
Fast Computation of Strong
Control Dependencies

Marek Chalupa(B) , David Klas̆ka, Jan Strejček ,
and Lukás̆ Tomovic̆

Masaryk University, Brno, Czech Republic
{chalupa,strejcek}@fi.muni.cz,

{david.klaska,tomovic}@mail.muni.cz

Abstract. We introduce new algorithms for computing non-termination
sensitive control dependence (NTSCD) and decisive order dependence
(DOD). These relations on vertices of a control flow graph have many
applications including program slicing and compiler optimizations. Our
algorithms are asymptotically faster than the current algorithms. We
also show that the original algorithms for computing NTSCD and DOD
may produce incorrect results. We implemented the new as well as fixed
versions of the original algorithms for the computation of NTSCD and
DOD. Experimental evaluation shows that our algorithms dramatically
outperform the original ones.

1 Introduction

Control dependencies between program statements are studied since 70’s.
They have important applications in compiler optimizations [12,14,16], pro-
gram analysis [9,19,36], and program transformations, especially program slic-
ing [1,9,22,26,37]. Slicing is used in many areas including testing, debugging,
parallelization, reverse engineering, program analysis and verification [17,28].

Informally, two statements in a program are control dependent if one directly
controls the execution of the other in some way. This is typically the case for
if statements and their bodies. Control dependencies are nowadays classified as
weak (non-termination insensitive) if they assume that a given program always
terminates, or as strong (non-termination sensitive) if they do not have this
assumption [13]. We illustrate the difference on the control flow graph in Fig.
1. Node a controls whether b or c (and then d) is going to be executed, so b, c,
and d are control dependent on a (the convention is to display dependence as
edges in the “controls” direction). Similarly, b controls the execution of c and d,
as these nodes may be bypassed by going from b to e. Note also that d controls
whether d is going to be executed in the future and thus is control dependent on
itself. However, c does not control d as any path from c hits d. All dependencies
mentioned so far are weak, namely standard control dependencies as defined by
Ferrante et al. [16]. Weak control dependence assumes that the program always
terminates, in particular, that the loop over d cannot iterate forever. As a result,
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 887–910, 2021.
https://doi.org/10.1007/978-3-030-81688-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_41&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-81688-9_41

888 M. Chalupa et al.

a

b

c d

e

Fig. 1. An example of a control flow graph and control dependencies (red edges).
The dotted dependencies are additional non-termination sensitive control dependencies.
(Color figure online)

e is reached by all executions and thus it is not weakly control dependent on any
node. However, e is strongly control dependent on b and d. Indeed, if we assume
that some executions can loop over d forever, then reaching e is controlled clearly
by d and also by b as it can send the execution directly to e.

This paper is concerned with the computation of two prominent strong
control dependencies introduced by Ranganath et al. [32,33], namely non-
termination sensitive control dependence (NTSCD) and decisive order depen-
dence (DOD). NTSCD is studied in Sect. 3, which follows after preliminaries in
Sect. 2. We first recall the definition of NTSCD and the algorithm of Ranganath
et al. [33] for its computation. Then we show a flaw in the algorithm and suggest a
fix. Finally, we introduce a new algorithm for the computation of NTSCD. Given
a control flow graph with |V | nodes, the new algorithm runs in time O(|V |2),
while the algorithm of Ranganath et al. runs in time O(|V |4 · log |V |) and its
fixed version in time O(|V |5). We show a NTSCD relation of size Θ(|V |2), which
means that our algorithm is asymptotically optimal.

The DOD relation captures the cases when one node controls the execution
order of two other nodes. Roughly speaking, nodes {b, c} are DOD on a whenever
all executions passing through a eventually reach both b and c and a controls
which is reached first. Ranganath et al. [33] proved that the relation is empty
for reducible graphs [21], i.e., graphs where every cycle has a single entry point.
Control flow graphs of structured programs are reducible, but irreducible graphs
may arise for example in the following situations [11,33,35]:

– unstructured coding by a human, which is rather rare nowadays,
– compilation into unstructured code representation like JVM bytecode,
– tail call recursion optimization during compilation,
– when the control flow graph is interprocedural – in this case, irreducibility

may be introduced by recursion or exceptions handling,
– by reversing a control flow graph containing, for example, break statements
– when the control flow graph is not generated from program, but, e.g., from a

finite state machine.

The DOD relation is important (together with NTSCD) when we want to slice
possibly non-terminating programs with irreducible control flow graphs and pre-
serve their termination properties as well as data integrity [1,33]. This is a
common requirement when slicing is used as a preprocessing step before pro-
gram verification [9,23,26], worst-case execution time analysis [29], information
flow analysis [18,19], analysis of concurrent programs [18] with busy-waiting

Fast Computation of Strong Control Dependencies 889

synchronization or synchronization where possible spurious wake-ups of threads
are guarded by loops (e.g., programs using the pthread library), and analysis of
reactive systems and generic state-based models [2,24,33].

The DOD relation is studied in Sect. 4, where we recall its definition, discuss
the Ranganath et al.’s algorithm for DOD [33], and show that this algorithm
also contains a flaw. Fortunately, this flaw can be easily fixed without changing
the complexity of the algorithm. Further, we develop a theory that underpins
our new algorithm for the computation of DOD. Due to the space limitations,
proofs of theorems can be found only in the extended version of this paper [8].
The new algorithm, presented at the end of the section, computes DOD in time
O(|V |3), while the original as well as the fixed version of the Ranganath et al.’s
algorithm runs in O(|V |5 · log |V |). We show a DOD relation of size Θ(|V |3),
which means that our algorithm is again asymptotically optimal.

Section 5 focuses on control closures (CC) introduced by Danicic et al. [33],
which generalize control dependence to arbitrary directed graphs. It is known
that the strong (i.e., non-termination sensitive) control closure for a set of nodes
containing the starting node is equivalent to the closure under NTSCD and DOD
relations. Hence, our algorithms for NTSCD and DOD can be used to compute
strong CC in time O(|V |3) on control flow graphs, while the original algorithm
by Danicic et al. [13] runs in O(|V |4).

Our theoretical contribution to computation of strong control dependencies
is summarized in Table 1. Section 6 presents experimental evaluation showing
that our algorithms are indeed dramatically faster than the original ones. The
paper is concluded with Sect. 7.

1.1 Related Work

The first paper concerned with control dependence is due to Denning and Den-
ning [15], who used control dependence to certify that flow of information in a
program is secure. Weiser [37], Ottenstein and Ottenstein [30], and Ferrante et
al. [16] used control dependence in program slicing, which is also the motivation
for the most of the latter research in this area. These “classical” papers study
control dependence in terminating programs with a unique exit node eventually
reached by every execution. These restrictions have been gradually removed.

Table 1. Overview of discussed algorithms and their complexities on CFGs

Relation/closure Algorithm Complexity

NTSCD Original algorithm by Ranganath et al. [33] O(|V |4 · log |V |)
(Sect. 3) Fixed algorithm by Ranganath et al. [33] O(|V |5)

New algorithm O(|V |2)
DOD Original algorithm by Ranganath et al. [33] O(|V |5 · log |V |)
(Sect. 4) Fixed algorithm by Ranganath et al. [33] O(|V |5 · log |V |)

New algorithm O(|V |3)
Strong CC Original algorithm by Danicic et al. [13] O(|V |4)
(Sect. 5) New NTSCD-and-DOD-based algorithm O(|V |3)

890 M. Chalupa et al.

Podgurski and Clarke [31] defined the first strong control dependence that
does not assume termination of the program.1 However, their definitions and
algorithms still require programs to have a unique exit node.

