
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Seminator 2 Can Complement Generalized Büchi
Automata via Improved Semi-Determinization

Frantǐsek Blahoudek1 ID , Alexandre Duret-Lutz2 ID , and Jan Strejček3 ID

1 University of Texas at Austin, USA, frantisek.blahoudek@gmail.com
2 LRDE, EPITA, Le Kremlin-Bicêtre, France, adl@lrde.epita.fr
3 Masaryk University, Brno, Czech Republic, strejcek@fi.muni.cz

Abstract. We present the second generation of the tool Seminator that
transforms transition-based generalized Büchi automata (TGBAs) into
equivalent semi-deterministic automata. The tool has been extended with
numerous optimizations and produces considerably smaller automata
than its first version. In connection with the state-of-the-art LTL to TG-
BAs translator Spot, Seminator 2 produces smaller (on average) semi-
deterministic automata than the direct LTL to semi-deterministic au-
tomata translator ltl2ldgba of the Owl library. Further, Seminator 2
has been extended with an improved NCSB complementation procedure
for semi-deterministic automata, providing a new way to complement au-
tomata that is competitive with state-of-the-art complementation tools.

1 Introduction

Semi-deterministic [24] automata are automata where each accepting run makes
only finitely many nondeterministic choices. The merit of this interstage between
deterministic and nondeterministic automata comes from two facts known since
the late 1980s. First, every nondeterministic Büchi automaton with n states can
be transformed into an equivalent semi-deterministic Büchi automaton with at
most 4n states [24, 7]. Note that asymptotically optimal determinization pro-
cedures transform nondeterministic Büchi automata to deterministic automata
with 2O(n logn) states [24] and with a more complex (typically Rabin) acceptance
condition, as deterministic Büchi automata are strictly less expressive. Second,
some algorithms cannot handle nondeterministic automata, but they can handle
semi-deterministic ones; for example, algorithms for qualitative model checking
of Markov decision processes (MDPs) [29, 7].

For theoreticians, the difference between the complexity of determinization
and semi-determinization is not dramatic — both constructions are exponen-
tial. However, the difference is important for authors and users of practical
automata-based tools — automata size and the complexity of their acceptance
condition often have a significant impact on tool performance. This latter per-
spective has recently initiated another wave of research on semi-deterministic
automata. Since 2015, many new results have been published: several direct
translations of LTL to semi-deterministic automata [15, 26, 16, 11], special-
ized complementation constructions for semi-deterministic automata [4, 6], al-
gorithms for quantitative model checking of MDPs based on semi-deterministic

https://orcid.org/0000-0003-1880-5379
https://orcid.org/0000-0002-6623-2512
https://orcid.org/0000-0001-5873-403X

automata [13, 25], a transformation of semi-deterministic automata to deter-
ministic parity automata [10], and reinforcement learning of control policy using
semi-deterministic automata [21].

In 2017, we introduced Seminator 1.1 [5], a tool that transforms nondeter-
ministic automata to semi-deterministic ones. The original semi-determinization
procedure of Courcoubetis and Yannakakis [7] works with standard Büchi au-
tomata (BAs). Seminator 1.1 extends this construction to handle more compact
automata, namely transition-based Büchi automata (TBAs) and transition-based
generalized Büchi automata (TGBAs). TBAs use accepting transitions instead of
accepting states, and TGBAs have several sets of accepting transitions, each of
these sets must be visited infinitely often by accepting runs. The main novelty of
Seminator 1.1 was that it performed degeneralization and semi-determinization
of a TGBA simultaneously. As a result, it could translate TGBAs to smaller
semi-deterministic automata than (to our best knowledge) the only other tool
for automata semi-determinization called nba2ldba [26]. This tool only accepts
BAs as input, and thus TGBAs must be degeneralized before nba2ldba is called.

