
C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
A
S

*

Ar
tifact *

-
Test

C o m
p

E
F

Symbiotic 8: Parallel and
Targeted Test Generation

(Competition Contribution)

Marek Chalupa �, Jakub Novák, and
Jan Strejček

Masaryk University, Brno, Czech Republic

� Jury member and the corresponding author: chalupa@fi.muni.cz.

Abstract. The setup of Symbiotic 8 for Test-Comp 2021 brings radical
changes in the test generation for coverage-branches property. Similarly
as in Symbiotic 7, we generate tests by running our fork of symbolic
executor Klee on the analyzed program. Symbiotic 8, however, runs
several instances of Klee in parallel. We run one instance of Klee on
the original program and, simultaneously, we create one (intentionally
unsound) program slice for every program-terminating instruction in the
program and run Klee on these slices. Apart from this principal change,
we also improved other components of the tool, mainly the program
slicer. Further, our fork of Klee now supports symbolic pointer arith-
metics and comparison of symbolic addresses.

1 Test-Generation Approach

Symbiotic [3,2] is an open-source program analysis framework that combines
static analyses with code transformations in order to enable faster analysis of
the code. In the setup for Test-Comp 2021, Symbiotic uses program slicing [6]
in combination with symbolic execution [5].

Static (backward) program slicing [6] is a technique that removes program
instructions that have no influence on reachability or the effect of selected parts
of the program. In Test-Comp, we use program slicing for all properties. For
coverage-error-call property, we slice the program to remove instructions
that cannot affect reachability of the error location. For coverage-branches

property, we use program slicing to create modified versions of the program on
which we are likely to quickly generate tests that reach hard-to-cover parts of
the program.

Symbolic execution [5] is a program analysis technique that enumerates all
possible execution paths of a program. For every path, it computes its corre-
sponding path condition, which is a collection of constraints on program inputs
that forms the necessary and sufficient condition to follow the path. Each path
condition is then used to create a test that makes the program execute the given
path.

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 368–372, 2021.
https://doi.org/10.1007/978-3-030-71500-7 20

https://doi.org/10.5281/zenodo.4491729
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_20&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-71500-7_20


Symbiotic 8: Parallel and Targeted Test Generation 369

1.1 Workflow of Symbiotic 8

The workflow of Symbiotic 8 in Test-Comp 2021 for the property
coverage-error-call is the same as in Symbiotic 7: we slice the analyzed
program with respect to calls of the error function and run Klee on this sliced
program. If Klee finds a feasible path that calls the error function, we attempt
to replay this path in the unsliced program to fill in the possibly missing values
returned from calls to functions VERIFIER nondet * that may have been sliced
away.

The workflow for the property coverage-branches changed significantly in
Symbiotic 8. For this property, we run several instances of Klee in parallel:
one instance on the original program and other instances on slices generated for
every terminating location in the program.

More precisely, we create a pool of processes that keeps running at most
8 processes at the same time (on the first-come-first-served basis). We start an
instance of Klee on the original program and add it to the pool. Then we identify
instructions in the program that terminate the execution (further referred to as
targets). For each target, we create a slice and queue a run of Klee on this slice.

These slices are unsound in the sense that they do not preserve all execution
paths to the targets. A slice is constructed in two steps:

1. We gather all instructions that are backward-reachable from the target in
the target’s function and recursively in the callers of the target’s function.
However, we move only up the call stack and do not submerge into procedures
during this process.

2. After we gather all such instructions, we replace all other instructions with a
call to abort and apply standard program slicing with respect to the target.

For example, consider the code on the left in Figure 1. It contains three possi-
ble targets, namely error() (line 7), abort() (line 13), and return 0 (line 17).
If we slice with respect to the target error(), we start searching the program
backwards from this target and get all instructions in the body of function foo.
Then we pop up from the call to line 16 and collect all instructions of function
main except the call to abort (from which the call to foo is unreachable). All
instructions except the gathered ones are replaced with a call to abort. Standard
program slicing then produces the program depicted in the middle in Figure 1 (in
this case, it just removes the return). The slice for the target abort() preserves
only three first lines of main as depicted on the right in Figure 1.

Whenever the main instance of Klee finishes tests generation, we have tests
for all feasible execution paths of the program. Therefore, we kill all other run-
ning instances of Klee and discard tests that were not generated by the main
instance to reduce the size of the test suite. If the main instance does not finish
before timeout, we keep all generated tests.

Using the unsound slices aims only to help reaching hard-to-cover places in
the program. In particular, potentially expensive detours are replaced by abort

and symbolic execution thus does not waste resources to discover them (see
line 2 in the middle in Figure 1). The current construction of unsound slices



370 M. Chalupa et al.

1 int inc(int x) {
2 return x + 1;
3 }
4

5 void foo(int x) {
6 if (x > 0)
7 error();
8 }
9

10 int main() {
11 int y = nondet ();
12 if (y < 0)
13 abort();
14 if (y == 0)
15 y = inc(y);
16 foo(y);
17 return 0;
18 }

int inc(int x) {
abort();

}

void foo(int x) {
if (x > 0)

error();
}

int main() {
int y = nondet ();
if (y < 0)

abort();
if (y == 0)

y = inc(y);
foo(y);

}

int main() {
int y = nondet ();
if (y < 0)

abort();

}

Fig. 1. And example of a program (left) and its unsound slice with respect to the call
of error() (middle) and abort() (right).

guarantees that if a test covers a target in the corresponding slice, then it covers
the same target also in the original program. The opposite implication does not
hold due to the unsoundness. Note that tests generated from the slices may not
and usually do not cover all branches in the original program, therefore we still
need to run Klee on the original program.

