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Abstract. We present the first stable release of our tool Q3B for decid-
ing satisfiability of quantified bit-vector formulas. Unlike other state-of-
the-art solvers for this problem, Q3B is based on translation of a formula
to a BDD that represents models of the formula. The tool also employs
advanced formula simplifications and approximations by effective bit-
width reduction and by abstraction of bit-vector operations. The paper
focuses on the architecture and implementation aspects of the tool, and
provides a brief experimental comparison with its competitors.

1 Introduction

Advances in solving formula satisfiability modulo theories (SMT) achieved dur-
ing the last few decades enabled significant progress and practical applications
in the area of automated analysis, testing, and verification of various systems.
In the case of software and hardware systems, the most relevant theory is the
theory of fized-sized bit-vectors, as these systems work with inputs expressed as
bit-vectors (i.e., sequences of bits) and perform bitwise and arithmetic opera-
tions on bit-vectors. The quantifier-free fragment of this theory is supported by
many general-purpose SMT solvers, such as CVC4 [1], MathSAT [7], Yices [10],
or Z3 [9] and also by several dedicated solvers, such as Boolector [21] or STP [12].
However, there are some use-cases where quantifier-free formulas are not nat-
ural or expressive enough. For example, formulas containing quantifiers arise
naturally when expressing loop invariants, ranking functions, loop summaries,
or when checking equivalence of two symbolically described sets of states [13,
24,8,17,18]. In the following, we focus on SMT solvers for quantified bit-vector
formulas. In particular, this paper describes the state-of-the-art sMT solver Q3B
including its implementation and the inner workings.

Solving of quantified bit-vector formulas was first supported by Z3 in 2013 [25]
and for a limited set of exists/forall formulas with only a single quantifier al-
ternation by Yices in 2015 [11]. Both of these solvers decide quantified formu-
las by quantifier instantiation, in which universally quantified variables in the
Skolemized formula are repeatedly instantiated by ground terms until the result-
ing quantifier-free formula is unsatisfiable or a model of the original formula is
found. In 2016, we proposed a different approach for solving quantified bit-vector
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formulas: by using binary decision diagrams (BDDs) and approximations [14]. For
evaluation of this approach, we implemented an experimental SMT solver called
Q3B, which outperformed both Z3 and Yices. Next solver that was able to solve
quantified bit-vector formulas was Boolector in 2017, using also an approach
based on quantifier instantiation [22]. Unlike Z3, in which the universally quan-
tified variables are instantiated only by constants or subterms of the original
formula, Boolector uses a counterexample-guided synthesis approach, in which a
suitable ground term for instantiation is synthesized based on the defined gram-
mar. Thanks to this, Boolector was able to outperform Q3B and Z3 on certain
classes of formulas. More recently, in 2018, support of quantified bit-vector for-
mulas has also been implemented into CVC4 [20]. The approach of CVC4 is
also based on quantifier instantiation, but instead of synthesizing terms given by
the grammar as Boolector, CVC4 uses predetermined rules based on invertibil-
ity conditions, which directly give terms that can prune many spurious models
without using potentially expensive counterexample-guided synthesis. The au-
thors of CVC4 have shown that this approach outperforms 73, CVC4, and the
original Q3B. However, Q3B has been substantially improved since the origi-
nal experimental version. In 2017, we extended it with simplifications of quan-
tified bit-vector formulas using unconstrained variables [15]. Further, in 2018,
we added the experimental implementation of abstractions of bit-vector oper-
ations [16]. With these techniques, Q3B is able to decide more formulas than
73, Boolector, and CVC4. Besides the theoretical improvements, Q3B was also
improved in terms of stability, ease of use, technical parts of the implementation,
and compliance with the sMT-LIB standard. This tool paper presents the result
of these improvements: Q3B 1.0, the first stable version of Q3B.