Moreover, in connection with the LTL to TGBAs translator ltl2tgba of
Spot [8], Seminator 1.1 provided a translation of LTL to semi-deterministic au-
tomata that can compete with the direct LTL to semi-deterministic TGBAs
translator ltl2ldba [26]. More precisely, our experiments [5] showed that the
combination of ltl2tgba and Seminator 1.1 outperforms ltl2ldba on LTL for-
mulas that ltl2tgba translates directly to deterministic or semi-deterministic
TGBA (i.e., when Seminator has no work to do), while ltl2ldba produced
(on average) smaller semi-deterministic TGBAs on the remaining LTL formulas
(i.e., when the TGBA produced by ltl2tgba has to be semi-determinized by
Seminator).

This paper presents Seminator 2, which changes the situation. With many
improvements in semi-determinization, the combination of ltl2tgba and Semi-
nator 2 now translates LTL to smaller (on average) semi-deterministic TGBAs
than ltl2ldba even for the cases when ltl2tgba produces a TGBA that is not
semi-deterministic. Moreover, this holds even when we compare to ltl2ldgba,
which is the current successor of ltl2ldba distributed with Owl [19].

Further, Seminator 2 now provides a new feature: complementation of TG-
BAs. Seminator 2 chains semi-determinization with the complementation al-
gorithm called NCSB [4, 6], which is tailored for semi-deterministic BAs. Our
experiments show that the complementation in Seminator 2 is fully competitive
with complementations implemented in state-of-the-art tools [23, 8, 1, 30, 20].

2 Improvements in Semi-Determinization

First of all, we recall the definition of semi-deterministic automata and principles
of the semi-determinization procedure implemented in Seminator 1.1 [5].

Let A = (Q,Σ, δ, q0, {F1, . . . , Fn}) be a TGBA over alphabet Σ, with a finite
set of states Q, a transition relation δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q,
and sets of accepting transitions F1, . . . , Fn ⊆ δ. Then A is semi-deterministic

2

deterministicno accepting transition

QD

Fig. 1. Structure of a semi-deterministic automaton. The deterministic part contains
all accepting transitions and states reachable from them. Cut-transitions are magenta.

if there exists a subset QD ⊆ Q such that (i) each transition from QD goes
back to QD (i.e., δ ∩ (QD × Σ × (Q r QD)) = ∅), (ii) all states of QD are
deterministic (i.e., for each q ∈ QD and a ∈ Σ there is at most one q′ such that
(q, a, q′) ∈ δ), and (iii) each accepting transition starts in a state of QD (i.e.,
F1, . . . , Fn ⊆ QD ×Σ ×QD).

The part of A delimited by states of QD is called deterministic, while the
part formed by the remaining states QrQD is called nondeterministic, although
it could contain deterministic states too. The transitions leading from the nonde-
terministic part to the deterministic one are called cut-transitions. The structure
of a semi-deterministic automaton is depicted in Figure 1.

Intuitively, a TGBA A with a set of states Q and a single set of accepting
transitions F can be transformed into a semi-deterministic TBA B as follows.
First, we use a copy of A as the nondeterministic part of B. The deterministic
part of B has states of the form (M,N) such that Q ⊇ M ⊇ N and M 6= ∅.
Every accepting transition (q, a, q′) ∈ F induces a cut-transition (q, a, ({q′}, ∅))
of B. The deterministic part is then constructed to track all runs of A from each
such state q′ using the powerset construction. More precisely, the first element
of (M,N) tracks all runs while the second element tracks only the runs that
passed some accepting transition of F . Each transition of the deterministic part,
that would reach a state where M = N (so-called breakpoint) is replaced with
an accepting transition of B leading to state (M,N ′), where N ′ tracks only the
runs of A passing an accepting transition of F in the current step.

