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Abstract. The paper presents a new tool ltl3tela translating LTL
to deterministic or nondeterministic transition-based Emerson-Lei au-
tomata (TELA). Emerson-Lei automata use generic acceptance formu-
lae with basic terms corresponding to Büchi and co-Büchi acceptance.
The tool combines algorithms of Spot library, a new translation of LTL
to TELA via alternating automata, a pattern-based automata reduction
method, and few other heuristics. Experimental evaluation shows that
ltl3tela can produce deterministic automata that are, on average, no-
ticeably smaller than deterministic TELA produced by state-of-the-art
translators Delag, Rabinizer 4, and Spot. For nondeterministic automata,
the improvement over Spot is smaller, but still measurable.

1 Introduction

Translation of LTL formulae into equivalent automata over infinite words is an
important part of many methods for model checking, control synthesis, moni-
toring, vacuity checking etc. Different applications require different types of au-
tomata, which are specified by restrictions on automata structure or acceptance
condition. Two most popular structures are deterministic and nondeterministic.
While nondeterministic automata have been traditionally considered with Büchi,
deterministic automata have typically used Rabin, Streett, or parity acceptance
as deterministic Büchi automata are strictly less expressive.

With rising number of practical automata applications, we can see a clear
shift towards more complex acceptance conditions which allow to construct and
manipulate automata with less states and often lead to performance improve-
ments. This trend started slowly with generalized Büchi and generalized Rabin
acceptance and accelerates after introduction of the Hanoi Omega-Automata
Format [3]. The format reinvented a generic acceptance condition originally con-
sidered by Emerson and Lei in 1980s [9], which can uniformly present all the
mentioned conditions.

Recently, first tools that aim to take advantage of Emerson-Lei (EL) ac-
ceptance in order to produce smaller automata appeared. In particular, the tool
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Delag [13] translates LTL to deterministic EL automata and Spot [8] can produce
deterministic or nondeterministic EL automata for LTL since version 2.6. The
development of tools producing small EL automata creates a demand for efficient
algorithms that directly process these automata (without previous transforma-
tion to any simpler automata type). Fresh results of this kind are algorithms for
checking emptiness of EL automata and for probabilistic model checking under
properties specified by deterministic EL automata [5].

We present a tool ltl3tela that combines algorithms of Spot with a novel
LTL to EL-automata translation, pattern-based automata reduction method,
and some other techniques in order to translate LTL to deterministic or non-
deterministic transition-based Emerson-Lei automata (TELA) with low number
of states. The overall translation algorithm is explained in Section 2 together
with precise definition of TELA and brief description of individual translation
components. Section 3 discusses implementation and basic usage of the tool, and
Section 4 compares ltl3tela with state-of-the-art tools translating LTL to de-
terministic or nondeterministic automata using random formulae and formulae
collected from the literature.

2 Translation Algorithm

Transition-based Emerson-Lei Automata (TELA)

A nondeterministic TELA A is a tuple A = (Q,Σ,M, δ, qI , ϕ), where Q is a
finite set of states, Σ is a finite alphabet, M is a finite set of acceptance marks,
δ ⊆ Q × 2Σ × 2M ×Q is a set of edges, qI ∈ Q is the initial state, and ϕ is the
acceptance formula built by the following grammar with m ranging over M .

ϕ ::= t | f | Inf(m) | Fin(m) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ)

A run ρ is an infinite sequence of consecutive edges starting in the state qI .
Every run satisfies t (true) and does not satisfy f (false). A run satisfies Inf(m) if
m is present on infinitely many edges of ρ, and only satisfies Fin(m) otherwise.
A run is accepting if it satisfies ϕ. Automaton A is complete if for each q ∈ Q
and a ∈ Σ there is at least one edge (q, A,M ′, q′) ∈ δ such that a ∈ A. Finally,
A is deterministic if for each q ∈ Q and a ∈ Σ there is at most one edge
(q, A,M ′, q′) ∈ δ such that a ∈ A. We emphasize that the term nondeterministic
is not the opposite of deterministic, but a deterministic automaton is a special
case of a nondeterministic one.

Translation Components

The most important novel component of ltl3tela is an LTL to nondeterminis-
tic TELA translation via self-loop alternating automata (SLAA) [12]. It builds
upon the ideas of ltl2ba [10] and ltl3ba [1], which translate LTL to transition-
based generalized Büchi automaton (TGBA) via very weak alternating co-Büchi
automata. Our new translation uses alternating automata with similar structure,
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but with more complex acceptance conditions and acceptance marks on transi-
tions (in particular, SLAA are not weak any more). Such alternating automata
are often smaller and allow us to produce smaller nondeterministic automata.
We refer to this translation as ltl3slaa3tela.