2 Software Architecture

All parts of Symbiotic 8 use llvm 10 [7]. We compile the analyzed program
into llvm bitcode by the compiler Clang.

To carry out symbolic execution, we use our fork of the open-source sym-
bolic executor Klee [1]. The fork has several modifications compared to the
mainstream Klee. The main modification is the representation of pointers as
segment-offset pairs that enables symbolic-sized allocations. Since this year, our
fork Klee also supports comparison of and arithmetic on symbolic pointers.
We use Z3 [4] as the SMT solver in Klee. The components of Symbiotic are
programmed in C++ and the scripts that schedule and control running these
components are written in Python.

3 Strengths and Weaknesses

Although symbolic execution is very good in generating test-cases, it suffers from
the path explosion problem. This problem emerges on programs that contain
many branching instructions or loops with the number of iterations dependent on
the input and may hinder symbolic execution from exploring “deep” parts of the



Symbiotic 8: Parallel and Targeted Test Generation 371

Fig. 2. The coverage achieved by Symbiotic 8 and 7 on individual benchmarks of the
Cover-Branches category

program. Using unsound program slices for terminating instructions attempts to
alleviate this problem. Although the slice is not guaranteed to preserve paths to
the target for which it was created, there are programs where this technique helps
symbolic execution to cover substantially more instructions. However, there are
also many cases where the technique worsens the coverage alike.

Figure 2 illustrates the overall positive and negative effect of this approach.
The scatter plot on the left compares the coverage achieved by Symbiotic 8
and the coverage achieved by Symbiotic 7 on individual benchmarks that were
used in both Test-Comp 2020 and 2021.1 The scatter plot shows that the be-
havior of the tool changes dramatically. To summarize the data, we compute
the difference between the two coverages on each benchmark (for example, if
Symbiotic 8 achieves 80% and Symbiotic 7 60% coverage, the difference is
+20%). The histogram on the right indicates that the overall effect of unsound
slices is positive as the distribution is skewed to positive values. Indeed, Sym-
biotic 8 won the 3rd place in the category Cover-Branches (corresponding to
coverage-branches property) in Test-Comp 2021 which is a big improvement
over the previous Test-Comp, where Symbiotic was 8th out of 9 participants
in this category.

The workflow of Symbiotic on coverage-error-call did not change from
the last year and thus the results are similar.

4 Tool Setup and Configuration

The archive is available at https://doi.org/10.5281/zenodo.4491729. Run Sym-
biotic with the following command

1 The use of unsound slices is not the only difference between Symbiotic 8 and 7, but
we believe that it has the biggest impact on the presented results.

https://doi.org/10.5281/zenodo.4491729


372 M. Chalupa et al.

bin/symbiotic --test-comp --prp <prpfile> [--32] <source>

where --prp sets the verified property and --32 tells Symbiotic to assume
32-bit architecture (64-bit architecture is assumed by default). The generated
test-cases are stored in the directory test-suite.

5 Software Project and Contributors

Symbiotic 8 as it competes in Test-Comp 2021 has been developed by Marek
Chalupa and Jakub Novák under the supervision of Jan Strejček. The tool and
its components are available under MIT License. llvm, Klee, and Z3 are also
available under open-source licenses. The project web page is:

https://github.com/staticafi/symbiotic

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In OSDI, pages
209–224. USENIX Association, 2008. http://www.usenix.org/events/osdi08/tech/
full papers/cadar/cadar.pdf.

2. M. Chalupa, T. Jašek, L. Tomovič, M. Hruška, V. Šoková, P. Ayaziová, J. Strejček,
and T. Vojnar. Symbiotic 7: Integration of predator and more (competition contri-
bution). In TACAS, volume 12079 of LNCS, pages 413–417. Springer, 2020. doi:
10.1007/978-3-030-45237-7 31.

3. M. Chalupa, M. Vitovská, T. Jašek, M. Šimáček, and J. Strejček. Symbiotic 6:
generating test cases by slicing and symbolic execution. International Journal on
Software Tools for Technology Transfer, 2020. doi: 10.1007/s10009-020-00573-0.

4. L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3 24.

5. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976. doi: 10.1145/360248.360252.

6. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984. doi: 10.1109/TSE.1984.5010248.

7. LLVM. http://llvm.org/.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/staticafi/symbiotic
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dx.doi.org/10.1007/978-3-030-45237-7_31
http://dx.doi.org/10.1007/s10009-020-00573-0
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1109/TSE.1984.5010248
http://llvm.org/
http://creativecommons.org/licenses/by/4.0/

	Symbiotic 8: Parallel and Targeted Test Generation (Competition Contribution)
	1 Test-Generation Approach
	1.1 Workflow of Symbiotic 8

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References