Seminator 1.1 extended this procedure to construct a semi-deterministic TBA
even for a TGBA with multiple acceptance sets F1, . . . , Fn. States of the deter-
ministic part are now triples (M,N, i), where i ∈ {0, . . . , n − 1} is called level
and it has a similar semantics as in degeneralization. Cut-transitions are induced
by transitions of Fn and they lead to states of the form ({q′}, ∅, 0). The level
i says that N tracks runs that passed a transition of Fi+1 since the last level
change. When the deterministic part reaches a state (M,N, i) with M = N , we
change the level to i′ = (i+ 1) mod n and modify N to track only runs passing
Fi′+1 in the current step. Transitions changing the level are accepting.

A precise description of these semi-determinization procedures and proofs of
their correctness can be found in Blahoudek’s dissertation [3]. Now we briefly
explain the most important optimizations added in Seminator 2 (we work on
a journal paper with their formal description). Each optimization can be en-
abled/disabled by the corresponding option. All of them are enabled by default.

3

--scc-aware approach identifies, for each cut-transition, the strongly connected
component (SCC) of A that contains the target of the transition triggering
the cut-transition. The sets M,N then track only runs staying in this SCC.

--reuse-deterministic treats in a specific way each deterministic SCC from
which only deterministic SCCs are reachable in A: it (i) does not include
them in the nondeterministic part, and (ii) copies them (and their succes-
sors) in the deterministic part as they are, including the original acceptance
transitions. This optimization can result in a semi-deterministic TGBA with
multiple acceptance sets on output.

--cut-always changes the policy when cut-transitions are created: they are now
triggered by all transitions of A with the target state in an accepting SCC.

--powerset-on-cut applies the powerset construction when computing targets
of cut-transitions. The target of a cut-transition leading from q is constructed
in the same way as the successor of the hypothetical state ({q}, ∅, 0) of the
deterministic part.

--skip-levels is a variant of the level jumping trick from TGBA degeneraliza-
tion [2]. Roughly speaking, a single transition in the deterministic part can
change the level i directly to i+ j where j ≥ 1 if all runs passed acceptance
transitions from all the sets Fi+1, . . . , Fi+j in the current step.

--jump-to-bottommost makes sure that all cut-transitions leading to states
with the same M component lead to the same state (M,N, i) for some N
and i. It relies on the fact that each run takes only one cut-transition, and
thus only the component M of the cut-transition’s target state is important
for determining the acceptance of the run. During the original construction,
many states of the form (M,N ′, i′) may appear in different SCCs. After the
construction finishes, this optimization redirects each cut-transition leading
to (M,N ′, i′) to some state of the form (M,N, i) that belongs to the bot-
tommost SCC (in a topological ordering of the SCCs) that contains such a
state. This is inspired by a similar trick used by Křet́ınský et al. [18] in a
different context.

--powerset-for-weak simplifies the construction for weak accepting SCCs (i.e.,
SCCs where all cycles are accepting) of A. For such SCCs it just applies
the powerset construction (builds states of the form M instead of triples
(M,N, i)) with all transitions accepting in the deterministic part.

Note that Seminator 1.1 can produce a semi-deterministic TGBA with multiple
acceptance sets only when it gets a semi-deterministic TGBA as input. Semina-
tor 2 produces such automata more often due to --reuse-deterministic.

3 Implementation and Usage

Seminator 2 is an almost complete rewrite of Seminator [5], and is still distributed
under the GNU GPL 3.0 license. Its distribution tarball and source code his-
tory are hosted on GitHub (https://github.com/mklokocka/seminator). The
package contains sources of the tool with two user-interfaces (a command-line
tool and Python bindings), a test-suite, and some documentation.

4

https://github.com/mklokocka/seminator

in
p
u
t

T
G

B
A

convert
to TBA

convert
to BA

simplify

simplify

simplify

semi-
determinize

semi-
determinize

semi-
determinize

simplify,
adj. acc.

simplify,
adj. acc.

simplify,
adj. acc. k

eep
sm

a
llest

sem
i-d

et.
o
u
tp

u
t

NCSB complementation
"spot" variant

NCSB complementation
"pldi" variant

simplify,
adj. acc.

simplify,
adj. acc.

k
eep

sm
a
llest

co
m

p
lem

en
ted

o
u
tp

u
t

Simplifications enabled by default;
disable with --postprocess=0.