Bilardi and Pingal [5] introduced a framework that uses generalized domi-
nance relation on graphs. In their framework, they are able to compute Podgurski
and Clarke’s control dependence in O(|E|+|V |2) time for a directed graph (V,E)
with a unique exit node. In theory, NTSCD could be computed in their frame-
work. However, computing augmented post-dominator tree – the central data
structure of their framework – requires the unique exit node as it starts with
post-dominator tree and, mainly, is much more complicated compared to our
algorithm for NTSCD [5].

Chen and Rosu [10] introduced a parametric approach where loops can be
annotated with information about termination. The resulting control depen-
dence is somewhere between the classical and Podgurski and Clarke’s control
dependence, the two being the extremes.

The notion of NTSCD and DOD was founded in works of Ranganath et al.
[32,33] in order to slice reactive systems, e.g., operating systems or controllers of
embedded devices. They generalized also classical (non-termination insensitive)
control dependence to graphs without the unique exit point (further investigated,
e.g., by Androutsopoulos et al. [3]) and provided several relaxed versions of DOD.

Danicic et al. [13] introduced weak and strong control closures (CC) that
generalize weak and strong control dependence (thus also NTSCD) to arbitrary
graphs. They provide algorithms for the computation of minimal closures that
run in O(|V |3) (weak CC) and O(|V |4) (strong CC) on graph with |V | nodes.

An orthogonal study of control dependence that arises between statements
in different procedures (e.g., due to calls to exit()) was carried out by Loyall
and Mathisen [27], Harrold et al. [20], and Sinha et al. [34].

2 Preliminaries

A finite directed graph is a pair G = (V,E), where V is a finite set of nodes and
E ⊆ V × V is a set of edges. If there is an edge (m,n) ∈ E, then n is called
a successor of m, m is a predecessor of n, and the edge is an outgoing edge of
m. Given a node n, Successors(n) and Predecessors(n) denote the sets of all its
successors and predecessors, respectively. A path from a node n1 is a nonempty
finite or infinite sequence n1n2 . . . ∈ V +∪V ω of nodes such that there is an edge
(ni, ni+1) ∈ E for each pair ni, ni+1 of adjacent nodes in the sequence. A path
is called maximal if it cannot be prolonged, i.e., it is infinite or the last node of
the path has no outgoing edge. A node m is reachable from a node n if there
exists a finite path such that its first node is n and its last node is m.

We say that a graph is a cycle, if it is isomorphic to a graph (V,E) where
V = {n1, . . . , nk} for some k > 0 and E = {(n1, n2), (n2, n3), . . . , (nk−1, nk),
1 Podgurski and Clarke [31] called their control dependence weak control dependence

as it is a superset of classical control dependence. Nowadays, we use the terms weak
and strong precisely in the opposite meaning [13].

Fast Computation of Strong Control Dependencies 891

(nk, n1)}. A cycle unfolding is a path in the cycle that contains each node pre-
cisely once.

In this paper, we consider programs represented by control flow graphs, where
nodes correspond to program statements and edges model the flow of control
between the statements. As control dependence reflects only the program struc-
ture, our definition of a control flow graph does not contain any statements.
Our definition also does not contain any start or exit nodes as these are not
important for the problems we study in this paper.

Definition 1 (Control flow graph, CFG). A control flow graph (CFG) is a
finite directed graph G = (V,E) where each node v ∈ V has at most two outgoing
edges. Nodes with exactly two outgoing edges are called predicate nodes or simply
predicates. The set of all predicates of a CFG G is denoted by Predicates(G).

3 Non-termination Sensitive Control Dependence

This section recalls the definition of NTSC by Ranganath et al. [32] and their
algorithm for computing NTSCD. Then we show that the algorithm can produce
incorrect results and introduce a new algorithm that is asymptotically faster.

Definition 2 (Non-termination sensitive control dependence,NTSCD).
Given a CFG G = (V,E), a node n ∈ V is non-termination sensitive control
dependent (NTSCD) on a predicate node p ∈ Predicates(G), written p NTSCD−−−→ n,
if p has two successors s1 and s2 such that

– all maximal paths from s1 contain n, and
– there exists a maximal path from s2 that does not contain n.

3.1 Algorithm of Ranganath et al. [33] for NTSCD

The algorithm is presented in Algorithm 1. Its central data structure is a two-
dimensional array S where for each node n and for each predicate node p with
successors r and s, S[n, p] always contains a subset of {tpr, tps}. Intuitively, tpr

should be added to S[n, p] if n appears on all maximal paths from p that start
with the prefix pr. The workbag holds the set of nodes n for which some S[n, p]
value has been changed and this change should be propagated. The first part of
the algorithm initializes the array S with the information that each successor
r of a predicate node p is on all maximal paths from p starting with pr. The
main part of the algorithm then spreads the information about the reachability
on all maximal paths in the forward manner. Finally, the last part computes the
NTSCD relation according to Definition 2 and with use of the information in S.

The algorithm runs in time O(|E| · |V |3 · log |V |) [33] for a CFG G = (V,E).
The log |V | factor comes from set operations. Since every node in CFG has at
most 2 outgoing edges, we can simplify the complexity to O(|V |4 · log |V |).

Although the correctness of the algorithm has been proved [32, Theorem 7],
Fig. 2 presents an example where the algorithm provides an incorrect answer.

892 M. Chalupa et al.

Algorithm 1: The NTSCD algorithm by Ranganath et al. [33]
Input: a CFG G = (V, E)
Output: a potentially incorrect NTSCD relation stored in ntscd

1 Set S[n, p] = ∅ for all n ∈ V and p ∈ Predicates(G) // Initialization

2 workbag ← ∅
3 for p ∈ Predicates(G) do
4 for r ∈ Successors(p) do
5 S[r, p] ← {tpr}
6 workbag ← workbag ∪ {r}
7

8 while workbag �= ∅ do // Computation of S
9 n ← pop from workbag

10 if Successors(n) = {s} for some s �= n then // One successor case

11 for p ∈ Predicates(G) do
12 if S[n, p] � S[s, p] �= ∅ then
13 S[s, p] ← S[s, p] ∪ S[n, p]
14 workbag ← workbag ∪ {s}
15 if |Successors(n)| > 1 then // Multiple successors case

16 for m ∈ V do
17 if |S[m, n]| = |Successors(n)| then
18 for p ∈ Predicates(G) � {n} do
19 if S[n, p] � S[m, p] �= ∅ then
20 S[m, p] ← S[m, p] ∪ S[n, p]
21 workbag ← workbag ∪ {m}
22

23 ntscd ← ∅ // Computation of NTSCD

24 for n ∈ V do
25 for p ∈ Predicates(G) do
26 if 0 < |S[n, p]| < |Successors(p)| then
27 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

