
Effective Translation of LTL to Deterministic
Rabin Automata: Beyond the (F,G)-Fragment?

Tomáš Babiak, Frantǐsek Blahoudek, Mojmı́r Křet́ınský, and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbabiak, xblahoud, kretinsky, strejcek}@fi.muni.cz

Abstract. Some applications of linear temporal logic (LTL) require to
translate formulae of the logic to deterministic ω-automata. There are
currently two translators producing deterministic automata: ltl2dstar
working for the whole LTL and Rabinizer applicable to LTL(F,G) which
is the LTL fragment using only modalities F and G. We present a new
translation to deterministic Rabin automata via alternating automata
and deterministic transition-based generalized Rabin automata. Our trans-
lation applies to a fragment that is strictly larger than LTL(F,G). Experi-
mental results show that our algorithm can produce significantly smaller
automata compared to Rabinizer and ltl2dstar, especially for more
complex LTL formulae.

1 Introduction

Linear temporal logic (LTL) is a popular formalism for specification of behavioral
system properties with major applications in the area of model checking [8, 5].
More precisely, LTL is typically used as a human-oriented front-end formalism as
LTL formulae are succinct and easy to write and understand. Model checking al-
gorithms usually work with an ω-automaton representing all behaviors violating
a given specification formula rather than with the LTL formula directly. Hence,
specifications written in the form of LTL formulae are negated and translated to
equivalent ω-automata [31]. There has been a lot of attention devoted to transla-
tion of LTL to nondeterministic Büchi automata (NBA), see for example [10, 11,
29, 15] and the research in this direction still continues [12, 4, 2]. However, there
are algorithms that need specifications given by deterministic ω-automata, for
example, those for LTL model checking of probabilistic systems [30, 9, 5] and
those for synthesis of reactive modules for LTL specifications [7, 26], for a recent
survey see [20]. As deterministic Büchi automata (DBA) cannot express all the
properties expressible in LTL, one has to choose deterministic automata with
different acceptance condition.

There are basically two approaches to translation of LTL to deterministic
ω-automata. The first one translates LTL to NBA and then it employs Safra’s
construction [27] (or some of its variants or alternatives like [23, 28]) to transform
the NBA into a deterministic automaton. This approach is represented by the

? The authors are supported by The Czech Science Foundation, grant P202/12/G061.

tool ltl2dstar [16] which uses an improved Safra’s construction [17, 18] usually
in connection with LTL to NBA translator LTL2BA [15]. The main advantage of
this approach is its universality: as LTL2BA can translate any LTL formula into
an NBA and the Safra’s construction can transform any NBA to a deterministic
Rabin automaton (DRA), ltl2dstar works for the whole LTL. The main dis-
advantage is also connected with the universality: the determinization step does
not employ the fact that the NBA represents only an LTL definable property.
One can easily observe that ltl2dstar produces unnecessarily large automata,
especially for formulae with more fairness subformulae.

The second approach is to avoid Safra’s construction. As probabilistic model-
checkers deal with linear arithmetic, they do not profit from symbolically rep-
resented deterministic automata of [24, 22]. A few translations of some simple
LTL fragments to DBA have been suggested, for example [1]. Recently, a trans-
lation of a significantly larger LTL fragment to DRA has been introduced in [19]
and subsequently implemented in the tool Rabinizer [14]. The algorithm builds
a generalized deterministic Rabin automata (GDRA) directly from a formula.
A DRA is then produced by a degeneralization procedure. Rabinizer often pro-
duces smaller automata than ltl2dstar. The main disadvantage is that it works
for LTL(F,G) only, i.e. the LTL fragment containing only temporal operators
eventually (F) and always (G). Authors of the translation claim that it can be
extended to a fragment containing also the operator next (X).

In this paper, we present another Safraless translation of an LTL fragment
to DRA. The translation is influenced by the successful LTL to NBA translation
algorithm LTL2BA [15] and it proceeds in the following three steps:

1. A given LTL formula ϕ is translated into a very weak alternating co-Büchi
automaton (VWAA) A as described in [15]. If ϕ is an LTL(Fs,Gs) formula,
i.e. any formula which makes use of F, G, and their strict variants Fs and
Gs as the only temporal operators, then A satisfies an additional structural
condition. We call such automata may/must alternating automata (MMAA).

2. The MMAA A is translated into a transition-based generalized deterministic
Rabin automaton (TGDRA) G. The construction of generalized Rabin pairs
of G is inspired by [19].

