Symbolic Memory with Pointers*

Marek Trtik'** and Jan Strejéek?

1 VERIMAG, Grenoble, France
Marek.Trtik@imag.fr
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
strejcek@fi.muni.cz

Abstract. We introduce a segment-offset-plane memory model for sym-
bolic execution that supports symbolic pointers, allocations of memory
blocks of symbolic sizes, and multi-writes. We further describe our effi-
cient implementation of the model in a free open-source project BUGST.
Experimental results provide empirical evidence that the implemented
memory model effectively tackles the variable storage-referencing prob-
lem of symbolic execution.

1 Introduction

Symbolic execution [9,2,7] is a classic automated program analysis technique
based on a simple idea to execute a program on symbols representing arbitrary
input data. It is nowadays used in many automatic test-generation and bug-
finding tools including industrial ones. Some of the best known tools are EXE [4],
KLEE [3], CUTE [10], SAGE [6], and PEX [15].

As symbolic execution runs a program on symbols instead of concrete input
data, it has to manipulate expressions over these symbols instead of standard
datatype values like integers or floats. However, reading and writing symbolic
expressions is not the main problem associated with memory in symbolic ex-
ecution. It is the wariable storage-referencing problem originally presented by
King [9]. The problem appears when one needs to read a value from (or write
a value to) a memory location dependent on input symbols. For example, if we
want to execute an assignment A[i] :=0, the memory location that should be
set to 0 depends on the symbolic value stored in i. The issue becomes even
more serious when we introduce pointers because a symbolic pointer may point
literally to any memory location, not only to elements of one array.

King [9] proposed two possible solutions of the problem for symbolic execu-
tion (and he immediately mentioned that ‘neither is very satisfactory’):

1. Symbolic execution is forked for each memory location which is a potential
concrete value of the symbolic pointer. This solution leads to an exhaustive
case analysis. This approach is further improved in [8, 5].
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2. The second solution prevents intensive forking of symbolic execution by stor-
ing conditional values in the symbolic memory. For example, if array element
A[3] has a value e and i has a value 7, then an assignment A[i] :=0 changes
the value of A[3] to ite(i = 3,0,e) meaning that the value is 0 if i = 3,
and e otherwise. Note that each write can theoretically prolong all memory
records by one application of ite. Hence, this symbolic memory grows very
quickly unless we use some reduction methods. Unfortunately, the reduction
methods are typically expensive.

The presented symbolic memory elaborates on the second approach. Besides
symbolic pointers, our approach also supports allocations of memory blocks of
symbolic sizes and multi-writes, i.e. operations that write to symbolic number
of memory locations at once. This is useful for example when one sets a block
of allocated memory to 0, where the number of allocated bytes in the block is
given by a symbolic expression.

Full description of our symbolic memory is divided into two parts: Section 2
explains our segment-offset-plane memory model and Section 3 then describes its
implementation. Both the memory model and its implementation are designed
to manipulate as simple expressions as possible, to make operations in symbolic
memory efficient. The suggested symbolic memory provides just basic memory
operations (i.e. allocation, read, write, deallocation, and test for memory initial-
isation). Handling of some advanced memory-related operations (e.g. manipula-
tion with composed objects or unions) using our symbolic memory is discussed
in Section 4. The high efficiency of our symbolic memory implementation is
confirmed by measurements presented in Section 5.

2 Segment-Offset-Plane Memory Model

Our symbolic memory is not bound to any particular programming language or
data types. For sake of accessibility, all examples use C statements and programs.
Further, we assume that integers and pointers are 4 bytes long.

First we describe the structure of the memory model. The crucial memory
operations (namely allocation, read, and write) are then illustrated on a simple
example. Finally, we introduce extended versions of allocation and write op-
erations called multi-allocation and multi-write. The remaining two operations
provided by our symbolic memory interface (namely deallocation and test for
memory initialisation) are described in the following section.