Acceptance adjusted according to
--tgba (default), --tba, or --ba.

Simplifications
disabled by default;

enable with
--preprocess=1.

All routes used by de-
fault, unless selected

with --via-tgba,
--via-tba, --via-ba.

Simplifications enabled by default;
disable with --postprocess-comp=0.

Acceptance adjusted according
to --tba (default), or --ba.

--complement={best,spot,pldi} is
supplied. In that case, the semi-det. au-
tomaton is built as a TBA. Both routes
used unless --complement={spot,pldi}.

Complementation
is activated when

Fig. 2. Workflow for the two operation modes of seminator: semi-determinizing and
complementing via semi-determinization.

Seminator is implemented in C++ on top of the data-structures provided
by the Spot library [8], and reuses its input/output functions, simplification
algorithms, and the NCSB complementation. The main implementation effort
lies in the optimized semi-determinization and an alternative version of NCSB.

The first user interface is a command-line tool called seminator. Its high-
level workflow is pictured in Figure 2. By default (top-part of Figure 2) it takes
a TGBA (or TBA or BA) on input and produces a semi-deterministic TGBA
(or TBA or BA if requested). Figure 2 details various switches that control the
optional simplifications and acceptance transformations that occur before the
semi-determinization itself. The pre- and post-processing are provided by the
Spot library. The semi-determinization algorithm can be adjusted by additional
command-line options (not shown in Figure 2) that enable or disable optimiza-
tions of Section 2. As Spot simplification routines are stronger on automata with
simpler acceptance conditions, it sometimes pays off to convert the automaton
to TBA or BA first. If the input is a TGBA, seminator attempts three semi-
determinizations, one on the input TGBA, one on its TBA equivalent, and one
on its BA equivalent; only the smallest result is retained. If the input is already
a TBA (resp. a BA), only the last two (resp. one) routes are attempted.

5

The --complement option activates the bottom part of Figure 2 with two
variants of the NCSB complementation [4]: "spot" stands for a transition-based
adaptation of the original algorithm (implemented in Spot); "pldi" refers to its
modification based on the optimization by Chen et al. [6, Section 5.3] (imple-
mented in Seminator 2). Both variants take a TBA as input and produce a TBA.
The options --tba and --ba apply on the final complement automaton only.

The seminator tool can now process automata in batch, making it possible
to build pipelines with other commands. For instance the pipeline
ltl2tgba <input.ltl | seminator | autfilt --states=3.. >output.hoa

uses Spot’s ltl2tgba command to read a list of LTL formulas from input.ltl

and transform it into a stream of TGBAs that is passed to seminator, which
transforms them into semi-deterministic TGBAs, and finally Spot’s autfilt

saves into output.hoa the automata with 3 states or more.
Python bindings form the second user-interface and are installed by the Sem-

inator package as an extension of Spot’s own Python bindings. It offers several
functions, all working with Spot’s automata (twa graph objects):
semi determinize() implements the semi-determinization procedure;
complement semidet() implements the "pldi" variant of the NCSB comple-

mentation for semi-deterministic automata (the other variant is available
under the same function name in the bindings of Spot);

highlight components() and highlight cut() provide ways to highlight the
nondeterministic and the deterministic parts of a semi-deterministic automa-
ton, and its cut-transitions;

seminator() provides an interface similar to the command-line seminator tool
with options that selectively enable or disable optimizations or trigger com-
plementation.