Inf( )

1
a∧b a∧b

a∧¬b

Inf( ) ∧ Fin( )

1 a∧b

a∧¬b

Another new concept is a pattern-based reduction
applicable to TGBA [16]. Intuitively, the procedure
looks for automata subgraphs corresponding to cer-
tain patterns. Each pattern includes states that can
be merged into one state for the price of a more com-
plicated acceptance condition containing a subformula
Fin(m), where m is a fresh acceptance mark. Hence,
this pattern-based reduction method transforms TGBA
into TELA. On the right, you can see a TGBA for the
formula FGa∧GFb (top) and the corresponding automa-
ton after pattern-based reduction (bottom).

Further, we use a lot of functionality offered by the Spot library, in particular:

– LTL formulae parsing and preprocessing
– LTL to nondeterministic TELA translation performed by ltl2tgba -G
– LTL to deterministic TELA translation performed by ltl2tgba -DG
– automata determinization based on the algorithm of Redziejowski [14],
– automata reduction procedure based on SCC pruning [15], minimization of

WDBA [6], and simulation-based reductions [15],
– functions for the synchronous product of two automata and specialized func-

tions creating potentially smaller product if one of the automata is suspend-
able [2].

We also define the functions min and trans used later in the algorithm. The
function min selects the minimal automaton out of a given sequence A1, . . . ,An.
More precisely, to each automaton Ai = (Q,Σ,M, δ, qI , ϕ) it assigns the tuple
(|Q|, d, |M |, |δ|, i) with d being 1 for deterministic automata and 2 otherwise,
and returns the automaton with the lexicographically minimal tuple.

The function trans(ψ, t) aims to get the best automaton for ψ using the
translator t. More precisely, it translates both ψ and ¬ψ using t, simplifies both
automata using Spot’s reduction procedure and the pattern-based reduction (if
applicable), resulting in Aψ and A¬ψ. If A¬ψ is deterministic, the function com-
plements it (makes it complete and dualizes the acceptance condition by swap-
ping Inf for Fin, t for f, and ∧ for ∨) into A′

ψ, and returns min(Aψ,A′
ψ). If A¬ψ

is not deterministic, trans(ψ, t) simply returns Aψ.

The Algorithm

Our translation of LTL into nondeterministic TELA follows the idea introduced
by Delag (and followed also by ltl2tgba with the -G option): we split the input
formula recursively into temporal subformulae, translate each subformula inde-
pendently, and merge the automata for subformulae using synchronous products.
This allows us to use different translations where appropriate for the subformu-
lae. Our take on the approach is described by Algorithm 1 where we use product
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Algorithm 1: ltl3tela translation of LTL for nondeterministic TELA

preprocess ϕ to contain only Boolean operators ∧,∨,¬ and ¬ not before ∧,∨
A ← min(trans(ϕ, ltl3slaa3tela), trans(ϕ, ltl2tgba -G), transRec(ϕ))

function transRec(ϕ)
if ϕ is a conjunction then

let ϕ = ϕ1 ∧ . . . ∧ ϕn ∧ ψ1 ∧ . . . ∧ ψm where ψi are suspendable
foreach ρ ∈ {ϕ1, . . . , ϕn, ψ1, . . . , ψm} do Aρ ← transRec(ρ)

return
(
. . .

(
(Aϕ1⊗̂ . . . ⊗̂Aϕn)⊗̂sAψ1

)
⊗̂s . . .

)
⊗̂sAψm

if ϕ is a disjunction then
let ϕ = ϕ1 ∨ . . . ∨ ϕn ∨ ψ1 ∨ . . . ∨ ψm where ψi are suspendable
foreach ρ ∈ {ϕ1, . . . , ϕn, ψ1, . . . , ψm} do Aρ ← transRec(ρ)

return
(
. . .

(
(Aϕ1⊗̌ . . . ⊗̌Aϕn)⊗̌sAψ1

)
⊗̌s . . .

)
⊗̌sAψm

return min(trans(ϕ, ltl3slaa3tela), trans(ϕ, ltl2tgba -G))

operations ⊗̌, ⊗̂ for automata union and intersection, respectively, and their op-
timized versions ⊗̌s, ⊗̂s when the right argument is a suspendable automaton.
Each product operation applies Spot’s automata reduction procedure and the
pattern-based reduction (if applicable) before returning the product. At the end,
we compare the resulting automaton with the automata produced directly for
the input formula and return the minimal one.

The translation of LTL to deterministic TELA works in the same way with
only two changes. First, instead of ltl2tgba -G we always call ltl2tgba -DG.
Second, the function trans calls the Spot’s automata reduction procedure with
the request to produce a deterministic TELA. Hence, if ltl3slaa3tela produces
an automaton that is not deterministic, it is determinized by Spot.

