
approximated the sensitive bytes, the new one over-approximates them.

The original approach also struggles with divergencies: a small modification
of the input changes the execution path such that the desired abe in the desired
calling context is missed. On the positive side, these divergences can cover some
program parts not covered so far. On the negative side, the divergencies disrupt
the original sensitivity analysis and gradient descent. To prevent them, we devel-
oped the local search analysis that internally applies several strategies for input
generation including gradient descent. An important feature of the local search
analysis is that it runs all its strategies in a local space of the target abe. We
sketch this idea using an execution path with only two abes x = y and x = 1,
where x, y are 32-bit signed integers. Assume that the path was explored using
the input where x = y = 0 and that we want to evaluate the second abe to
true. The distance functions of the abes are f(x, y) = x − y and g(x) = x − 1,
respectively. Observe that the second distance depends only on x. Mutating x
alone would produce an input for which the execution diverges from the original
path on the first abe. In order to prevent this, we build a stack of local spaces,
one for each abe along the path. Intuitively, the local space captures all values of
sensitive bytes that keep the distance of the corresponding abe unchanged. For
example, the distance for the first abe x = y given x = y = 0 is f(0, 0) = 0 and
thus the local space is given by equality f(x, y) = f(0, 0), i.e., x − y = 0. Now
assume that gradient descent applied on the distance of the second abe wants
to execute the program with x = 1. The original Fizzer would directly run the



Fizzer with Local Space Fuzzing 277

program on x = 1 and y = 0 and the execution would diverge on the first abe.
The local search analysis uses the local space of the first abe to figure out that
in order not to diverge from the path, y should be set to 1 and runs the program
on x = y = 1 and the execution will not diverge. Due to space limitations we
provide more details about the approach in [5].

2 Software Architecture

Fizzer is implemented in C++, significantly depends on the LLVM infrastruc-
ture, and is divided into two executable parts: Instrumenter and Server. The
task of Instrumenter is to instrument a given program with the code track-
ing and reporting the information about program executions. Server schedules
and runs the analyses described in the previous section, in particular for gen-
erating new inputs and starting executions of the instrumented program. The
instrumented program runs in a separate process and communicates with the
Server using shared memory, so if the program crashes, Server can still get
the information about the run and continue with test generation.

The current version of Fizzer additionally compiles the given program to our
new custom Simple Assembly LAnguage (SALA), which is basically a simplified
version of LLVM, but SALA instructions do not contain type information, there
are no LLVM registers nor intrinsics, and functions are not required to be in
SSA form. Server contains a SALA interpreter that performs the taint-flow
analysis described in the previous section.

3 Strengths and Weaknesses

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Coverage Fizzer 2024 (%)

C
ov

er
ag

e 
F

iz
ze

r 
20

25
 (

%
)

Fig. 1: Comparison of coverages
achieved by the original [6] and new
Fizzer on Cover-Branches bench-
marks of Test-Comp 2024.

The current Fizzer has mostly the same
strengths and weaknesses as the origi-
nal version [6]. Fizzer is still a rela-
tively simple and very compact tool with
minimal external dependencies. It can
be applied to programs of arbitrary size
and programs that use external functions
available only in compiled form.

The main weaknesses of Fizzer stem
from the fact that it is a fuzzer that
significantly relies on gradient descent.
First, being a fuzzer, it generates tests by
executing the program. These executions
must have some resource limits specified
(e.g., number of evaluated abes, input
size, size of calling context, time limit).
Fizzer thus explores only prefixes of pro-
gram paths and consequently tends to fo-
cus on parts of the program close to the entry point. This weakness is partially



278 M. Jonáš et al.

mitigated by running an optimizer after the fuzzing finishes. Optimizer extends
the limits and re-runs the program executions that exceeded the standard lim-
its. Second, being reliant on gradient descent, it tends to perform poorly if the
branching conditions are non-linear as the standard gradient descent only com-
putes information about linear approximations of the objective function.