The Python bindings integrate well with the interactive notebooks of Jupyter [17].
Figure 3 shows an example of such a notebook, using the seminator() and
highlight components() functions. Additional Jupyter notebooks, distributed
with the tool, document the effect of the various optimization options.4

4 Experimental Evaluation

We evaluate the performance of Seminator 2 for both semi-determinization and
complementation of TGBAs. We compare our tool against several tools listed
in Table 1. As ltl2ldgba needs LTL on input, we used the set of 221 LTL for-
mulas already considered for benchmarking in the literature [12, 22, 27, 9, 14].
To provide TGBAs as input for Seminator 2, we use Spot’s ltl2tgba to con-
vert the LTL formulas. Based on the automata produced by ltl2tgba, we
distinguish three categories of formulas: deterministic (152 formulas), semi-
deterministic but not deterministic (49 formulas), and not semi-deterministic
(20 formulas). This division is motivated by the fact that Seminator 2 applies its
semi-determinization only on automata that are not semi-deterministic, and that

4 https://nbviewer.jupyter.org/github/mklokocka/seminator/tree/v2.0/

notebooks/

6

https://nbviewer.jupyter.org/github/mklokocka/seminator/tree/v2.0/notebooks/
https://nbviewer.jupyter.org/github/mklokocka/seminator/tree/v2.0/notebooks/

Fig. 3. Jupyter notebook illustrating a case where a nondeterministic TBA (nba, left)
has an equivalent semi-deterministic TBA (sdba, middle) that is smaller than a minimal
deterministic TBA (dba, right). Accepting transitions are labeled by 0 .

some complementation tools use different approaches to deterministic automata.
We have also generated 500 random LTL formulas of each category.

The scripts and formulas used in those experiments can be found online,5

as well as a Docker image with these scripts and all the tools installed.6 All
experiments were run inside the supplied Docker image on a laptop Dell XPS13
with Intel i7-1065G7, 16GB RAM, and running Linux.

4.1 Semi-Determinization

We compare Seminator 2 to its older version 1.1 and to ltl2ldgba of Owl. We
do not include Buchifier [16] as it is available only as a binary for Windows.

5 https://github.com/xblahoud/seminator-evaluation/
6 https://hub.docker.com/r/gadl/seminator

7

https://github.com/xblahoud/seminator-evaluation/
https://hub.docker.com/r/gadl/seminator

Table 1. Versions and references to the
other tools used in our evaluation.

Package (Tool) version ref.

Fribourg plugin for GOAL (na) [1, 30]
GOAL (gc) 20200506 [28]
Owl (ltl2ldgba) 19.06.03 [11]
ROLL (replaces Buechic) 1.0 [20]
Seminator (seminator) 1.1 [5]
Spot (autfilt, ltl2tgba) 2.9 [8]

0 20 40
0

20

40

60

O
wl+

be
st
+
Sp

ot

be
tt
er

in

13
9

ca
se

s

Se
m
in

at
or

2

be
tt
er

in

23
2

ca
se

s

Owl+best+Spot [#states]

S
em

in
a
to

r
2

[#
st

a
te

s]

Fig. 4. Comparison of the sizes of the
semi-deterministic automata produced
by Seminator 2 and Owl for the not
semi-deterministic random set.

Table 2. Comparison of semi-determinization tools. A benchmark set marked with
x + y � consists of x formulas for which all tools produced some automaton, and y
formulas leading to some timeouts. A cell of the form s (m) shows the cumulative
number s of states of automata produced for the x formulas, and the number m of
formulas for which the tool produced the smallest automaton out of the obtained
automata. The best results in each column are highlighted.

(semi-)deterministic not semi-deterministic

literature random literature random
of formulas 200+1� 1000+0� 19+1� 500+0�

Owl+best 1092 (102) 6335 (454) 281 (6) 5041 (144)
Owl+best+Spot 978 (139) 5533 (724) 234 (11) 4153 (268)
Seminator 1.1 787 (201) 4947 (963) 297 (7) 7020 (60)
Seminator 2 787 (201) 4947 (963) 230 (16) 3956 (356)

Also, we did not include nba2ldba [26] due to the lack of space and the fact that
even Seminator 1.1 performs significantly better than nba2ldba [5].