We briefly summarize the SMT solving approach of Q3B. As in most of mod-
ern SMT solvers, the input formula is first simplified using satisfiability-preserving
transformations that may reduce the size and complexity of the formula. The
simplified formula is then converted to a binary decision diagram (BDD) that
represents all assignments satisfying the formula, i.e., the models of the formula.
If the BDD represents at least one model, we say that the BDD is satisfiable and it
implies satisfiability of the formula. If the BDD represents the empty set of mod-
els, we say that it is unsatisfiable and so is the formula. Unfortunately, there are
formulas for which the corresponding BDD (or some of the intermediate BDDs that
appear during its computation) is necessarily exponential in the number of bits
in the formula. For example, this is the case for formulas that contain multipli-
cation of two bit-vector variables [5]. To be able to deal with such formulas, Q3B
computes in parallel also BDDs underapproximating and overapproximating the
original set of models, i.e., BDDs representing subsets and supersets of the orig-
inal set of models, respectively. The approximating BDDs may be much smaller
in size than the precise BDD, especially if the approximation is very rough. Still,
they can be used to decide satisfiability of the original formula. If an overap-
proximating BDD is unsatisfiable, the original formula is also unsatisfiable. If the
overapproximating BDD is satisfiable, we take one of its models, i.e., an assign-
ment to the top-level existential variables of the formula, and check whether it
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Fig. 1: High-level overview of the SMT solving approach used by Q3B. The three
shaded areas are executed in parallel and the first result is returned.

is a model of the original formula. If the answer is positive, the original formula
is satisfiable. In the other case, we build a more precise overapproximating BDD.
Underapproximating BDDs are utilized analogously. The only difference is that
for unsatisfiable underapproximating BDD, we check the validity of a counter-
model, i.e., an assignment to the top-level universal variables that makes the
formula unsatisfiable. The approach is depicted in Figure 1.

Q3B currently supports two ways of computing the approximating BDDs from
the input formula. First of these are variable bit-width approximations in which
the effective bit-width of some variables is reduced. In other words, some of the
variables are represented by fewer bits and the rest of the bits is set to zero bits,
one bits, or the sign bit of the reduced variable. This approach was originally used
by the SMT solvers UCLID [6] and Boolector [21]. Q3B extends this approach to
quantified formulas: if bit-widths of only existentially quantified variables are re-
duced, the resulting BDD is underapproximating; if bit-widths of only universally
quantified variables are reduced, the resulting BDD is overapproximating. The
second way to obtain an approximation is bit-vector operation abstraction [16],
during which the individual bit-vector operations may not compute all bits of
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Fig.2: Architecture of Q3B. Components in the shaded box are parts of Q3B,
the other components are external.

the result, but produce some do-not-know bits if the resulting BDDs would exceed
a given number of nodes. An underapproximating BDD then represents assign-
ments that satisfy the formula for all possible values of these do-not-know bits.
Analogously, an overapproximating BDD represents all assignments that satisfy
the formula for some value of the do-not-know bits. Q3B also supports a combi-
nation of these two methods, in which both the effective bit-with of variables is
reduced and the limit on the size of BDDs is imposed. During an approximation
refinement, either the effective bit-width or the size limit is increased, based on
the detected cause of the imprecision.

2 Architecture

This section describes the internal architecture of Q3B. The overall structure
including internal and external components and the interactions between them
is depicted in Figure 2. We explain the purpose of the internal components:

SMT-LIB Interpreter (implemented in SMTLIBInterpreter.cpp) reads the
input file in the sSMT-LIB format [3], which is the standard input format for
SMT solvers. The interpreter executes all the commands from the file. In
particular, it maintains the assertion stack and the options set by the user,
calls solver when check-sat command is issued, and queries Solver if the
user requires the model with the command get-model.



Formula Simplifier (implemented in FormulaSimplifier.cpp) provides in-
terface for all applied formula simplifications, in particular miniscoping, con-
version to negation normal form, pure literal elimination, equality propaga-
tion, constructive equality resolution (CER) [14], destructive equality reso-
lution (DER) [25], simple theory-related rewriting, and simplifications using
unconstrained variables. Most of these simplifications are implemented di-
rectly in this component; only CER, DER, and majority of the theory-related
rewritings are performed by calling Z3 API and simplifications using uncon-
strained variables are implemented in a separate component of Q3B. The
simplifier also converts top-level existential variables to uninterpreted con-
stants, so their values are also included in a model. Some simplifications that
could change models of the formula are disabled if the user enables model
generation, i.e., sets :produce-models to true.

Unconstrained Variable Simplifier (implemented in UnconstrainedVari-
ableSimplifier.cpp) provides simplifications of formulas that contain un-
constrained variables, i.e., variables that occur only once in the formula. Be-
sides previously published unconstrained variable simplifications [15], which
were present in the previous versions of Q3B, this component now also
provides new goal-directed simplifications of formulas with unconstrained
variables. In these simplifications, we aim to determine whether a subterm
containing an unconstrained variable should be minimized, maximized, sign
minimized, or sign maximized in order to satisfy the formula. If the subterm
should be minimized and contains an unconstrained variable, the term is re-
placed by a simpler term that gives the minimal result that can be achieved
by any value of the unconstrained variable. Similarly for maximization, sign
minimization, and sign maximization.