2.1 Structure of the Model

Structure of the model reflects needs of symbolic execution. A specific aspect of
memory allocations in symbolic execution is that sizes of requested allocations
can be given by symbolic expressions instead of concrete numbers. For example,
if an integer variable n has a value represented by a symbol n, then symbolic
execution of malloc(n * sizeof (int)) allocates 4n bytes, which can represent



4 bytes as well as 4 megabytes. If we use a standard memory model where
memory cells are ordered into a linear sequence, it is very complicated to track
which cells are allocated and which are free. We rather represent every allocated
block as an isolated part of the memory called segment. Each segment is identified
by a unique integer number. Memory cells within the block are identified by a
nonnegative integer called offset. Hence, an address in our memory model is a
pair segment:offset.

Further, write and read operations know what type of data they manipulate.
Our memory model takes advantage of this fact and stores data of each basic
type into a separated part of the memory called plane. The separation increases
performance of our symbolic memory. For example, if we read an integer, we
do not have to deal with chars, floats, or any data of other types stored in
the memory. Pointers are composite datatypes and thus they are stored in two
planes: segments in the plane Segments and offsets in the plane Offsets.

The memory model is called segment-offset-plane as every read or write op-
eration needs to know the address (i.e. its segment and its offset) and the plane
it should read from or write to.
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Fig. 1. A simple instance of the segment-offset-plane memory model.



Figure 1 depicts a simple instance of the segment-offset-plane memory model.
The segment axis (vertical) has two directions to positive and negative values.
The offset axis (horizontal) has only one direction to positive values. On the
planes axis there are depicted three parallel memory planes. They share the
same address space. In the picture there is further depicted a pointer 3 : 7 which
is stored at the address 5 : 10. We see that the segment 3 of the pointer is stored
in the Segments memory plane, while the offset 7 is stored in the plane Offsets.
Although both segment and offset are stored at the same address, they are stored
into different planes. The figure also shows an array Sizes that stores the size of
each allocated segment. In the figure, the size of segment 5 is 20 bytes. As we
mentioned above, the size of a segment can be symbolic. Segments with size 0
are not allocated. The segment 0 is never used to store any data: addresses with
segment 0 are interpreted as NULL pointers (assigning NULL sets a pointer to
0:0).

In our approach, memory operations do not automatically check whether
addresses they work with are allocated or not. Instead, we provide an additional
function that checks whether a given address points to an allocated memory or
not. This function simply looks into the given address in the array Sizes and
checks whether the value is greater then zero. We similarly do not implicitly test
for memory initialisation in memory operations. We discuss details about the
function providing memory initialisation test in the next section.

To unify the structures used in the model, we represent the array Sizes as
another plane where we use only memory offsets 0, i.e. the size of a segment x
is stored in plane Sizes at the address z : 0.

The content of a plane is represented by a list of write records, where each
record has the form (segment : offset, value). In fact, the list reflects history of
the plane content: a new record is always added at the end of the list. We use this
representation just to explain principles of the model. An effective representation
of a plane’s content is described later in Section 3.

2.2 Basic Functionality of the Model

We explain the basic functionality of the memory model using a simple example.
Let us consider the program depicted in Figure 2. The program contains a defi-

int* A = NULL;
int foo(int mn, int i) {
A = (int*)malloc(n * sizeof(int));
A[3] = 777;
A[4] = 888;
A[3*i+1] = 999;
return A[3]+A[4];
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Fig. 2. Running example with a global pointer variable A and a function foo.



nition of a global pointer variable A and a function foo accepting two parameters
n and i. We symbolically execute the program with input values of variables n
and i represented by symbols n and i respectively. As we are interested in an
effect of statements forming the body of the function, we start by a description
of the symbolic memory content just before execution of line 3. We especially
need to know where program variables are stored in the memory and what are
their values. Let the global variable A be stored at address 1 : 0, and the stack
variables n and i be stored at addresses 2 : 0 and 2 : 4 respectively. Note that
we can consider the segment 1 as a memory block for the common ‘data seg-
ment’ of the program and we can consider the segment 2 as a memory block for
the common ‘stack segment’ of the program. All other segments (except 0) then
represent the program heap. As the program uses only pointers and integers, we
will work with four planes: Segments, Offsets, Integers, Sizes. Before executing
line 3, the planes have the following content:

Segments = [(1: 0,0)] Integers = [(2:0,n),(2: 4,1)]
Offsets = [(1:0,0)] Sizes =[(1:0,4),(2:0,1024)]

Note that the record (1 : 0,4) in Sizes says that the data segment of the program
consists of four bytes only. It is enough for storing the global pointer A (initialised
to NULL, i.e. 0 : 0) as we assume that a pointer is 4 bytes long. Further, the
record (2 : 0,1024) says that we reserved 1024 bytes for the program stack.
Currently, only variables n and i occupy their 8 bytes. Note that instead of a
fixed size of the stack we can introduce a fresh symbol for its symbolic size.