3 Implementation

The tool ltl3tela is written in C++14 and requires only the Spot library [8]
version 2.6 or higher for compilation. The tool is available at https://github.
com/jurajmajor/ltl3tela under the GNU GPL 3.0 license. The default mode
takes an LTL formula ϕ as input, runs Algorithm 1 to produce a nondeterminis-
tic TELA for ϕ, and output it in the Hanoi Omega-Automata (HOA) format [4].
Deterministic automata are produced by ltl3tela -D1. The tool can also pro-
duce self-loop alternating automata. See the documentation for more details.

4 Experimental Evaluation

We compare ltl3tela to state-of-the-art LTL to deterministic TELA trans-
lators ltl2tgba -DG, Delag, and Rabinizer 4, which produces transition-based
generalized Rabin automata (TGRA). For the nondeterministic case, we com-
pare ltl3tela to ltl2tgba -G and two LTL to TGBA translators ltl2tgba

and ltl3ba. For references and version numbers of all the tools see Table 1.

https://github.com/jurajmajor/ltl3tela
https://github.com/jurajmajor/ltl3tela
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Table 1. References and versions of compared LTL to automata translators

tool name version homepage

Delag [13], Rabinizer 4 [11] Owl 18.06 owl.model.in.tum.de

ltl2tgba [8] Spot 2.7.4 spot.lrde.epita.fr

ltl3ba [1] 1.1.3 sourceforge.net/projects/ltl3ba

ltl3tela 2.0.0 github.com/jurajmajor/ltl3tela

We use two sets of LTL formulae for the comparison:

random contains 1000 random formulae generated with randltl3 such that
there are no duplicates and formulae equivalent to true or false,

literature contains 397 formulae from the literature provided by genltl (for
each formula pattern, we consider instances with parameter values 1, . . . , 5).

Each translator has been executed on each formula using the tool ltlcross
with 60 seconds time limit. The experiments ran on a laptop with Intel® Core™
i7-8550U, 16 GB of RAM, and Debian 9.9. Table 2 presents the cumulative
numbers of states, edges, and acceptance marks for each translator and set of
formulae. While all translators finished successfully on random formulae, we en-
countered some timeouts and parse errors (ltlcross cannot parse automata
with more than 32 acceptance marks) on formulae from the literature and thus
we had to remove some formulae from the cumulative numbers in Table 2. We
have complete results (no timeout or parse error) on 353 formulae for determin-
istic automata and on 368 formulae for nondeterministic automata. The lists of
excluded formulae are in Tables 3 and 4.

Table 2. Sums of states, edges, and marks of automata produced by individual trans-
lators for considered formula sets, the number of timeouts (TO) and parse errors (PE)

random literature

tool states edges acc states edges acc TO PE

d
et

.

ltl3tela -D1 5934 18520 1268 2536 10641 454 39 0

ltl2tgba -DG 6799 24131 1575 3905 26643 652 20 0

Delag 7176 71672 3089 8661 2209807 1196 11 10

Rabinizer 4 7581 31099 2786 2969 12358 1133 12 8

n
o
n
d
et

. ltl3tela 5109 12481 1135 2378 20718 544 28 0

ltl2tgba -G 5391 13144 1041 2398 20555 642 12 0

ltl2tgba 5413 13059 1034 2651 8721 502 11 0

ltl3ba -H2 6103 15636 1616 4654 21180 822 4 0

The results show that ltl3tela is the slowest one, which is not surprising as
it internally translates every formula several times. However, it produces signif-
icantly smaller deterministic automata (in sum) comparing the other tools. The

3 We use the tools randltl, genltl, and ltlcross [7] from the Spot library 2.7.4.

owl.model.in.tum.de
spot.lrde.epita.fr
sourceforge.net/projects/ltl3ba
github.com/jurajmajor/ltl3tela
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Table 3. Formulae from the literature (described by the corresponding genltl options)
that are not covered by the accumulated results in Table 2 (nondet.) due to some
timeout (TO), and sizes of nondeterministic automata for these formulae

formula (as genltl option) ltl3tela ltl2tgba -G ltl2tgba ltl3ba -H2

--gh-r=5 TO 1 14 244
--hkrss-patterns=45 TO 12 12 12

--kr-n=2 TO TO 25 25
--kr-n=3 TO TO 58 58
--kr-n=4 TO TO TO 131
--kr-n=5 TO TO TO TO

--kr-nlogn=2 TO TO 43 44
--kr-nlogn=3 TO TO TO TO
--kr-nlogn=4 TO TO TO TO
--kr-nlogn=5 TO TO TO TO