Solver (implemented in Solver.cpp) is the central component of our tool. Tt
calls formula simplifier and then creates three threads for the precise solver,
the underapproximating solver, and the overapproximating solver. It also
controls the approximation refinement loops of the approximating solvers.
Finally, it returns the result of the fastest thread and stores the respective
model, if the result was sat.

Formula to BDD Transformer (implemented in the file ExprToBDDTrans-
former.cpp) performs the actual conversion of a formula to a BDD. Each
subterm of the input formula is converted to a vector of BDDs (if the sub-
term’s sort is a bit-vector of width n then the constructed vector contains
n BDDs, each BDD represents one bit of the subterm). Further, each subfor-
mula of the input formula is converted to a BDD. These conversions proceed
by a straightforward bottom-up recursion on the formula syntax tree. The
transformer component calls an external library to compute the effect of
logical and bit-vector operations on BDDs and vectors of BDDs, respectively.
Besides the precise conversion, the transformer can also construct overap-
proximating and underapproximating BDDs. Precision of approximations de-
pends on parameters set by the solver component.

Cache (implemented as a part of ExprToBDDTransformer.cpp) maintains for
each converted subformula and subterm the corresponding BDD or a vector



of BDDs, respectively. Fach of the three solvers has its own cache. When an
approximating solver increases precision of the approximation, entries of its
cache that can be affected by the precision change are invalidated. All the
caches are internally implemented by hash-tables.

3 Implementation

Q3B is implemented in C++17, is open-source and available under MIT license
on GitHub: https://github.com/martinjonas/Q3B. The project development
process includes continuous integration and automatic regression tests.

Q3B relies on several external libraries and tools. For representation and
manipulation with BDDs, Q3B uses the open-source library cupp 3.0 [23].
Since cUDD does not support bit-vector operations, we use the library by Peter
Navrétil [19] that implements bit-vector operations on top of cupD. The algo-
rithms in this library are inspired by the ones in the BDD library BuDDy! and
they provide a decent performance. Nevertheless, we have further improved its
performance by several modifications. In particular, we added a specific code for
handling expensive operations like bit-vector multiplication and division when
arguments contain constant BDDs. This for example considerably speeds up mul-
tiplication whenever one argument contains many constant zero bits, which is a
frequent case when we use the variable bit-width approximation fixing some bits
to zero. Further, we have fixed few incorrectly implemented bit-vector operations
in the original library. Finally, we have extended the library with the support
for do-not-know bits in inputs of the bit-vector operations and we have imple-
mented abstract versions of arithmetic operations that can produce do-not-know
bits when the result exceeds a given number of BDD nodes.

For parsing the input formulas in SMT-LIB format, Q3B uses ANTLR parser
generated from the grammar? for SMT-LIB 2.6 [2]. We have modified the gram-
mar to correctly handle bit-vector numerals and to support push and pop com-
mands without numerical argument. The parser allows Q3B to support all bit-
vector operations and almost all SMT-LIB commands except get-assertions,
get-assignment, get-proof, get-unsat-assumptions, get-unsat-core, and
all the commands that work with algebraic data-types. This is in sharp contrast
with the previous experimental versions of Q3B, which only collected all the
assertions from the input file and performed the satisfiability check regardless
of the rest of the commands and of the presence of the check-sat command.
The reason for this was that the older versions parsed the input file using the
73 C++ API1, which can provide only the list of assertions, not the rest of the
SMT-LIB script. Thanks to the new parser, Q3B 1.0 can also provide the user
with a model of a satisfiable formula after calling get-model; this important
aspect of other SMT solvers was completely missing in the previous versions.

On the other hand, C++ API of the solver Z3 is still used for internal repre-
sentation of parsed formulas. The Z3 C+-+ API is also used to perform manipu-

! https://sourceforge.net/projects/buddy/
2 https://github.com/julianthome/smt1ibv2-grammar



lations with formulas, such as substitution of values for variables, and some of
the formula simplifications. Note that these are the only uses of Z3 API in Q3B
during solving the formula; no actual SMT- or SAT-solving capabilities of Z3 are
used during the solving process.