Execution of line 3 of the program results in two modifications in the memory.
First, we allocate 4n bytes of memory in the first free segment which is the
segment 3. We do so by a single write into the plane Sizes and we get

Sizes =[(1:0,4),(2:0,1024), (3 : 0,4n)].

Second, we assign the address 3 : 0 of the first byte of the allocated memory to
the pointer A. More precisely, the segment 3 and the offset 0 of the address are
stored to the planes Segments and Offsets respectively, both to the address of A
which is 1 : 0. We have

Segments =[(1:0,0),(1:0,3)] and Offsets=1[(1:0,0),(1:0,0)].

The statement at line 4 writes the value 777 to the address 3 : (044 - 3)
computed from the address 3 : 0 (stored in the pointer A) by its increment by
4 - 3 bytes (which is the size of 3 four-byte integers). We obtain

Integers = [(2:0,n),(2:4,4),(3:4-3,777)].

The statements at lines 5 and 6 are resolved similarly. The resulting content
of the plane Integers is

Integers=[(2:0,n),(2:4,7),(3:4-3,777),(3:4-4,888),(3:4- (31 +1),999)].



Note that the last record refers to a symbolic offset. In fact, any part of a record
is a symbolic expression (concrete number is a special kind of such expressions).

Now we execute line 7 with two read operations. The first operation reading
A[3] is resolved in the plane Integers such that we compare the address where
we read, i.e. the address 3 : 4 - 3, with addresses in all records in the list in the
reverse order, and we build the composed ite expression

ite3=3 A 4-3=4-(3-i+1),999,
ite(3=3 A 4-3=44,888,
ite(3=3 A 4-3=4-3,777,
ite(3=2 A 4-3=4,4,
ite(3=2 A 4-3=0,n,
3(3,4-3)))))),

where 6(3,4 - 3) denotes a symbolic default value stored initially at the address
3 :4-3 in the memory plane Integers. This default value can be used for detection
of read operations from uninitialised memory. After few trivial simplifications we
reduce the ite expression to ite(2 = 3-14,999,777). We can further see that the
equation 2 = 3 -4 does not have any solution, since i represents only integer
values. With this knowledge we can simplify the expression even further to the
final value 777.

Constraints like 2 = 3 - ¢ can be resolved automatically by an SMT solver.
Simplifications based on satisfiability checking of constraints have an important
impact on size of expressions returned from the memory. As these expressions
are often modified by the program and then stored back to the memory, the
simplifications also reduce memory size and improve its performance. In Section 3
we present an actual implementation of the memory model, which substantially
reduces the construction of compound ite expressions. In particular, the read of
A[3] in our running example returns 777 without construction of any composed
ite expressions.

The last memory operation of our running example reads A[4]. It proceeds in
the same way as the previous one and results into the value ite(1 = 7,999, 888).

2.3 Multi-Writes and Multi-Allocations

Our memory supports multi-write operations that can change content of more
memory locations at once. This ability has some natural applications in symbolic
execution. We only sketch the concept of multi-writes using the example code

char Aln];
memset(A,0,n);

that allocates an array A of n bytes and sets all its elements to 0. Let n represent
the value of n. We need to write to n addresses. Use of one multi-write is definitely
more efficient here than iterating over the array and writing to one address each
time, especially when we do not know the concrete length of the array.



Let us assume that the array A is stored at an address o, : wy. Then we
need to write 0 to every address with segment o, and an offset w satisfying the
formula

W) = (wp Cw <wy +n).

We can describe the addresses using A-notation as o : Aw. ¢(w).