The first part of the algorithm initializes S as shown in the figure and sets
workbag to {2, 6, 3, 4}. Then any node from workbag can be popped and pro-
cessed. Let us apply the policy used for queues: always pop the oldest element in
workbag . Hence, we pop 2 and nothing happens as the condition on line 17 is not
satisfied for any m. This also means that the symbol t12 is not propagated any
further. Next we pop 6, which has no effect as 6 has no successor. By processing
3 and 4, t23 and t24 are propagated to S[5, 2] and 5 is added to the workbag .
Finally, we process 5 and set S[6, 2] to {t23, t24}. The final content of S is pro-
vided in the figure. Unfortunately, the information in S is sound but incomplete.
In other words, if tpr ∈ S[n, p], then n is indeed on all maximal paths from p
starting with pr, but the opposite implication does not hold. In particular, t12 is
missing in S[5, 1] and S[6, 1]. Consequently, the last part of the algorithm com-
putes an incorrect NTSCD relation: it correctly identifies 1 NTSCD−−−→ 2, 2 NTSCD−−−→ 3,
and 2 NTSCD−−−→ 4, but it also incorrectly produces 1 NTSCD−−−→ 6 and misses 1 NTSCD−−−→ 5.

Fast Computation of Strong Control Dependencies 893

1

2

3 4

5

6

S after initialization
S[2, 1] = {t12}
S[6, 1] = {t16}
S[3, 2] = {t23}
S[4, 2] = {t24}

final S when nodes are popped in order
2, 6, 3, 4, 5 (oldest first) 3, 4, 2, 5, 6 (correct)
S[2, 1] = {t12} S[2, 1] = {t12}
S[6, 1] = {t16} S[3, 2] = {t23}
S[3, 2] = {t23} S[4, 2] = {t24}
S[5, 2] = {t23, t24} S[5, 1] = {t12}
S[6, 2] = {t23, t24} S[6, 1] = {t12, t16}

S[6, 2] = {t23, t24}

Fig. 2. An example that shows the incorrectness of the NTSCD algorithm by Ran-
ganath et al. [33]. Solid red edges depict the dependencies computed by the algorithm
when it always pops the oldest element in workbag . The crossed dependence is incorrect.
The dotted dependence is missing in the result.

A necessary condition to get the correct result is to process 2 only after 3, 4
are processed and S[5, 6] = {t23, t24}. For example, one obtains the correct S
(also shown in the figure) when the nodes are processed in the order 3, 4, 2, 5, 6.

The algorithm is clearly sensitive to the order of popping nodes from workbag .
We are currently not sure whether for each CFG there exists an order that
leads to the correct result. An easy way to fix the algorithm is to ignore the
workbag and repeatedly execute the body of the while loop (lines 10–21) for all
n ∈ V until the array S reaches a fixpoint. However, this modification would
slow down the algorithm substantially. Computing the fixpoint needs O(|V |3)
iterations over the loop body (lines 10–21 excluding lines 14 and 21 handling the
workbag) and one iteration of this loop body needs O(|V |2). Hence, the overall
time complexity of the fixed version is O(|V |5).

3.2 New Algorithm for NTSCD

We have designed and implemented a new algorithm computing NTSCD. Our
algorithm is correct, significantly simpler and asymptotically faster than the
original algorithm of Ranganath et al. [33].

The new algorithm calls for each node n a procedure that identifies all
NTSCD dependencies of n on predicate nodes. The procedure works in the fol-
lowing steps.

1. Color n red.
2. Pick an uncolored node such that it has some successors and they all are red.

Color the node red. Repeat this step until no such node exists.
3. For each predicate node p that has a red successor and an uncolored one,

output p NTSCD−−−→ n.

894 M. Chalupa et al.

Algorithm 2: The new NTSCD algorithm
Input: a CFG G = (V, E)
Output: the NTSCD relation stored in ntscd

1 Procedure visit(n) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ n.color �= red then
4 n.color ← red
5 for m ∈ Predecessors(n) do
6 visit(m)

7

8 Procedure compute(n) // Coloring the graph red for a given n
9 for m ∈ V do

10 m.color ← uncolored
11 m.counter ← |Successors(m)|
12 n.color ← red
13 for m ∈ Predecessors(n) do
14 visit(m)

15

16 ntscd ← ∅ // Computation of NTSCD

17 for n ∈ V do
18 compute(n)
19 for p ∈ Predicates(G) do
20 if p has a red successor and an uncolored successor then
21 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

Unlike the Ranganath et al.’s algorithm which works in a forward manner, our
algorithm spreads the information about the reachability of n on all maximal
paths in the backward direction starting from n.

The algorithm is presented in Algorithm 2. The procedure compute(n)
implements the first two steps mentioned above. In the second step, it does
not search over all nodes to pick the next node to color. Instead, it maintains
the count of uncolored successors for each node. Once the count drops to 0 for a
node, the node is colored red and the search continues with predecessors of this
node. The third step is implemented directly in the main loop of the algorithm.

To prove that the algorithm is correct, we basically need to show that when
compute(n) finishes, a node m is red iff all maximal paths from m contain n.
We start with a simple observation.

Lemma 1. After compute(n) finishes, a node m is red if and only if m = n
or m has a positive number of successors and all of them are red.

Proof. For each node m, the counter is initialized to the number of its successors
and it is decreased by calls to visit(m) each time a successor of m gets red. When

Fast Computation of Strong Control Dependencies 895

the counter drops to 0 (i.e., all successors of the node are red), the node is colored
red. Therefore, if m is red, it got red either on line 12 and m = n, or m �= n
and m is red because all its successors got red (it must have a positive number
of successors, otherwise the counter could not be 0 after its decrement). In the
other direction, if m = n, it gets red on line 12. If it has a positive number of
successors which all get red, the node is colored red by the argument above. ��
Theorem 1. After compute(n) finishes, for each node m it holds that m is
red if and only if all maximal paths from m contain n.

Proof. (“⇐=”) We prove this implication by contraposition. Assume that m is
an uncolored node. Lemma 1 implies that each uncolored node has an uncolored
successor (if it has any). Hence, we can construct a maximal path from m con-
taining only uncolored nodes simply by always going to an uncolored successor,
either up to infinity or up to a node with no successors. This uncolored maximal
path cannot contain n which is red.

(“=⇒”) For the sake of contradiction, assume that there is a red node m and
a maximal path from m that does not contain n. Lemma 1 implies that all nodes
on this path are red. If the maximal path is finite, it has to end with a node
without any successor. Lemma 1 says that such a node can be red if and only if
it is n, which is a contradiction. If the maximal path is infinite, it must contain
a cycle since the graph is finite. Let r be the node on this cycle that has been
colored red as the first one. Let s be the successor of r on the cycle. Recall that
r �= n as the maximal path does not contain n. Hence, node r could be colored
red only when all its successors including s were already red. This contradicts
the fact that r was colored red as the first node on the cycle. ��

To determine the complexity of our algorithm on a CFG (V,E), we first
analyze the complexity of one run of compute(n). The lines 9–11 iterate over
all nodes. The crucial observation is that the procedure visit is called at most
once for each edge (m,m′) ∈ E of the graph: to decrease the counter of m
when m′ gets red. Hence, the procedure compute(n) runs in O(|V |+ |E|). This
procedure is called on line 18 for each node n. Finally, lines 20–21 are executed
for each pair of node n and predicate node p. This gives us the overall complexity
O((|V | + |E|) · |V | + |V |2) = O((|V | + |E|) · |V |). Since in control flow graphs it
holds |E| ≤ 2|V |, the complexity can be simplified to O(|V |2).