3. Finally, G is degeneralized into a (state-based) DRA D.

In summary, our contributions are as follows. First, note that the fragment
LTL(Fs,Gs) is strictly more expressive than LTL(F,G). Moreover, it can be shown
that our translation works for a fragment even larger than LTL(Fs,Gs) but still
smaller than the whole LTL. Second, the translation has a slightly better the-
oretical bound on the size of produced automata comparing to ltl2dstar, but
the same bound as Rabinizer. Experimental results show that, for small formu-
lae, our translation typically produces automata of a smaller or equal size as the
other two translators. However, for parametrized formulae, it often produces au-
tomata that are significantly smaller. Third, we note that our TGDRA are much
smaller than the (state-based) GDRA of [14]. We conjecture that algorithms for
model checking of probabilistic system, e.g. those in PRISM [21], can be adapted
to work with TGDRA as they are adapted to work with GDRA [6].

2 Preliminaries

This section recalls the notion of linear temporal logic (LTL) [25] and describes
the ω-automata used in the following.

Linear Temporal Logic (LTL) The syntax of LTL is defined by

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where tt stands for true, a ranges over a countable set AP of atomic propositions,
X and U are temporal operators called next and until, respectively. An alphabet
is a finite set Σ = 2AP ′

, where AP ′ is a finite subset of AP . An ω-word (or
simply a word) over Σ is an infinite sequence of letters u = u0u1u2 . . . ∈ Σω. By
ui.. we denote the suffix ui.. = uiui+1

We inductively define when a word u satisfies a formula ϕ, written u |= ϕ,
as follows.

u |= tt
u |= a iff a ∈ u0
u |= ¬ϕ iff u 6|= ϕ
u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1.. |= ϕ
u |= ϕ1 Uϕ2 iff ∃i ≥ 0 . (ui.. |= ϕ2 and ∀ 0 ≤ j < i . uj.. |= ϕ1)

Given an alphabet Σ, a formula ϕ defines the language LΣ(ϕ) = {u ∈ Σω |
u |= ϕ}. We write L(ϕ) instead of L2AP(ϕ)

(ϕ), where AP(ϕ) denotes the set of
atomic propositions occurring in the formula ϕ.

We define derived unary temporal operators eventually (F), always (G), strict
eventually (Fs), and strict always (Gs) by the following equivalences: Fϕ ≡ ttUϕ,
Gϕ ≡ ¬F¬ϕ, Fsϕ ≡ XFϕ, and Gsϕ ≡ XGϕ.

LTL(F,G) denotes the LTL fragment consisting of formulae built with tem-
poral operators F and G only. The fragment build with temporal operators Fs,
Gs, F and G is denoted by LTL(Fs,Gs) as Fϕ and Gϕ can be seen as abbrevi-
ations for ϕ ∨ Fsϕ and ϕ ∧ Gsϕ, respectively. Note that LTL(Fs,Gs) is strictly
more expressive than LTL(F,G) as formulae Fsa and Gsa cannot be equivalently
expressed in LTL(F,G).

An LTL formula is in positive normal form if no operator occurs in the scope
of any negation. Each LTL(Fs,Gs) formula can be transformed to this form using
De Morgan’s laws for ∧ and ∨ and the equivalences ¬Fsψ ≡ Gs¬ψ, ¬Gsψ ≡ Fs¬ψ,
¬Fψ ≡ G¬ψ, and ¬Gψ ≡ F¬ψ. We say that a formula is temporal if its topmost
operator is neither conjunction, nor disjunction (note that a and ¬a are also
temporal formulae).

Deterministic Rabin Automata and Their Generalization A semiau-
tomaton is a tuple T = (S,Σ, δ, sI), where S is a finite set of states, Σ is an

alphabet, sI ∈ S is the initial state, and δ ⊆ S×Σ×S is a deterministic transi-
tion relation, i.e. for each state s ∈ S and each α ∈ Σ, there is at most one state
s′ such that (s, α, s′) ∈ δ. A triple (s, α, s′) ∈ δ is called a transition from s to s′

labelled by α, or an α-transition of s leading to s′. In illustrations, all transitions
with the same source state and the same target state are usually depicted by
a single edge labelled by a propositional formula ψ over AP representing the
corresponding transition labels (e.g. given Σ = 2{a,b}, the formula ψ = a ∨ b
represents labels {a}, {a, b}, {b}).

A run of a semiautomaton T over a word u = u0u1 . . . ∈ Σω is an infinite
sequence σ = (s0, u0, s1)(s1, u1, s2) . . . ∈ δω of transitions such that s0 = sI . By
Inft(σ) (resp. Infs(σ)) we denote the set of transitions (resp. states) occurring
infinitely often in σ. For each word u ∈ Σω, a semiautomaton has at most one
run over u denoted by σ(u).