Formally, we always work with A-expressions of the form A\g.\w. f(5,®),
i.e. functions of both, a segment & and an offset w. Thus, the arguments of the
considered multi-write are

(o4 : AG. A@. (@), 0),

which is precisely the record that is added to the corresponding plane. In general,
the values set by a multi-write operation do not have to be constant. They can
also be given by a function of a segment and an offset. For example, the multi-
write

(o : AT AL $(0), AT. A\w. (@ — wy) mod 2)
sets all even elements of the array to 0 and all odd elements to 1.

Besides multi-writes, our model also supports a multi-allocation that allo-
cates a number of segments given by a symbolic expression at once. A multi-
allocation is basically a multi-write into the Sizes memory plane. Segments al-
located in this way have negative numbers. We provide more information about
multi-allocations in the next section.

3 Implementation of the Memory Model

This section describes data structures used for effective representation of planes’
contents. Further, it describes the algorithms for basic memory operations.

The implementation distinguishes two types of addresses: constant and sym-
bolic. An address is constant if its segment and offset are both concrete integer
numbers. Non-constant addresses are called symbolic. Note that a segment or
an offset of a symbolic address is either a symbolic expression not equivalent to
a concrete integer number, or a boolean A-function determining a set of integers.

In the previous section, plane contents are represented as lists of records.
As most memory operations work with concrete addresses, we use a specific
structure to quickly resolve operations on these addresses. More precisely, the
content of a plane is held in two structures: boostMap and iteList. The boostMap
contains only data stored at concrete addresses and not colliding with any newer
record. For example, symbolic address 3 : 4:(3-i+1) collides with concrete address
3 : 52 as the two addresses are identical when ¢ = 4. On the other hand, the
symbolic address does not collide with 3 : 53. The boostMap is implemented as a
map assigning stored values to the corresponding constant addresses. All other
records are stored in a doubly linked list called iteList, where the oldest record is
at the beginning and the youngest at the end. An example of the two structures
is depicted in Figure 3.
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Fig. 3. An example of data structures boostMap and iteList. Each record in iteList is
represented by an address (upper line) and the corresponding value (lower line).

Write Operation The write operation of a memory plane stores a passed
symbolic expression v at a given address ¢ : w. If the address is constant, the
procedure is very simple: we remove the old value stored at the address from the
boostMap (if any) and then we insert the pair (o : w,v) into the boostMap.

If the passed address is symbolic, then there is a possibility that it collides
with some constant addresses stored in the boostMap. To keep the boostMap
correct, we must first detect all such collisions and move the colliding records
from the boostMap to the iteList. Let (¢’ : w’,v’) be a record with a concrete
address stored in the boostMap. There is a collision between the addresses o’ : W’
and o : w iff the collision formula I'(0’,w',0,w) defined as 0/ =0 A W =w is
satisfiable.? We ask an SMT solver to decide the satisfiability. To be on the safe
side, we assume that the formula is satisfiable even if the SMT solver returns
UNKNOWN (recall that SMT queries can refer to some undecidable theories).
If the formula is satisfiable, we remove the record (¢’ : w’, ') from the boostMap
and we insert it at the end of the iteList. Otherwise, the record remains in the
boostMap. When all records in the boostMap are examined, we finish the write
operation by inserting a new record (o : w,v) at the end of the iteList.

We illustrate the write operation using the example of Figure 2. Let us assume
that the first 5 lines of the program are already symbolically executed. Since these
lines call writes to constant addresses only, all data are stored in boostMaps. We
focus on the plane Integers, which has the following content:

Integers.boostMap = {(2: 0,n),(2:4,4),(3:4-3,777),(3:4-4,888)}
Integers.iteList = |]

Execution of line 6 of the program produces a write of the record (3 : 4(3: +
1),999) to the plane Integers. As the address 3 : 4(3i+ 1) is symbolic, the record

3 The structure of the collision formula is slightly different if some of its argu-
ments are \-expressions. For example, o’ : &’ collides with o : Ad. . ¢(7,w) iff
(o', 0,06. \o. ¢(7,w)) defined as ¢’ =0 A ¢(o’,w’) is satisfiable.