Note that our algorithm is asymptotically optimal as there are CFGs with
NTSCD relations of size Θ(|V |2). For example, the CFG in Fig. 3 has |V | = 2k+1
nodes and the corresponding NTSCD relation

{ni
NTSCD−−−→ mj | i, j ∈ {1, . . . , k}} ∪ {ni

NTSCD−−−→ ni+1 | i ∈ {1, . . . , k − 1}}

is of size k2 + k − 1 ∈ Θ(|V |2).

896 M. Chalupa et al.

n1 n2 n3 . . . nk

m1 m2 m3 . . . mk

e

Fig. 3. A CFG with |V | nodes that has the NTSCD relation of size Θ(|V |2).

p

a b

Fig. 4. An example of an irreducible CFG. There are no NTSCD dependencies, but a
and b are DOD on p.

4 Decisive Order Dependence

There are control dependencies not captured by NTSCD. For example, consider
the CFG in Fig. 4. Nodes a and b are not NTSCD on p as they lie on all maximal
paths from p. However, p controls which of a and b is executed first. Ranganath
et al. [33] introduced the DOD relation to capture such dependencies.

Definition 3 (Decisive order dependence, DOD). Let G = (V,E) be a
CFG and p, a, b ∈ V be three distinct nodes such that p is a predicate node
with successors s1 and s2. Nodes a, b are decisive order-dependent (DOD) on p,
written p DOD−−→ {a, b}, if
– all maximal paths from p contain both a and b,
– all maximal paths from s1 contain a before any occurrence of b, and
– all maximal paths from s2 contain b before any occurrence of a.

The importance of DOD for slicing of irreducible programs is discussed in
the introduction.

4.1 Algorithm of Ranganath et al. [33] for DOD

Ranganath et al. provided an algorithm that computes the DOD relation for a
given CFG G = (V,E) in time O(|V |4 · |E| · log |V |) which amounts to O(|V |5 ·
log |V |) on CFGs [33, Fig. 7]. The algorithm contains one unclear point. For each
triple of nodes p, a, b ∈ V such that p ∈ Predicates(G) and a �= b, the algorithm
executes the following check and if it succeeds, then p DOD−−→ {a, b} is reported:

reachable(a, b,G) ∧ reachable(b, a,G) ∧ dependence(p, a, b,G) (1)

Fast Computation of Strong Control Dependencies 897

p

a b c

Fig. 5. An example that shows the incorrectness of the DOD algorithm by Ranganath
et al. [33]

The procedure dependence(p, a, b,G) returns true iff a is on all maximal paths
from one successor of p before any occurrence of b and b is on all maximal
paths from the other successor of p before any occurrence of a. The procedure
reachable is specified only by words [33, description of Fig. 7] as follows:

reachable(a, b,G) returns true if b is reachable from a in the graph G.

Unfortunately, this algorithm can provide incorrect results. For example, con-
sider the CFG in Fig. 5. Nodes p, a, b satisfy the formula (1): a appears on all
maximal paths from one successor of p (namely a) before any occurrence of b,
and b appears on all maximal paths from the other successor of p (which is b)
before any occurrence of a. At the same time, a and b are reachable from each
other. However, it is not true that p DOD−−→ {a, b}, because a and b do not lie on
all maximal paths from p (the first condition of Definition 3 is violated).

The algorithm can be fixed by modifying the procedure reachable(a, b,G)
to return true if b is on all maximal paths from a. The modified procedure can
be implemented with use of the procedure compute(b) of Algorithm 2. As the
procedure compute(b) runs in O(|V | + |E|), the modification does not increase
the overall complexity of the algorithm. By comparing the fixed and the original
version of reachable(a, b,G), one can readily confirm that the original version
produces supersets of DOD relations.

4.2 New Algorithm for DOD: Crucial Observations

As in the case of NTSCD, we have designed a new algorithm for the computation
of DOD, which is relatively simple and asymptotically faster than the DOD
algorithm of Ranganath et al. [33].

Given a CFG, our algorithm first computes for each predicate p the set Vp of
nodes that are on all maximal paths from p. The definition of DOD implies that
only pairs of nodes in Vp can be DOD on p. For every predicate p we build an
auxiliary graph Ap with nodes Vp and from this graph we get all pairs of nodes
that are DOD on p. The graph Ap is defined as follows.

Definition 4 (V ′-interval [13]). Given a CFG G = (V,E) and a subset V ′ ⊆
V , a path n1 . . . nk such that k ≥ 2, n1, nk ∈ V ′, and ∀1 < i < k : ni �∈ V ′ is
called a V ′-interval from n1 to nk in G.

In other words, a V ′-interval is a finite path with at least one edge that has
the first and the last node in V ′ but no other node on the path is in V ′.

898 M. Chalupa et al.

Definition 5 (Graph Ap
2). Given a CFG G = (V,E), a predicate node p ∈

Predicates(G) and the subset Vp ⊆ V of nodes that are on all maximal paths
from p, the Ap = (Vp, Ep) is the graph where

Ep = {(x, y) | there exists a Vp -interval from x to y in G}.

In this subsection, we describe the connections between these graphs and
DOD that underpin our algorithm. The proofs of the theorems can be found in
the extended version of this paper [8].

Given a predicate p of a CFG G, the graph Ap does not have to be a CFG as
nodes in Ap can have more than two successors. However, Ap preserves exactly
all possible orders of the first occurrences of nodes in Vp on maximal paths in G
starting from p. More precisely, for each maximal path from p in G, there exists
a maximal path from p in Ap with the same order of the first occurrences of all
nodes in Vp, and vice versa. Further, it turns out that there are no nodes DOD
on p unless Ap has the right shape.

Definition 6 (Right shape of Ap). Given a CFG G, a predicate node p ∈
Predicates(G) and the graph Ap = (Vp, Ep), we say that Ap has the right shape
if it consists only of a cycle and the node p with at least two edges going to some
nodes on the cycle (i.e., the nodes of Vp � {p} can be labeled n1, . . . , nk such
that Ep = {(n1, n2), (n2, n3), . . . , (nk−1, nk), (nk, n1)}∪{(p, ni) | i ∈ I} for some
I ⊆ {1, . . . , k} with |I| ≥ 2).

Figure 6 depicts an Ap which has the right shape. In the following text, we
work only with Ap graphs in the right shape.

Let s1 and s2 be the two successors of p in G. Note that s1 and s2 may, but
do not have to be in Ap. To compute the pairs of nodes that are DOD on p,
we need to know all possible orders of the first occurrences of nodes in Vp on
the maximal paths in G starting in s1 and s2. Hence, for each successor si we
compute the set Si of nodes that appear as the first node of Vp on some maximal
path from si in G. Formally, for i ∈ {1, 2}, we define

Si = {n ∈ Vp | there exists a path si . . . n ∈ (V � Vp)∗.Vp in G}.