Some classes of Q3B, in particular Solver, FormulaSimplifier, and
UnconstrainedVariableSimplifier, expose a public C++ API that can be
used by external tools for SMT solving or just performing formula simplifications.
For example, Solver exposes method Solve(formula, approximationType),
which can be used to decide satisfiability by the precise solver, the underapproxi-
mating solver, or the overapproximating solver. Solver also exposes the method
SolveParallel (formula), which simplifies the input formula and runs all three
of these solvers in parallel and returns the first result as depicted in Figure 1.

4 Experimental Evaluation

We have evaluated the performance of QB3 1.0 and compared it to the lat-
est versions of SMT solvers Boolector (v3.0), CVC4 (v1.6), and Z3 (v4.8.4). All
tools were used with their default settings except for CVC4, where we used the
same settings as in the paper that introduces quantified bit-vector solving in
CVC4 [20], since they give better results than the default CVC4 settings. As the
benchmark set, we have used all 5751 quantified bit-vector formulas from the
SMT-LIB repository. The benchmarks are divided into 8 distinct families of for-
mulas. We have executed each solver on each benchmark with CPU time limit 20
minutes and RAM limit of 8 GiB. All the experiments were performed in a Ubuntu
16.04 virtual machine within a computer equipped with Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz cpu and 32 GiB of rRAM. For reliable benchmarking we
employed BENCHEXEC [4], a tool that allocates specified resources for a pro-
gram execution and precisely measures their usage. All scripts used for running
benchmarks and processing their results, together with detailed descriptions and
some additional results not presented in the paper, are available online3.

Table 1 shows the numbers of benchmarks in each benchmark family
solved by the individual solvers. Q3B is able to solve the most benchmarks in
benchmark families 2017-Preiner-scholl-smt08, 2017-Preiner-tptp, 2017-Preiner-
UltimateAutomizer, 2018-Preiner-cavl8, and wintersteiger, and it is competitive
in the remaining families. In total, Q3B also solves more formulas than each of
the other solvers: 116 more than Boolector, 83 more than CVC4, and 139 more
than Z3. Although the numbers of solved formulas for the solvers seem fairly
similar, the cross-comparison in Table 2 shows that the differences among the
individual solvers are actually larger. For each other solver, there are at least
143 benchmarks that can be solved by Q3B but not by the other solver. We
think this shows the importance of developing an SMT solver based on BDDs and
approximations besides the solvers based on quantifier instantiation.

3 https://github.com/martinjonas/q3b-artifact



Family Total Boolector CVC4 Q3B 73

2017-Preiner-keymaera 4035 4022 3998 4009 4031
2017-Preiner-psyco 194 193 190 182 194
2017-Preiner-scholl-smt08 374 312 248 319 272
2017-Preiner-tptp 73 69 73 73 73
2017-Preiner-UltimateAutomizer 153 152 151 153 153
20170501-Heizmann-Ultimate Automizer 131 30 128 124 32
2018-Preiner-cav18 600 553 565 565 553
wintersteiger 191 163 174 185 163
Total 5751 5494 5527 5610 5471
CPU time [s] 7793 5877 19853 4055

Table 1: For each solver and benchmark family, the table shows the number of
benchmarks from the given family solved by the given solver. The column Total
shows the total number of benchmarks in the given family. The last line provides
the total CPU times for the benchmarks solved by all four solvers.

Boolector CVC4 Q3B 73 ‘ Uniquely solved

Boolector 0 123 69 78 8
CVC4 156 0 60 171 6
Q3B 185 143 0 208 25
73 55 115 69 0 6

Table 2: For all pairs of the solvers, the table shows the number of benchmarks
that were solved by the solver in the corresponding row, but not by the solver
in the corresponding column. The column Uniquely solved shows the number of
benchmarks that were solved only by the given solver.

5 Conclusions and Future Work

We have described the architecture and inner workings of the first stable version
of the state-of-the-art SMT solver Q3B. Experimental evaluation on all quanti-
fied bit-vector formulas from SMT-LIB repository shows that this solver slightly
outperforms other state-of-the-art solvers for such formulas.

As future work, we would like to drop the dependency on the Z3 API: namely
to implement our own representation of formulas and reimplement all the sim-
plifications currently outsourced to Z3 API directly in Q3B. We also plan to
extend some simplifications with an additional bookkeeping needed to construct
a model of the original formula. With these extensions, all simplifications could
be used even if the user wants to get a model of the formula. We would also like
to implement production of unsatisfiable cores since they are also valuable for
software verification.
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