will be added to the iteList. Before we do so, we have to detect collisions of the
records in the boostMap with the new record:

collision test ‘ collision formula ‘ result
2:0 vs. 3:4(3i+1) 2=3 AN 0=4(3i+1) UNSAT
2:4 vs. 3:4(3i+1) 2=3 AN 4=4(3i+1) UNSAT
3:4-3 vs. 3:4(3i+1) 3=3 AN 4-3=4(3i+1) UNSAT
3:4-4 vs. 3:4(31+1) 3=3 AN 4-4=4(3i+1) SAT

Since only the collision with the last record in the boostMap is possible, only this
one is moved into iteList. We finish the write operation by extending the iteList
by the new record (3,4(3i + 1),999). The updated plane is represented by:

Integers.boostMap = {(2: 0,n),(2:4,4),(3:4-3,777)}
Integers.iteList = [(3 : 4 - 4,888), (3,4(3i + 1),999)]

Read Operation Given an address ¢ : w and a memory plane, the read oper-
ation computes a single symbolic expression which determines the value stored
in the memory plane at the passed address. If the address is constant, we check
whether it lies in the domain of the boostMap. If so, we return the symbolic
expression stored in the map for the address.

In all other cases, we construct a nested ite expression 1 holding the value.
We initialise ¢ to a symbol §(o,w) representing the default value stored in the
plane at the passed address o : w. This initialisation of 1) covers the case when no
value has been written to the passed address so far. Now we enumerate records
in the iteList from the oldest one to the youngest one. For each enumerated
record (o : w’, ") we check whether its address collides with o : w. That is, we
build the collision formula I'(¢’,w’, o,w) as described in the write operation. If
the formula is satisfiable, we update ¥ to

v iff v/ is not a A-function,

. ! /

ite((o",w, 0,), p ), where p = {f(a, w) iff V' = A5 \@. £(5.,@).

After processing all records in the iteList, we do the same with the records stored
in the boostMap (processed in an arbitrary order) unless ¢ : w is a constant
address. If it is a constant address, we already know that it does not collide with
any record in the boostMap as this was already checked at the beginning.

We illustrate the read operation using the example of Figure 2. We describe
two read operations, from the array of integers allocated at line 3, performed
during symbolic execution of the line 7. The content of the plane Integers after
symbolic execution of the first 6 lines is already shown right before the descrip-
tion of the read operation. Execution of A[3] invokes the read operation in the
plane Integers at the address 3 : 4 - 3. Since there is a record in the boostMap for
the address, we directly return its value 777. Execution of A[4] invokes the read
operation in the plane Integers at the address 3 : 4 - 4. Since there is no record
in the boostMap for this address, we construct the resulting expression ¢ from
all records in the iteList as depicted in the following table:



collision test collision formula ‘ result ‘ P
— — - 0(3,4-4)
3:4-4vs.3:4-4 3=3AN4-4=4-4 SAT 888
3:4(3i+1)vs.3:4-4|13=3A4(3i+1)=4-4| SAT | ite(i = 1,999, 888)

In the first row there we initialise ¢ to the default value 6(3,4-4). In the following
lines we perform collision checks before we update 1. Note that we automatically
applied trivial simplification of 1. In particular, in the second row we simplified
¢ from ite(3 =3AN4-4=4-4,888,5(3,4-3)) to 888 and in the third row we
simplified the condition 3 =3A4(3i+1)=4-4toi=1.

Allocation and Deallocation We distinguish allocations of a single segment
and multi-allocations. We maintain an allocation counter initialised to 1 and a
multi-allocation counter initialised to —1.

An allocation of a single segment of a symbolic length 1 proceeds in the
following three steps. Let v be a value of the allocation counter before the allo-
cation. In the first step we write the passed size 1 into Sizes memory plane at
the address v : 0. Next, the counter is updated to the value v + 1. Finally, we
return the address v : 0 as the result of the allocation.

Let ¢ and @ be symbolic expressions. A multi-allocation of ¢ segments of the
common size 1 proceeds in three steps as well. Let v be a value of the multi-
allocation counter before the allocation. In the first step we write the size 1 into
the plane Sizes at addresses (Ag.A\&.v > & > v — ) : 0. In the next step the
multi-allocation counter is updated to the value v — . Finally, we return the
address (7 — ¢ + 1) : 0 as the result of the allocation. Note that the returned
address points to the memory block with the lowest segment identifier.