The nodes in S1 ∪ S2 are exactly all the successors of p in Ap. Further, the
maximal paths from the nodes of Si in Ap reflect exactly all possible orders
of the first occurrences of nodes in Vp on maximal paths in G starting in si.
If S1 and S2 are not disjoint, then there exist two maximal paths in G, one
starting in s1 and the other in s2, that differ only in prefixes of nodes outside
Vp. The definition of DOD implies that there are no nodes DOD on p in this
case. Therefore we assume that S1 and S2 are disjoint.

The nodes in Si divide the cycle of Ap into si-strips, which are parts of the
cycle starting with a node from Si and ending before the next node of Si.

2 Graph Ap can be defined as the graph induced by Vp in terms of Danicic et al. [13].

Fast Computation of Strong Control Dependencies 899

p

n1 n2 n3 n4

n5n6n7n8

s1-strips (blue):
n1n2n3n4n5n6

n7n8

s2-strips (red):
n2n3n4

n5n6n7n8n1

Fig. 6. An example of Ap in the right shape. Strips are computed for S1 = {n1, n7}
(blue nodes) and S2 = {n2, n5} (red nodes). (Color figure online)

Definition 7 (si-strip). Let i ∈ {1, 2}. An si-strip is a path n . . . m ∈ Si.(Vp �

Si)∗ in Ap such that the successor of m in Ap is a node in Si.

An example of Ap with si-strips is in Fig. 6. The si-strips directly say which
pairs of nodes of Vp are in the same order on all maximal paths from si in G.
In particular, a node a is before any occurrence of node b on all maximal paths
from a successor s of p in G if and only if there is an s-strip containing both a
and b where a is before b. As a corollary, we get the following theorem:

Theorem 2. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Then nodes a, b ∈ Vp are DOD on p if and only if

– there exists an s1-strip in Ap that contains a before b and
– there exists an s2-strip in Ap that contains b before a.

Consider again the Ap in Fig. 6. The theorem implies that nodes n1, n5 are
DOD on p as they appear in s1-strip n1n2n3n4n5n6 and in s2-strip n5n6n7n8n1

in the opposite order. Nodes n1, n6 are DOD on p for the same reason.
With use of the previous theorem, we can find a regular language over Vp

such that there exist nodes a, b DOD on p iff some unfolding of the cycle in Ap

is in the language.

Theorem 3. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let U = Vp � (S1 ∪ S2). There are some
nodes a, b DOD on p if and only if the cycle in Ap has an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗.

Finally, an unfolding of the mentioned form can be directly used for the
computation of nodes that are DOD on p.

Theorem 4. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let Ap have an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ where U = Vp � (S1 ∪ S2). Then there is exactly

one path m1 . . . mi ∈ S1.U
∗.S2 and exactly one path o1 . . . oj ∈ S2.U

∗.S1 on the
cycle. Moreover, p DOD−−→ {a, b} if and only if m1 . . . mi−1 contains a and o1 . . . oj−1

contains b (or the other way round).

900 M. Chalupa et al.

Algorithm 3: The algorithm computing Vn for all nodes n

Input: a CFG G = (V, E)
Output: Vn = {m ∈ V | m is on all maximal paths from n} for all n ∈ V

1 Procedure visit(n, r) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ r �∈ Vn then
4 Vn ← Vn ∪ {r}
5 for m ∈ Predecessors(n) do
6 visit(m, r)

7

8 Procedure compute(n) // ‘Coloring the graph red’ for a given n
9 for m ∈ V do

10 m.counter ← |Successors(m)|
11 Vn ← Vn ∪ {n}
12 for m ∈ Predecessors(n) do
13 visit(m, n)

14

15 Procedure computeVps // Computation of sets Vn for all nodes n
16 for n ∈ V do
17 Vn ← ∅
18 for n ∈ V do
19 compute(n)

4.3 New Algorithm for DOD: Pseudocode and Complexity

Our DOD algorithm is shown in Algorithms 3 and 4. As nearly all applications
of DOD need also NTSCD, we present the algorithm with a simple extension
(gray lines with asterisks) that simultaneously computes NTSCD.

The DOD algorithm starts at line 20 of Algorithm 4. The first step is to
compute the sets Vp for all predicate nodes p of a given CFG G. The computation
of predicate nodes can be found in Algorithm 3. It is a slightly modified version
of Algorithm 2. Recall that the procedure compute(n) of Algorithm 2 marks red
every node such that all maximal paths from the node contain n. The procedure
compute(n) of Algorithm 3 does in principle the same, but instead of the red
color it marks the nodes with the identifier of the node n. Every node m collects
these marks in set Vm. After we run compute(n) for all the nodes n in the
graph, each node m has in its set Vm precisely all nodes that are on all maximal
paths from m. For the computation of DOD, only the sets Vp for predicate nodes
p are needed, but the extension computing NTSCD may use all these sets.

When the sets Vp are calculated, we compute DOD (and NTSCD) depen-
dencies for each predicate node separately by procedures computeDOD(p)
and computeNTSCD(p). The procedure computeDOD(p) first constructs the
graph Ap with the use of buildAp(p). Nodes of the graph are these of Vp. To
compute edges, we trigger depth-first search in G from each n ∈ Vp. If we find
a node m ∈ Vp, we add the edge (n,m) to the graph Ap and stop the search on

Fast Computation of Strong Control Dependencies 901

Algorithm 4: The new DOD algorithm which computes also
NTSCD if the gray lines are included (computeVps is given in Algo-
rithm 3)
Input: a CFG G = (V, E)
Output: the DOD relation stored in dod (and NTSCD stored in ntscd)

1 Procedure computeDOD(p) // Computation of DOD for predicate p
2 Ap ← buildAp(p) // Get the graph Ap

3 if Ap does not have the right shape then
4 return ∅
5 S1, S2 ← computeS1S2(p) // Get the sets S1, S2

6 if S1 ∩ S2 �= ∅ then
7 return ∅
8 n1n2 . . . nt ← unfoldCycle(Ap, S1) // Unfold the cycle of Ap

9 U ← Vp � (S1 ∪ S2)
10 if n1n2 . . . nt �∈ (S1.U

∗)+.(S2.U
∗)+.(S1.U

∗)∗ then // Apply Thm. 3

11 return ∅
12 m1 . . . mi ← extract(n1n2 . . . nt, S1.U

∗.S2) // Apply Thm. 4

13 o1 . . . oj ← extract(n1n2 . . . nt, S2.U
∗.S1)

14 return
{
p DOD−−→ {a, b} | a ∈ {m1, . . . , mi−1}, b ∈ {o1, . . . , oj−1}

}

15

*16 Procedure computeNTSCD(p) // Computation of NTSCD for

predicate p
*17 {s1, s2} ← Successors(p)
*18 return {p NTSCD−−−→ n | n ∈ (Vs1 � Vs2) ∪ (Vs2 � Vs1)}
19

20 computeVps // Computation of DOD and NTSCD for all nodes

21 dod ← ∅
*22 ntscd ← ∅
23 for p ∈ Predicates(G) do
24 dod ← dod ∪ computeDOD(p)

*25 ntscd ← ntscd ∪ computeNTSCD(p)

this path. When the graph Ap is constructed, we check whether it has the right
shape. If not, we return ∅ as there are no nodes DOD on p in this case.