Some of the weaknesses of the original Fizzer mentioned in Section 1, i.e.,
expensive sensitivity analysis and divergences caused by small modifications of
inputs, are partially mitigated by the new taint-flow analysis and search in local
spaces. This is supported by our experimental evaluation on all Cover-Branches
benchmarks from Test-Comp 2024 [1] (our experiments use less resources than
the Test-Comp 2024 setting, in particular the time limit was set to 300 s
per benchmark). The results presented by the scatter plot in Figure 1 show that
the new version of Fizzer generally achieves better branch coverage, sometimes
even by an order of magnitude. On average, the new version of Fizzer achieved
the coverage 66.5% while the original version achieved 59.8%. In Test-Comp
2025 [3], the new version of Fizzer finished in the 4th place in Cover-Branches
category and won a bronze medal in Overall [2].

4 Tool Setup and Configuration

Fizzer can be downloaded either as a binary or as a source code (links are in
Section 6). For the source code of the version used in the competition, check out
the tag TESTCOMP25. The README.md file in the root of the repository contains
instructions for building the tool. The tool is used via sbt-fizzer.py script:

sbt-fizzer.py [options] --input_file <c-program>
--output_dir <output-dir>

All results including the generated tests will be stored under the directory
<output-dir>. The list of all available options can be obtained by the com-
mand sbt-fizzer.py --help. Options used in the competition are:

• max_seconds 865 The timeout for the entire fuzzing process.
• optimizer_max_seconds 30 The timeout for the optimizer.
• max_exec_milliseconds 500 The timeout for each program execution.
• max_exec_megabytes 13312 The memory limit for each program execu-

tion.
• max_stdin_bytes 65536 The upper bound for the number of input bytes.
• stdin_model stdin_replay_bytes_then_repeat_zero An input model:

given input bytes followed by bytes of the value 0.
• test_type testcomp The format for the generated tests.

5 Software Project and Contributors

Fizzer has been developed at the Faculty of Informatics of Masaryk University
by Marek Trtík and Lukáš Urban (contributed to the original version). Martin
Jonáš and Jan Strejček participated in discussions and contributed to the project
by some ideas. The tool is open-source and available under the zlib license.



Fizzer with Local Space Fuzzing 279

6 Data-Availability statement

Fizzer is available in a binary form at Zenodo [4] and the source code is available
at GitHub:

https://github.com/staticafi/fizzer

References

1. Test-Comp 2024 benchmarks repository (checkout testcomp24-final), https://
gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

2. Test-Comp 2025, table with results, https://test-comp.sosy-lab.org/2025/
results/results-verified/

3. Beyer, D.: Advances in automatic software testing: Test-Comp 2025. In: Proc. FASE.
Springer (2025)

4. Jonáš, M., Strejček, J., Trtík, M.: Fizzer: binary (Dec 2024).
https://doi.org/10.5281/zenodo.14246517

5. Jonáš, M., Strejček, J., Trtík, M.: Gray-box fuzzing in local space (2025), https:
//arxiv.org/abs/2501.18046

6. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: New gray-box fuzzer (competi-
tion contribution). In: Beyer, D., Cavalcanti, A. (eds.) Fundamental Approaches
to Software Engineering - 27th International Conference, FASE 2024, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings. Lec-
ture Notes in Computer Science, vol. 14573, pp. 309–313. Springer (2024), https:
//doi.org/10.1007/978-3-031-57259-3_17

7. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Gray-box fuzzing via gradient descent
and Boolean expression coverage. In: Finkbeiner, B., Kovács, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 30th International Con-
ference, TACAS 2024, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,
2024, Proceedings, Part III. Lecture Notes in Computer Science, vol. 14572, pp.
90–109. Springer (2024), https://doi.org/10.1007/978-3-031-57256-2_5

8. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: State of
the art. IEEE Transactions on Reliability 67(3), 1199–1218 (2018).
https://doi.org/10.1109/TR.2018.2834476

https://github.com/staticafi/fizzer
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
https://test-comp.sosy-lab.org/2025/results/results-verified/
https://test-comp.sosy-lab.org/2025/results/results-verified/
https://doi.org/10.5281/zenodo.14246517
https://arxiv.org/abs/2501.18046
https://arxiv.org/abs/2501.18046
https://doi.org/10.1007/978-3-031-57259-3_17
https://doi.org/10.1007/978-3-031-57259-3_17
https://doi.org/10.1007/978-3-031-57256-2_5
https://doi.org/10.1109/TR.2018.2834476


280 M. Jonáš et al.

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Fizzer with Local Space Fuzzing