Segment deallocation works exactly the same way for all memory blocks,
regardless of types of their allocation. We simply write the number 0 into the
memory plane Sizes at the passed address. Note that the offset of the passed
address must always be the number 0, since all memory blocks are allocated
at that offset. We can also perform a multi-deallocation by the corresponding
multi-write into the Sizes memory plane. Note that deallocations do not change
allocation and multi-allocation counters.

Test for Memory Initialisation Given an address ¢ : w and a memory plane,
test for memory initialisation returns a formula v over input symbols, which is
valid for the concrete inputs for which the memory location ¢ : w in the given
plane is initialised. Computation of ¢ proceeds as follows. If the address o : w is
constant and it belongs to the domain of boostMap of the plane, then ¢ = true.

In all other cases, we construct ¢ in form of disjunction. We first initialise
1 to false. Then we enumerate records in the iteList in any order. For each
enumerated record (o’ : w’,v’) we build the collision formula I'(¢’,w’, o,w) as
described in the write operation and then we update ¢ to ¥V I'(¢',w', o,w). After
processing all records in the iteList, we do the same with the records stored in
the boostMap (also processed in an arbitrary order) unless o : w is a constant
address. If it is a constant address, we already know that it does not collide with
any record in the boostMap as this was already checked at the beginning.



The passed address o : w can contain A-expressions and thus it can represent a
set of addresses. In this case, the returned formula v describes the concrete inputs
for which all the represented locations are initialised. Hence, v is constructed in
a slightly different way for addresses with A-expressions. If ¢ : w has the form
AG. A@. ¢(F,®) : w, then 1) is defined as V5. ¢(7,w) — ', where ¢’ is constructed
by the algorithm described above for the address & : w (instead for the original
address o : w). The construction of ¢ for addresses with a A-expression in the
offset is similar.

Caching Satisfiability Queries During read or write operations not resolved
by boostMaps we intensively construct collision formulae. We use an SMT solver
to decide their satisfiability. Unfortunately, resolving SMT queries is usually
very time consuming. Fortunately, the constructed collision formulae are often
repeated. We thus implemented a cache in front of an SMT solver to improve
amortised complexity of symbolic memory operations.

Remark Our implementation of symbolic memory can be further improved. For
example, it currently never removes any record from an iteList even if one can
easily construct an example where such a record becomes useless. We left the
removal of useless records for future work for two reasons: it does not seem to
be a bottleneck in our evaluation, and it can be expensive to decide whether a
record in iteList is useless or not.

4 Use of the Memory in Symbolic Execution Tool

Our symbolic memory defines language- and platform-independent low-level
memory layout with basic operations only. However, symbolic executors often
need to handle some higher-level features of supported language. For exam-
ple, symbolic executors of C programs have to handle composed data types,
unions, void*, implementation of type casting expressions, etc. In this section,
we suggest possible implementation of the mentioned high-level features using
our low-level symbolic memory.

Composed data types A symbolic execution tool may create a plane for each
basic data type of its instruction language and composed data (even nested) are
treated simply as (nested) tuples of basic data types. So, individual attributes of
an instance of a composed type are spread into the corresponding planes of basic
types. Moreover, the tool can also introduce special separate planes for selected
composed types of an analysed program.

Unions Union is a special composed data type, which can easily be represented
such that its attributes reside in different planes but all at the same address.

void* Like other pointers, void pointers can be stored in the predefined planes
Segments and Offsets. We do not define types for addresses, i.e. we treat all
pointers the same way. It is responsibility of the tool to know which (pointer)
variable has which type.



Type casting This feature of a programming language allows a programer to
reinterpret meaning of referenced data. If the language also supports pointers
and pointer arithmetic, then any sequence of bytes (starting basically at any
address) can be reinterpreted according to programmer’s will. This flexibility
complicates designing of a symbolic executor. Here we show that our memory
model provides a ground for efficient implementation of symbolic memory even
for such flexible languages.