The next step is to compute the sets S1 and S2. Again, we apply a similar
depth-first search as in the construction of Ap described above. If the sets S1, S2

are not disjoint, we return ∅ as there are no nodes DOD on p.
Then we unfold the cycle in Ap from an arbitrary node in S1, compute the

set U , and check whether the unfolding matches (S1.U
∗)+.(S2.U

∗)+.(S1.U
∗)∗.

Note that any unfolding starting in S1 matches this language iff the cycle has
an unfolding of the form S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ of Theorem 3. Hence,

we return ∅ if the check fails.

902 M. Chalupa et al.

p1

p2

...

pk

q1

q2

...

qk

qk+1

n1

n2

...

nk

m1

m2

...

mk

Fig. 7. A CFG with |V | nodes that has the DOD relation of size Θ(|V |3).

Finally, we extract the paths of the form S1.U
∗.S2 and S2.U

∗.S1 from the
unfolding. Note that the last node of the latter path can be the first node of the
unfolding. Finally, we compute the DOD dependencies according to Theorem 4.

The procedure computeNTSCD(p) used for the computation of NTSCD
simply follows Definition 2: it makes dependent on p each node that is on all
maximal paths from the successor s1 but not on all maximal paths from the
successor s2 or symmetrically for s2 and s1.

As the correctness of our algorithm comes directly from the observations
made in the previous subsection, it remains only to analyze its complexity. The
procedure computeVps consists of two cycles in sequence. The first cycle runs
in O(|V |). The second cycle calls O(|V |)-times the procedure compute(n). This
procedure is essentially identical to the procedure of the same name in Algo-
rithm 2 and so is its time complexity, namely O(|V | + |E|). Note that sets can
be represented by bitvectors and therefore adding an element and checking the
presence of an element in a set are constant-time. Overall, the procedure com-

puteVps runs in O(|V | · (|V | + |E|)), which is O(|V |2) for CFGs.
Now we discuss the complexity of the procedure computeDOD(p). Creat-

ing the graph Ap requires calling depth-first search O(|V |) times, which yields
O(|V | · |E|) in total. Computation of S1, S2 requires another two calls of depth-
first search, which is in O(|E|). When sets are represented as bitvectors, checking
that S1 and S2 are disjoint is in O(|V |). Unfolding the cycle, matching the unfold-
ing to the language (line 10), and the procedure extract run also in O(|V |).
The construction of the DOD relation on line 14 is in O(|V |2). Altogether, com-
puteDOD(p) runs in O(|V | · |E| + |V |2) which simplifies to O(|V |2) for CFGs.

computeDOD is called O(|V |) times, so the overall complexity of computing
DOD for a CFG G = (V,E) is O(|V |3). If we compute also NTSCD, we make
O(|V |) extra calls to computeNTSCD(p), where one call takes O(|V |) time.
Therefore, the asymptotic complexity of computing NTSCD with DOD does not
change from computing DOD only.

Our algorithm running in time O(|V |3) is asymptotically optimal as there
exist graphs with DOD relations of size Θ(|V |3). For example, the CFG in Fig. 7
has |V | = 4k + 1 nodes and the corresponding DOD relation

Fast Computation of Strong Control Dependencies 903

{qi
DOD−−→ {nj ,ml} | i ∈ {1, . . . , k + 1}, j, l ∈ {1, . . . , k}}

is of size k3 + k2 ∈ Θ(|V |3).

5 Comparison to Control Closures

In 2011, Danicic et al. [13] introduced control closures (CC) that generalize con-
trol dependence from CFGs to arbitrary graphs. In particular, strong control
closure, which is sensitive to non-termination, generalizes strong control depen-
dence including NTSCD and DOD.

Definition 8 (Strongly control-closed set). Let G = (V,E) be a CFG and
let U ⊆ V . The set U is strongly control-closed3 in G if and only if for every
node v ∈ V � U that is reachable in G from a node in U , one of these holds:

– there is no node in U reachable from v or
– there exists a node u ∈ U such that all maximal paths from v contain u and

it is the first node from U on all these paths.

In other words, whenever we leave a strongly control-closed set, we either
cannot return back or we have to return back to the set in a certain node.

Definition 9 (Strong control closure, strong CC). Let G = (V,E) be a
CFG and V ′ ⊆ V . A strong control closure (strong CC) of V ′ is a strongly
control-closed set U ⊇ V ′ such that there is no strongly control-closed set U ′

satisfying U � U ′ ⊇ V ′.

Danicic et al. present an algorithm for the computation of strong control
closures running in O(|V |4) [13, Theorem 66]. In fact, the algorithm uses a
procedure Γ that is very similar to our procedure compute(n) of Algorithm 2.

We can also define the closure of a set of nodes under NTSCD and DOD.

Definition 10 (NTSCD and DOD closure). Let G = (V,E) be a CFG. A
NTSCD and DOD closure of a set V ′ ⊆ V is the smallest set U ⊇ V ′ satisfying

(n ∈ U ∧ p NTSCD−−−→ n) =⇒ p ∈ U and (a, b ∈ U ∧ p DOD−−→ {a, b}) =⇒ p ∈ U.

Definition 10 directly provides an algorithm computing the NTSCD and DOD
closure of a given set V ′ ⊆ V . Roughly speaking, if we represent the NTSCD
relation with edges and the DOD relation with hyperedges in a directed hyper-
graph with nodes V , the closure computation amounts to gathering backward
reachable nodes from V ′.
3 We adjusted the definition to the fact that predicates in our CFGs always have two

outgoing edges (i.e., they are complete in terms of Danicic et al. [13]). The original
definition [13] works with CFGs where each predicate has at most two successors
and considers also paths that may end in a predicate with less than two successors.

904 M. Chalupa et al.

Danicic et al. [13, Lemmas 93 and 94] proved that for a CFG G = (V,E) with
a distinguished start node from which all nodes in V are reachable and a subset
U ⊆ V such that start ∈ U , the set U is strongly control-closed iff it is closed
under NTSCD and DOD. Hence, on graphs with such a start node, the strong
CC of a set V ′ containing the start node can be computed also by computing
its NTSCD and DOD closure. Computation of the NTSCD and DOD closure
runs in O(|V |3) as the backward reachability is dominated by the computation
of NTSCD and DOD relations.

A substantial difference between the algorithm for strong CC by Danicic et
al. [13] and our algorithm is that we are able to compute DOD and NTSCD
separately, whereas the former is not. Moreover, our algorithm for NTSCD and
DOD closure is asymptotically faster.

6 Experimental Evaluation

We implemented our algorithms for the computation of NTSCD, DOD, and the
NTSCD and DOD closure in C++ on top of the LLVM [25] infrastructure. The
implementation is a part of the library for program analysis and slicing called
DG [6], which is used for example in the verification and test generation tool
Symbiotic [7]. We also implemented the original Ranganath et al.’s algorithms
for NTSCD and DOD, the fixed versions of these algorithms from Subsects. 3.1
and 4.1, and the algorithm for the computation of strong CC by Danicic et al.