A deterministic Rabin automaton (DRA) is a tuple D = (S,Σ, δ, sI ,R),
where (S,Σ, δ, sI) is a semiautomaton and R ⊆ 2S × 2S is a finite set of Rabin
pairs. Runs of D are runs of the semiautomaton. A run σ satisfies a Rabin pair
(K,L) ∈ R if Infs(σ) ∩ K = ∅ and Infs(σ) ∩ L 6= ∅. A run is accepting if it
satisfies some Rabin pair of R. The language of D is the set L(D) of all words
u ∈ Σω such that σ(u) is accepting.

A transition-based generalized deterministic Rabin automaton (TGDRA) is
a tuple G = (S,Σ, δ, sI ,GR), where (S,Σ, δ, sI) is a semiautomaton and GR ⊆
2δ × 22

δ

is a finite set of generalized Rabin pairs. Runs of G are runs of the
semiautomaton. A run σ satisfies a generalized Rabin pair (K, {Lj}j∈J) ∈ GR
if Inft(σ) ∩K = ∅ and, for each j ∈ J , Inft(σ) ∩ Lj 6= ∅. A run is accepting if it
satisfies some generalized Rabin pair of GR. The language of G is the set L(G)
of all words u ∈ Σω such that σ(u) is accepting.

A generalization of DRA called generalized deterministic Rabin automata
(GDRA) has been considered in [19, 14]. The accepting condition of GDRA is
a boolean combination (in disjunctive normal form) of Rabin pairs. A run σ is
accepting if σ satisfies this condition.

Very Weak Alternating Automata and Their Subclass A very weak al-
ternating co-Büchi automaton (VWAA) A is a tuple (S,Σ, δ, I, F), where S is
a finite set of states, subsets c ⊆ S are called configurations, Σ is an alphabet,
δ ⊆ S ×Σ × 2S is an alternating transition relation, I ⊆ 2S is a non-empty set
of initial configurations, F ⊆ S is a set of co-Büchi accepting states, and there
exists a partial order on S such that, for every transition (s, α, c) ∈ δ, all the
states of c are lower or equal to s.

A triple (s, α, c) ∈ δ is called a transition from s to c labelled by α, or an
α-transition of s. We say that s is the source state and c the target configuration
of the transition. A transition is looping if the target configuration contains the
source state, i.e. s ∈ c. A transition is called a selfloop if its target configuration
contains the source state only, i.e. c = {s}.

Figure 1(a) shows a VWAA that accepts the language described by the for-
mula G(Fsa ∧ Fsb) ∨ Gb. Transitions are depicted by branching edges. If a target

Gψ

Fa Fb

Gb

tt

b

tt a ttb

(a)

Gψ

Fa

Fb

Gb

{a} ∅ {b} {a, b} {a} ∅ {b} {a, b}

· · ·

0 1 2 3 4 5 6 7 8

T0 T1 T2 T3 T4 T5 T6 T7

(b)

Fig. 1. (a) A VWAA (and also MMAA) corresponding to formula Gψ ∨ Gb, where
ψ = Fsa ∧ Fsb. (b) An accepting run of the automaton over ({a}∅{b}{a, b})ω.

configuration is empty, the corresponding edge leads to an empty space. We
often depict all transitions with the same source state and the same target con-
figuration by a single edge (as for semiautomata). Each initial configuration is
represented by a possibly branching unlabelled edge leading from an empty space
to the states of the configuration. Co-Büchi accepting states are double circled.

A multitransition T with a label α is a set of transitions with the same
label and such that the source states of the transitions are pairwise different.
A source configuration of T , denoted by dom(T), is the set of source states of
transitions in T . A target configuration of T , denoted by range(T), is the union
of target configurations of transitions in T . We define a multitransition relation
∆ ⊆ 2S ×Σ × 2S as

∆ = {(dom(T), α, range(T)) | there exists a multitransition T with label α}.

A run ρ of a VWAA A over a word w = w0w1 . . . ∈ Σω is an infinite sequence
ρ = T0T1 . . . of multitransitions of A such that dom(T0) is an initial configuration
of A and, for each i ≥ 0, Ti is labelled by wi and range(Ti) = dom(Ti+1).

A run can be represented as a directed acyclic graph (DAG). For example,
the DAG of Figure 1(b) represents a run of the VWAA of Figure 1(a). The dot-
ted lines divide the DAG into segments corresponding to multitransitions. Each
transition of a multitransition is represented by edges leading across the corre-
sponding segment from the starting state to states of the target configuration.
As our alternating automata are very weak, we can order the states in a way
that all edges in any DAG go only to the same or a lower row.