Let us consider the following C statement: float £ = *(float*)p;, where
p is of int* type. Obviously, the correct execution of this statement requires
that the memory plane Floats contains at the address p such floating point
number whose memory representation is equal to the memory representation of
the integer stored at the same address in the plane Integers. This means that
the last write into the plane Integers at the address p must have been extended
by the corresponding write to the memory plane Floats.

With our memory model, a symbolic execution tool can optimise performance
of the memory by implementing a data-flow analysis which detects all those write
statements in the program whose extension is indeed necessary. Without any
such analysis, the tool would have to extend each write such that it is performed
to memory planes of all basic data types.

Note that in case of type-safe programming languages execution of type cast-
ing instructions is optimal in our memory model since no writes have to be ex-
tended. Therefore, performance of our memory scales according to properties of
programming languages used in symbolic executors.

5 Experimental Results

We have implemented the symbolic memory as a library SEGY of an open-
source project called BuasT [14]. The library is used by a symbolic execution
tool RUDLA, which is another part of the project BuGsT. The tool performs both
classic [9] and compact [11] symbolic execution. We run RUDLA on a collection
of benchmarks from the category "Loops’ of SV-COMP 2013 [1], revision 229.
We have chosen this category for two reasons. First, the benchmarks manipulate
with arrays. Reading from and writing to array elements with input-dependent
indexes lead to memory operations on non-constant addresses. Second, compact
symbolic execution of program loops is the source of multi-write operations. The
category contains 79 benchmarks, but only 70 of them can be translated into
RUDLA’s internal program representation by the current version of BuGgsTt. We
symbolically executed each of the 70 benchmarks, both by classic and compact
symbolic executions. Classic symbolic execution does not use multi-writes and
thus the performed memory operations are relatively simple, while compact sym-
bolic execution uses multi-writes which insert A-expressions to the memory and
make subsequent memory operations harder.

All experiments were performed on a laptop Acer Aspire 5920G (Intel®
Core™ 2 Duo 2GHz, 2GB RAM) running Windows 7 Professional 64-bit. We
used Z3 SMT Solver 4.3.0 [16] for deciding satisfiability queries. We apply a



| settings “ visited nodes ‘

classic naive implementation 417627
SE efficient implementation 8083024
compact | naive implementation 219285
SE efficient implementation 3547706

Table 1. Comparison of efficient and naive implementation of the memory model.

boostMap iteList

operation count time count time

# % [s] % # % | ] %

classic | write || 7014327 99.98 | 15.50 69.01 1288(0)  0.02 | 6.959 30.99

SE read || 6765528 99.74 | 75.35 57.03 17748 0.26 | 56.77 42.97

compact | write || 6365255 99.96 | 15.48 52.44 || 2698(236) 0.04 | 14.04 47.56
SE read || 3793442 98.38 | 65.81 26.48 62606 1.62 | 182.7 73.52
summary 23938552 99.65 | 172.1 39.78 84340 0.35 | 260.5 60.22

Table 2. Usage of BoostMap structures and iteList structures. Numbers in brackets
are counts of multi-writes and they are included in the numbers of write operations.

five minutes timeout for execution of each benchmark. In all experiments, we
present cumulative data for classic symbolic execution of the 70 benchmarks
and for compact symbolic execution of the 70 benchmarks.

The first experiment compares overall efficiency of our implementation with
a naive implementation of the segment-offset-plane model. The naive implemen-
tation (also available in BUGST library SEGY) represents the content of a plane
by a simple list of records. The naive read operation produces a nested ite ex-
pression containing all records of the list and asks an SMT solver to simplify it.
Table 1 presents cumulative numbers of symbolic execution tree nodes visited
during classic and compact symbolic executions of the 70 benchmarks (each with
the five minutes timeout) using either the naive or the efficient symbolic memory
implementation. The results show that classic symbolic execution runs more than
19 times faster when using our efficient implementation of the symbolic memory
compared to the naive implementation. The compact symbolic execution with
the efficient symbolic memory runs more than 16 times faster. The numbers of
tree nodes visited by classic and compact symbolic executions should not be
compared as nodes in compact trees have a slightly different semantics than
nodes in classic symbolic execution trees.