In the implementation of the strong CC algorithm by Danicic et al. [13], we
use our procedure compute(n) of Algorithm 2 to implement the function Γ .
This should have only a positive effect as this procedure is more efficient than
iterating over all edges in a copy of the graph and removing them [13].

In our experiments, we use CFGs of functions (where nodes of the CFG
represent basic blocks of the function) obtained in the following way. We took all
benchmarks from the Competition on Software Verification (SV-COMP) 2020.4

These benchmarks contain many artificial or generated code, but also a lot of
real-life code, e.g., from the Linux project. Each source code file was compiled
with clang into LLVM and preprocessed by the -lowerswitch pass to ensure
that every basic block has at most two successors. Then we extracted individual
functions and removed those with less than 100 basic blocks, as the computation
of control dependence runs swiftly on small graphs. Because it is possible that
one function is present in multiple benchmarks, the next step was to remove
these duplicate functions. For every function, we computed the number of nodes
and edges in its CFG, and performed DFS on the CFG to obtain the number
of tree, forward, cross and back edges, and the depth of the DFS tree. If two or
more functions shared the name and all the computed numbers, we kept only
one such function. Note that this process may have removed also a function that
was not a duplicate of some other, but only with a low probability. At the end,
we were left with 2440 functions. The biggest function has 27851 basic blocks.
Table 2 shows the distribution of the sizes of the generated CFGs.
4 https://github.com/sosy-lab/sv-benchmarks, tag svcomp20.

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks

Fast Computation of Strong Control Dependencies 905

Table 2. The numbers of considered CFGs by their sizes. The size of a CFG is the
number of its nodes, which is the number of basic blocks of the corresponding function.

size number size number size number

100 – 199 1713 500 – 599 35 900 – 999 3

200 – 299 355 600 – 699 29 1000 – 1999 23

300 – 399 159 700 – 799 18 2000 – 9999 22

400 – 499 73 800 – 899 7 ≥ 10000 3

Fig. 8. Comparison of the running times of the new NTSCD algorithm and the incor-
rect (left) and the fixed (right) versions of the original NTSCD algorithm. TO stands
for timeout.

The experiments were run on machines with AMD EPYC CPU with the
frequency 3.1 GHz. Each benchmark run was constrained to 1 core and 8 GB
of RAM. We used the tool Benchexec [4] to enforce resources isolation and to
measure their usage. All presented times are CPU times. We set the timeout to
100 s for each algorithm run.

In the following, original algorithms refers to the algorithms of Ranganath
et al. (we distinguish between the incorrect and the fixed versions when needed)
and new algorithms refers to the algorithms introduced in this paper.

NTSCD Algorithms. In the first set of experiments, we compared the new
algorithm for NTSCD against the incorrect and the fixed version of the original
NTSCD algorithm. Although it seems that comparing to the incorrect version
is meaningless, we did not want to compare only to the fixed version as the
provided fix slows down the algorithm.

The results are depicted in Fig. 8. On the left scatter plot, there is the
comparison of the new algorithm to the incorrect original algorithm and on
the right scatter plot we compare to the fixed original algorithm. As we can see,

906 M. Chalupa et al.

Fig. 9. Comparison of the running times of the new and the (fixed) original DOD
algorithm. We use the considered benchmarks (left) and random graphs with 500 nodes
and the number of edges specified by the x-axis (right).

the new algorithm outperforms the original algorithm significantly. The incorrect
original algorithm produced a wrong NTSCD relation in 98.6 % of the considered
benchmarks. The fixed version of the original algorithm returned precisely the
same NTSCD relations as the new algorithm. We can also see that the scatter
plot on the right contains more timeouts of the original algorithm. It supports
the claim that the fix slows down the original algorithm.

DOD Algorithms. We compared the new DOD algorithm to the fixed version
of the original DOD algorithm. As the fix does not change the asymptotic com-
plexity of the original algorithm, we do not compare the new algorithm with the
incorrect version of the original algorithm. The results of the experiments are
displayed in Fig. 9 (left). We can see that the new algorithm is again very fast.
In fact, the results resemble the results of the pure NTSCD algorithm, which is
basically the part of the DOD algorithm that computes Vp sets. It benefits from
early checks that detect predicate nodes with no DOD dependencies.

As mentioned in the introduction, DOD is empty for structured programs
as their CFGs are reducible. We do not know precisely how many of the 2440
considered functions have irreducible CFGs, but we know that 2373 of them use
goto statements. DOD relations for 12 functions was non-empty, which means
that CFGs of these functions are irreducible. Note that there may have been
other irreducible CFGs with empty DOD relation.

Additionally, we tested the DOD algorithms on randomly generated graphs,
where we can expect that irreducible graphs emerge more often. Figure 9 (right)
shows the results for graphs that have 500 nodes and 50, 100, 150, . . . randomly
distributed edges (such that every node has at most two successors). Each pre-
sented running time is in fact an average of 10 measurements with different
random graphs. We can see that the new algorithm is agnostic to the number of

Fast Computation of Strong Control Dependencies 907

Fig. 10. Comparison of the running times of the strong CC algorithm by Danicic et
al. [13] and our algorithm for the NTSCD and DOD closure.

edges. Its running time in this experiment ranges from 4.12 · 10−3 to 8.89 · 10−3

seconds. The original DOD algorithm does not scale well with the increasing
number of edges.

Strong CC Algorithm. We also compare the strong CC algorithm of Dani-
cic et al. [13] against our NTSCD and DOD closure algorithm on sets of nodes
containing a distinguished start node, where these two algorithms produce equiv-
alent results. For these experiments, we need a starting set that is going to be
closed. We decided to run these experiments on the considered functions that
have at least two exit points. The starting set consists of the node representing
the entry point and the node representing one of the exit points. The closure of
this set contains all nodes that may influence getting to the other exit points.
The results are shown on the scatter plot in Fig. 10. Our algorithm clearly out-
performs the strong CC algorithm.

7 Conclusion

We studied algorithms for the computation of strong control dependence,
namely non-termination sensitive control dependence (NTSCD) and decisive
order dependence (DOD) by Ranganath et al. [33] and strong control closures
(strong CC) by Danicic et al. [13] on control flow graphs where each branching
statement has two successors. We have demonstrated flaws in the original algo-
rithms for computation of NTSCD and DOD and we have suggested corrections.
Moreover, we have introduced new algorithms for NTSCD, DOD, and strong CC
that are asymptotically faster. All the mentioned algorithms have been imple-
mented and our experiments confirm dramatically better performance of the new
algorithms.