--kv-psi=2 TO 19 19 29
--kv-psi=3 TO 39 39 73
--kv-psi=4 TO TO TO 177
--kv-psi=5 TO TO TO 417

--ms-phi-h=5 TO 32 64 64
--rv-counter-carry=5 TO 160 160 160

--rv-counter-carry-linear=5 TO 160 160 160
--sejk-f=4,1 TO 13 13 64
--sejk-f=4,2 TO 14 14 112
--sejk-f=4,3 TO 15 15 192
--sejk-f=4,4 TO 16 16 336
--sejk-f=4,5 TO 17 17 608
--sejk-f=5,1 TO 15 15 128
--sejk-f=5,2 TO 16 16 224
--sejk-f=5,3 TO 17 17 384
--sejk-f=5,4 TO TO TO 672
--sejk-f=5,5 TO TO TO 1216

--sejk-k=4 1 1 TO 82
--sejk-k=5 TO 1 TO 244

differences are less dramatic for nondeterministic automata. Detailed analysis of
the results shows that ltl3tela -D1 is always better (in the sense of function
min) than ltl2tgba -DG. There is no such other case. A surprising result is the
significantly low number of acceptance marks for ltl3tela -D1.

All considered formulae, measured results, scripts generating the formulae,
Jupyter notebooks that run experiments and process them, and some more tables
can be found at: https://github.com/jurajmajor/ltl3tela/blob/master/
ATVA19.md

5 Conclusion

We presented the tool ltl3tela that combines some new ideas with functionality
of Spot in order to translate LTL to small deterministic or nondeterministic

https://github.com/jurajmajor/ltl3tela/blob/master/ATVA19.md
https://github.com/jurajmajor/ltl3tela/blob/master/ATVA19.md
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Table 4. Formulae from the literature (described by the corresponding genltl options)
that are not covered by the accumulated results in Table 2 (det.) due to some timeout
(TO) or parse error (PE), and sizes of deterministic automata for these formulae

formula (as genltl option) ltl3tela -D1 ltl2tgba -DG Delag Rabinizer 4

--gf-equiv=4 1 1 1 PE
--gf-equiv=5 TO 1 1 PE

--gh-r=5 1 1 1 PE
--hkrss-patterns=45 TO 12 12 12

--kr-n=2 TO TO 183 141
--kr-n=3 TO TO 6937 TO
--kr-n=4 TO TO TO TO
--kr-n=5 TO TO TO TO

--kr-nlogn=2 TO TO 288 TO
--kr-nlogn=3 TO TO TO TO
--kr-nlogn=4 TO TO TO TO
--kr-nlogn=5 TO TO TO TO
--kv-psi=2 TO 106 TO 115
--kv-psi=3 TO 3057 TO TO
--kv-psi=4 TO TO TO TO
--kv-psi=5 TO TO TO TO

--ms-phi-h=5 TO 32 32 420
--ms-phi-r=4 TO 1 1 1
--ms-phi-r=5 1 1 1 TO
--ms-phi-s=4 TO 1 1 PE
--ms-phi-s=5 1 1 1 TO

--rv-counter-carry=5 TO 160 160 160
--rv-counter-carry-linear=5 TO 160 163 163

--sejk-f=3,1 TO 2781 3 3
--sejk-f=3,2 TO 2782 4 4
--sejk-f=3,3 TO 2783 5 5
--sejk-f=3,4 TO 2784 6 6
--sejk-f=3,5 TO 2785 7 7
--sejk-f=4,1 TO TO PE 3
--sejk-f=4,2 TO TO PE 4
--sejk-f=4,3 TO TO PE 5
--sejk-f=4,4 TO TO PE 6
--sejk-f=4,5 TO TO PE 7
--sejk-f=5,1 TO TO PE 3
--sejk-f=5,2 TO TO PE 4
--sejk-f=5,3 TO TO PE 5
--sejk-f=5,4 TO TO PE 6
--sejk-f=5,5 TO TO PE 7
--sejk-j=4 TO 1 1 PE
--sejk-j=5 TO 1 1 PE
--sejk-k=4 TO 1 1 PE
--sejk-k=5 TO 1 1 PE
--tv-uu=4 28 51 TO 52
--tv-uu=5 TO 298 TO 199
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automata with Emerson-Lei acceptance condition. Experiments indicated that
our tool produces (on average) the smallest automata compared to state-of-the-
art translators. In particular, we produced deterministic automata with the least
number of states, edges, and acceptance marks compared to other translators.
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15. F. Somenzi and R. Bloem. Efficient Büchi automata for LTL formulae. In CAV’00,
LNCS 1855, pp. 247–263. Springer, 2000.
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