The following experimental data provide more information about perfor-
mance of our efficient implementation. We focus on read and write operations
since they are essential for the memory. Note that memory allocations and deal-
locations are also considered as they are writes into the plane Sizes actually.

Table 2 shows total counts of read and write operations resolved purely by
boostMap structures and the operations accessing iteList structures. The table



cache hits cache misses

operation count time count time

# % [s] % # %o [s] %

classic | write || 3791 83.28 | 0.360 5.55 761 16.72 | 6.131 94.45
SE read || 27031 85.04|3.385 7.69 | 4756 14.96 | 40.65 92.31

compact | write 2471 67.74 | 1.700 12.69 || 1177 32.26 | 11.70 87.31
SE read || 69231 83.80|25.59 16.96 || 13382 16.20 | 125.3 83.04
summary 102524 83.62 | 31.04 14.45 || 20076 16.38 | 183.78 85.55

Table 3. Efficiency of our cache in front of Z3 SMT solver.

also provides the total time (in seconds) of these operations. We always present
absolute as well as relative numbers. One can see that overwhelming majority
of the memory operations are resolved in boostMaps. The table also shows that
accesses to boostMaps are much faster than those to iteLists. So we have an
empirical evidence that implementation of memory planes by the two structures
boostMap and iteList is indeed very important.

Although memory operations accessing iteLists are relatively slow, we actu-
ally achieved an impressive speed up by introducing a cache in front of an SMT
solver called by memory operations (note that operations resolved by boostMaps
do not produce SMT queries). Table 3 shows the counts of cache hits and cache
misses. Again, we show also total time needed to solve the cached and non-cached
SMT queries. We can see that more than 80% of all SMT queries led to cache
hits and thus to very fast responses.

Finally, the results also show that the performance of our symbolic memory
scales according to complexity of expressions passed to the memory: the ratio of
operations resolved by boostMaps is higher for classic symbolic execution than for
compact symbolic execution, and the same holds for cache hits of SMT queries.

6 Other Approaches to Symbolic Memory

As far as we know, our symbolic memory is the only one that supports fully
symbolic addresses. Other recognized tools based on symbolic execution includ-
ing EXE [4], KLEE [3], CUTE [10], SAGE [6], PEX [12], and SIMC [13] solve the
variable-storage referencing problem in different ways. For example, KLEE and
SAGE support symbolic offsets, but only concrete segments. If a pointer can point
to n memory segments, KLEE clones symbolic execution n times and fix the seg-
ment part of the pointer to one of the segments in each clone. Concolic executors
like SAGE often take advantage of the fact that they perform both concrete and
symbolic execution along the same path. Hence, if a symbolic pointer can point
to more segments, SAGE fix the segment part of the pointer to the value of this
pointer in the corresponding concrete execution. Another approach is used in
CUTE: it supports only pointers that are either NULL, or they point to a concrete
address, or they directly correspond to some input symbol.



None of the mentioned tools support allocation of memory blocks of symbolic
size or multi-writes.

Different approaches and abilities of our symbolic memory and symbolic
memories of the above tools prevent their reasonable performance comparison.
Indeed, other tools solve dereference of fully symbolic pointers outside symbolic
memory. This allows them to use simpler structures and faster algorithms imple-
menting symbolic memory, but for the price of more symbolic executions (due
to cloning in KLEE) or loss of information (like in SAGE where a symbolic value
is replaced by the corresponding value in a concrete execution).

7 Conclusion

We presented a symbolic memory supporting symbolic pointers, allocations of
memory blocks of symbolic sizes, and multi-writes. The memory is based on
storing conditional values. It uses the introduced segment-offset-plane memory
model where addresses are segment : offset pairs. Data stored in the memory
are distributed into memory planes according to their semantic information,
e.g. data type. The model leads to a natural fragmentation of the memory,
which makes memory operations faster. We also describe our implementation
of the memory model that uses specific data structures and a cache for SMT
queries to improve efficiency of the symbolic memory. Experimental results give
us an empirical evidence that the implemented symbolic memory successfully
tackles the variable storage-referencing problem.
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