Recall that Seminator 2 calls Spot’s automata simplification routines on con-
structed automata. To get a fair comparison, we apply these routines also to the
results of other tools, indicated by +Spot in the results. Further, ltl2ldgba

of Owl can operate in two modes: --symmetric and --asymmetric. For each
formula, we run both settings and pick the better result, indicated by +best.

Table 2 presents the cumulative results for each semi-determinization tool and
each benchmark set (we actually merged deterministic and semi-deterministic
benchmark sets). The timeout of 30 seconds was reached by Owl for one formula
in the (semi-)deterministic category and by Seminator 1.1 for one formula in
the not semi-deterministic category. Besides timeouts, the running times of all
tools were always below 3 seconds, with a few exceptions for Seminator 1.1.

In the (semi-)deterministic category, the automaton produced by ltl2tgba

and passed to both versions of Seminator is already semi-deterministic. Hence,

8

Table 3. Comparison of tools complementing Büchi automata, using the same con-
ventions as Table 2.

deterministic semi-detereministic not semi-deterministic

literature random literature random literature random
of formulas 147+5� 500+0� 47+2� 499+1� 15+5� 486+14�

ROLL+Spot 1388 (0) 3687 (0) 833 (0) 5681 (4) 272 (0) 6225 (58)
Fribourg+Spot 627 (137) 2493 (464) 290 (26) 3294 (258) 142 (14) 5278 (238)
GOAL+Spot 617 (143) 2490 (477) 277 (28) 3676 (125) 206 (5) 7713 (96)
Spot 611 (150) 2477 (489) 190 (40) 2829 (354) 181 (9) 5310 (202)
Seminator 2 622 (142) 2511 (465) 210 (37) 2781 (420) 169 (8) 4919 (277)

both versions of Seminator have nothing to do. This category, in fact, compares
ltl2tgba of Spot against ltl2ldgba of Owl.

Figure 4 shows the distribution of differences between semi-deterministic
automata produced by Owl+best+Spot and Seminator 2 for the not semi-
deterministic random set. A dot at coordinates (x, y) represents a formula for
which Owl and Seminator 2 produced automata with x and y states, respectively.

We can observe a huge improvement brought by Seminator 2 in not semi-
deterministic benchmarks: while in 2017 Seminator 1.1 produced a smaller au-
tomaton than Owl in only few cases in this category [5], Seminator 2 is now more
than competitive despite the fact that also Owl was improved over the time.

4.2 Complementation

We compare Seminator 2 with the complementation of ROLL based on au-
tomata learning (formerly presented as Buechic), the determinization-based al-
gorithm [23] implemented in GOAL, the asymptotically optimal Fribourg com-
plementation implemented as a plugin for GOAL, and with Spot (autfilt
--complement). We apply the simplifications from Spot to all results and we
use Spot’s ltl2tgba to create the input Büchi automata for all tools, using
transition-based generalized acceptance or state-based acceptance as appropri-
ate (only Seminator 2 and Spot can complement transition-based generalized
Büchi automata). The timeout of 120 seconds was reached once by both Semi-
nator 2 and Spot, 6 times by Fribourg, and 13 times by GOAL and ROLL.