908 M. Chalupa et al.

References

1. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrele-
vant loops. Inf. Process. Lett. 106(2), 45–51 (2008). https://doi.org/10.1016/j.ipl.
2007.10.002

2. Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., Tratt, L.: State-based
model slicing: a survey. ACM Comput. Surv. 45(4), 53:1-53:36 (2013). https://
doi.org/10.1145/2501654.2501667

3. Androutsopoulos, K., Clark, D., Harman, M., Li, Z., Tratt, L.: Control dependence
for extended finite state machines. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 216–230. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00593-0 15

4. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

5. Bilardi, G., Pingali, K.: A framework for generalized control dependence. In: PLDI
1996, pp. 291–300. ACM (1996). https://doi.org/10.1145/231379.231435

6. Chalupa, M.: DG: analysis and slicing of LLVM bitcode. In: Hung, D.V., Sokolsky,
O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 557–563. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59152-6 33

7. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.: Sym-
biotic 8: beyond symbolic execution. In: TACAS 2021. LNCS, vol. 12652, pp. 453–
457. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 31

8. Chalupa, M., Klaška, D., Strejček, J., Tomovič, L.: Fast computation of strong
control dependencies. CoRR abs/2011.01564 (2020). https://arxiv.org/abs/2011.
01564

9. Chalupa, M., Strejček, J.: Evaluation of program slicing in software verification. In:
Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 101–119.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4 6

10. Chen, F., Roşu, G.: Parametric and termination-sensitive control dependence. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 387–404. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 25

11. Cooper, K., Harvey, T., Kennedy, K.: Iterative data- ow analysis, revisited (2002)
12. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991). https://doi.org/10.1145/
115372.115320

13. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, Á., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011). https://doi.
org/10.1016/j.tcs.2011.08.033

14. Darte, A., Silber, G.-A.: Temporary arrays for distribution of loops with control
dependences. In: Bode, A., Ludwig, T., Karl, W., Wismüller, R. (eds.) Euro-Par
2000. LNCS, vol. 1900, pp. 357–367. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44520-X 47

15. Denning, D.E., Denning, P.J.: Certification of programs for secure information ow.
Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

16. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

https://doi.org/10.1016/j.ipl.2007.10.002
https://doi.org/10.1016/j.ipl.2007.10.002
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1007/978-3-642-00593-0_15
https://doi.org/10.1007/978-3-642-00593-0_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/231379.231435
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-72013-1_31
https://arxiv.org/abs/2011.01564
https://arxiv.org/abs/2011.01564
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/11823230_25
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1007/3-540-44520-X_47
https://doi.org/10.1007/3-540-44520-X_47
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/24039.24041

Fast Computation of Strong Control Dependencies 909

17. Gallagher, K., Binkley, D.: Program slicing. In: FoSM 2008, pp. 58–67 (2008).
https://doi.org/10.1109/FOSM.2008.4659249

18. Giffhorn, D.: Slicing of concurrent programs and its application to information flow
control. Ph.D. thesis, Karlsruhe Institute of Technology (2012). http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000028814

19. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information ow control based on program dependence graphs. Int. J. Inf. Sec.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1

20. Harrold, M.J., Rothermel, G., Sinha, S.: Computation of interprocedural control
dependence. In: ISSTA 1998, pp. 11–20. ACM (1998). https://doi.org/10.1145/
271771.271780

21. Hecht, M.S., Ullman, J.D.: Characterizations of reducible ow graphs. J. ACM
21(3), 367–375 (1974). https://doi.org/10.1145/321832.321835

22. Horwitz, S., Reps, T.W., Binkley, D.W.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990). https://doi.org/
10.1145/77606.77608

23. Khanfar, H., Lisper, B., Masud, A.N.: Static backward program slicing for safety-
critical systems. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015.
LNCS, vol. 9111, pp. 50–65. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19584-1 4

24. Labbé, S., Gallois, J.: Slicing communicating automata specifications: polynomial
algorithms for model reduction. Formal Aspects Comput. 20(6), 563–595 (2008).
https://doi.org/10.1007/s00165-008-0086-3

25. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO 2004, pp. 75–88. IEEE Computer Society
(2004). https://doi.org/10.1109/CGO.2004.1281665

26. Léchenet, J., Kosmatov, N., Gall, P.L.: Cut branches before looking for bugs: cer-
tifiably sound verification on relaxed slices. Formal Asp. Comput. 30(1), 107–131
(2018). https://doi.org/10.1007/s00165-017-0439-x

27. Loyall, J.P., Mathisen, S.A.: Using dependence analysis to support the software
maintenance process. In: ICSM 1993, pp. 282–291. IEEE Computer Society (1993).
https://doi.org/10.1109/ICSM.1993.366934

28. Lucia, A.D.: Program slicing: methods and applications. In: SCAM 2001, pp. 144–
151. IEEE Computer Society (2001). https://doi.org/10.1109/SCAM.2001.972675

29. Metta, R., Becker, M., Bokil, P., Chakraborty, S., Venkatesh, R.: TIC: a scalable
model checking based approach to WCET estimation. In: LCTES 2016, pp. 72–81.
ACM (2016). https://doi.org/10.1145/2907950.2907961

30. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. In: FSE 1984, pp. 177–184. ACM (1984). https://doi.
org/10.1145/800020.808263

31. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Software
Eng. 16(9), 965–979 (1990). https://doi.org/10.1109/32.58784

32. Ranganath, V.P., Amtoft, T., Banerjee, A., Dwyer, M.B., Hatcliff, J.: A new foun-
dation for control-dependence and slicing for modern program structures. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 77–93. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31987-0 7

33. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5), 27 (2007). https://doi.org/10.1145/1275497.
1275502

https://doi.org/10.1109/FOSM.2008.4659249
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028814
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028814
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/271771.271780
https://doi.org/10.1145/271771.271780
https://doi.org/10.1145/321832.321835
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/77606.77608
https://doi.org/10.1007/978-3-319-19584-1_4
https://doi.org/10.1007/978-3-319-19584-1_4
https://doi.org/10.1007/s00165-008-0086-3
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/s00165-017-0439-x
https://doi.org/10.1109/ICSM.1993.366934
https://doi.org/10.1109/SCAM.2001.972675
https://doi.org/10.1145/2907950.2907961
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/800020.808263
https://doi.org/10.1109/32.58784
https://doi.org/10.1007/978-3-540-31987-0_7
https://doi.org/10.1145/1275497.1275502
https://doi.org/10.1145/1275497.1275502

910 M. Chalupa et al.

34. Sinha, S., Harrold, M.J., Rothermel, G.: Interprocedural control dependence. ACM
Trans. Softw. Eng. Methodol. 10(2), 209–254 (2001). https://doi.org/10.1145/
367008.367022

35. Stanier, J., Watson, D.: A study of irreducibility in C programs. Softw. Pract. Exp.
42(1), 117–130 (2012). https://doi.org/10.1002/spe.1059

36. Tšahhirov, I., Laud, P.: Application of dependency graphs to security protocol
analysis. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 294–
311. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-4 20

37. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984).
https://doi.org/10.1109/TSE.1984.5010248

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/367008.367022
https://doi.org/10.1145/367008.367022
https://doi.org/10.1002/spe.1059
https://doi.org/10.1007/978-3-540-78663-4_20
https://doi.org/10.1109/TSE.1984.5010248
http://creativecommons.org/licenses/by/4.0/

	Fast Computation of Strong Control Dependencies
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Non-termination Sensitive Control Dependence
	3.1 Algorithm of Ranganath et al. ch41ref33 for NTSCD
	3.2 New Algorithm for NTSCD

	4 Decisive Order Dependence
	4.1 Algorithm of Ranganath et al. ch41ref33 for DOD
	4.2 New Algorithm for DOD: Crucial Observations
	4.3 New Algorithm for DOD: Pseudocode and Complexity

	5 Comparison to Control Closures
	6 Experimental Evaluation
	7 Conclusion
	References