Table 3 shows results for complementation in the same way as Table 2 does
for semi-determinization. For the deterministic benchmark, we can see quite
similar results from all tools but ROLL. This is caused by the fact that comple-
mentation of deterministic automata is easy. Some tools (including Spot) even
apply a dedicated complementation procedure. It comes at no surprise that the
specialized algorithm of Seminator 2 performs better than most other comple-
mentations in the semi-deterministic category. Interestingly, this carries over to
the not semi-deterministic category. The results demonstrate that the 2-step
approach of Seminator 2 to complementation performs well in practice.Figure 5

9

100 101 102
100

101

102 Sp
ot

be
tt
er

in

14
2
ca

se
s

Se
m
in
at
or

2

be
tt
er

in

20
9
ca

se
s

Spot [#states]

S
em

in
a
to

r
2

[#
st

a
te

s]

100 101 102
100

101

102

Fr
ib
ou

rg
+
Sp

ot

be
tt
er

in

15
4
ca

se
s

Se
m
in
at
or

2

be
tt
er

in

20
4
ca

se
s

Fribourg+Spot [#states]

S
em

in
a
to

r
2

[#
st

a
te

s]

Fig. 5. Comparison of Seminator 2 against Spot and Fribourg+Spot in terms of the
sizes (i.e., number of states) of complement automata produced for the not semi-
deterministic random benchmark. Note that axes are logarithmic.

0 10 20 30 40 50 60 70 80

0

50

100

n-th fastest of the 83 hard inputs

ru
n
n
in

g
ti

m
e

[s
ec

.] Roll+Spot

Fribourg+Spot

GOAL+Spot

Spot

Seminator 2

Fig. 6. Running times of complementation tools on the 83 hard cases of the not semi-
deterministic random benchmark. The running times of each tool on these cases are
sorted increasingly before being plotted.

offers more detailed insight into distribution of automata sizes created by Sem-
inator 2, Spot, and Fribourg+Spot for random benchmarks in this category.

Finally, Figure 6 compares the running times of these tools over the 83 hard
cases of not semi-deterministic random benchmark (a case is hard if at least one
tool did not finish in 10 seconds). We can see that Seminator 2 and Spot run
significantly faster than the other tools.

5 Conclusion

We have presented Seminator 2, which is a substantially improved version of
Seminator 1.1. The tool now offers a competitive complementation of TGBA.
Furthermore, the semi-determinization code was rewritten and offers new opti-
mizations that significantly reduce the size of produced automata. Finally, new
user-interfaces enable convenient processing of large automata sets thanks to the
support of pipelines and batch processing, and versatile applicability in educa-
tion and research thanks to the integration with Spot’s Python bindings.

10

Acknowledgment

F. Blahoudek has been supported by the DARPA grant D19AP00004 and by
the F.R.S.-FNRS grant F.4520.18 (ManySynth). J. Strejček has been supported
by the Czech Science Foundation grant GA19-24397S.

References

1. J. D. Allred and U. Ultes-Nitsche. A simple and optimal complementation algo-
rithm for Büchi automata. In LICS’18, pp. 46–55. ACM, 2018.

2. T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, and J. Strejček. Compositional
approach to suspension and other improvements to LTL translation. In SPIN’13,
LNCS 7976, pp. 81–98. Springer, 2013.

3. F. Blahoudek. Automata for Formal Methods: Little Steps Towards Perfection.
PhD thesis, Masaryk University, Brno, Czech Republic, 2018.

4. F. Blahoudek, M. Heizmann, S. Schewe, J. Strejček, and M.-H. Tsai. Complement-
ing semi-deterministic Büchi automata. In TACAS’16, LNCS 9636, pp. 770–787.
Springer, 2016.

5. F. Blahoudek, A. Duret-Lutz, M. Klokočka, M. Křet́ınský, and J. Strejček. Sem-
inator: A tool for semi-determinization of omega-automata. In LPAR’17, vol. 46
of EPiC Series in Computing, pp. 356–367. EasyChair, 2017. URL https:

//easychair.org/publications/paper/340360.
6. Y.-F. Chen, M. Heizmann, O. Lengál, Y. Li, M.-H. Tsai, A. Turrini, and L. Zhang.

Advanced automata-based algorithms for program termination checking. In
PLDI’18, pp. 135–150, 2018.

7. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In FOCS’88, pp. 338–345. IEEE Computer Society, 1988.

8. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 - a framework for LTL and ω-automata manipulation. In ATVA’16, LNCS
9938, pp. 122–129, 2016.

9. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In FMSP’98, pp. 7–15. ACM, 1998.

10. J. Esparza, J. Křet́ınský, J.-F. Raskin, and S. Sickert. From LTL and limit-
deterministic Büchi automata to deterministic parity automata. In TACAS’17,
LNCS 10205, pp. 426–442, 2017.

11. J. Esparza, J. Křet́ınský, and S. Sickert. One theorem to rule them all: A unified
translation of LTL into ω-automata. In LICS’18, pp. 384–393. ACM, 2018.

12. K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In CONCUR’00,
LNCS 1877, pp. 153–167. Springer, 2000.

13. E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang. Lazy probabilistic model
checking without determinisation. In CONCUR’15, vol. 42 of LIPIcs, pp. 354–367.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

14. J. Holeček, T. Kratochv́ıla, V. Řehák, D. Šafránek, and P. Šimeček. Verification
results in Liberouter project. Technical Report 03, 32pp, CESNET, 9 2004.

15. D. Kini and M. Viswanathan. Limit deterministic and probabilistic automata for
LTL\GU. In TACAS’15, LNCS 9035, pp. 628–642. Springer, 2015.

16. D. Kini and M. Viswanathan. Optimal translation of LTL to limit deterministic
automata. In TACAS’17, LNCS 10206, pp. 113–129. Springer, 2017.

11

https://easychair.org/publications/paper/340360
https://easychair.org/publications/paper/340360

17. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Will-
ing, and Jupyter development team. Jupyter notebooks — a publishing format for
reproducible computational workflows. In ELPUB’16, pp. 87–90. IOS Press, 2016.

18. J. Křet́ınský, T. Meggendorfer, C. Waldmann, and M. Weininger. Index appearance
record for transforming Rabin automata into parity automata. In TACAS’17,
LNCS 10205, pp. 443–460, 2017.

19. J. Křet́ınský, T. Meggendorfer, and S. Sickert. Owl: A library for ω-words, au-
tomata, and LTL. In ATVA’18, LNCS 11138, pp. 543–550. Springer, 2018.

20. Y. Li, A. Turrini, L. Zhang, and S. Schewe. Learning to complement Büchi au-
tomata. In VMCAI’18, LNCS 10747, pp. 313–335. Springer, 2018.

21. R. Oura, A. Sakakibara, and T. Ushio. Reinforcement learning of control policy
for linear temporal logic specifications using limit-deterministic Büchi automata.
CoRR, abs/2001.04669, 2020.

22. R. Pelánek. Beem: Benchmarks for explicit model checkers. In SPIN’07, LNCS
4595, pp. 263–267. Springer, 2007.

23. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In LICS’06, pp. 255–264. IEEE Computer Society, 2006.

24. S. Safra. On the complexity of omega-automata. In FOCS’88, pp. 319–327. IEEE
Computer Society, 1988.

25. S. Sickert and J. Křet́ınský. Mochiba: Probabilistic LTL model checking using
limit-deterministic Büchi automata. In ATVA’16, LNCS 9938, pp. 130–137, 2016.

26. S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınský. Limit-deterministic Büchi au-
tomata for linear temporal logic. In CAV’16, LNCS 9780, pp. 312–332. Springer,
2016.

27. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
CAV’00, LNCS 1855, pp. 248–263. Springer, 2000.

28. M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. Goal for games, omega-automata, and
logics. In CAV’13, LNCS 8044, pp. 883–889. Springer, 2013.

29. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In FOCS’85, pp. 327–338. IEEE Computer Society, 1985.

30. D. Weibel. Empirical performance investigation of a Büchi complementation con-
struction. Master’s thesis, University of Fribourg, 2015.

12

	Seminator 2 Can Complement Generalized Büchi Automata via Improved Semi-Determinization