An accepting run corresponds to a DAG where each branch contains only
finitely many states from F . Formally, the run ρ is accepting if it has no suffix
where, for some co-Büchi accepting state f ∈ F , each multitransition contains
a looping transition from f . The language of A is the set L(A) = {w ∈ Σω |
A has an accepting run of over w}. By Infs(ρ) we denote the set of states that
occur in dom(Ti) for infinitely many indices i.

Definition 1. A may/must alternating automaton (MMAA) is a VWAA where
each state fits into one of the following three categories:

1. May-states – states with a selfloop for each α ∈ Σ. A run that enters such
a state may wait in the state for an arbitrary number of steps.

2. Must-states – every transition of a must-state is looping. A run that enters
such a state can never leave it. In other words, the run must stay there.

3. Loopless states – states that have no looping transitions and no predecessors.
They can appear only in initial configurations (or they are unreachable).

The automaton of Figure 1(a) is an MMAA with must-states Gψ,Gb and
may-states Fa,Fb.

We always assume that the set F of an MMAA coincides with the set of
all may-states of the automaton. This assumption is justified by the following
observations:

– There are no looping transitions of loopless states. Hence, removing all loop-
less states from F has no effect on acceptance of any run.

– All transitions leading from must-states are looping. Hence, if a run contains
a must-state that is in F , then the run is non-accepting. Removing all must-
states in F together with their adjacent transitions from an MMAA has no
effect on its accepting runs.

– Every may-state has selfloops for all α ∈ Σ. If such a state is not in F , we can
always apply these selfloops without violating acceptance of any run. We can
also remove these states from all the target configurations of all transitions
of an MMAA without affecting its language.

3 Translation of LTL(Fs,Gs) to MMAA

We present the standard translation of LTL to VWAA [15] restricted to the
fragment LTL(Fs,Gs). In this section, we treat the transition relation δ ⊆ S ×
Σ × 2S of a VWAA as a function δ : S × Σ → 22

S

, where c ∈ δ(s, α) means
(s, α, c) ∈ δ. Further, we consider Gψ and Fψ to be subformulae of Gsψ and Fsψ,
respectively. This is justified by equivalences Gsψ ≡ XGψ and Fsψ ≡ XFψ.

Let ϕ be an LTL(Fs,Gs) formula in positive normal form. An equivalent
VWAA is constructed as Aϕ = (Q,Σ, δ, I, F), where

– Q is the set of temporal subformulae of ϕ,
– Σ = 2AP(ϕ),
– δ is defined as

δ(tt, α) = {∅} δ(a, α) = {∅} if a ∈ α, ∅ otherwise
δ(¬tt, α) = ∅ δ(¬a, α) = {∅} if a 6∈ α, ∅ otherwise

δ(Gsψ, α) = {{Gψ}} δ(Gψ, α) = {c ∪ {Gψ} | c ∈ δ(ψ, α)}
δ(Fsψ, α) = {{Fψ}} δ(Fψ, α) = {{Fψ}} ∪ δ(ψ, α), where

δ(ψ, α) = δ(ψ, α) if ψ is a temporal formula

δ(ψ1 ∨ ψ2, α) = δ(ψ1, α) ∪ δ(ψ2, α)

δ(ψ1 ∧ ψ2, α) = {c1 ∪ c2 | c1 ∈ δ(ψ1, α) and c2 ∈ δ(ψ2, α)},

– I = ϕ where ϕ is defined as

ψ = {{ψ}} if ψ is a temporal formula

ψ1 ∨ ψ2 = ψ1 ∪ ψ2

ψ1 ∧ ψ2 = {O1 ∪O2 | O1 ∈ ψ1 and O2 ∈ ψ2}, and

– F ⊆ Q is the set of all subformulae of the form Fψ in Q.

Using the partial order “is a subformula of” on states, one can easily prove
that Aϕ is a VWAA. Moreover, all the states of the form Gψ are must-states and
all the states of the form Fψ are may-states. States of other forms are loopless and
they are unreachable unless they appear in I. Hence, the constructed automaton
is also an MMAA. Figure 1(a) shows an MMAA produced by the translation of
formula G(Fsa ∧ Fsb) ∨ Gb.

In fact, MMAA and LTL(Fs,Gs) are expressively equivalent. The reverse
translation can be found in the full version of this paper [3].

4 Translation of MMAA to TGDRA

In this section we present a translation of an MMAA A = (S,Σ, δA, I, F) with
multitransition relation ∆A into an equivalent TGDRA G. At first we build a
semiautomaton T and then we describe the transition based generalized Rabin
acceptance condition GR of G.

4.1 Semiautomaton T

The idea of our seminautomaton construction is straightforward: a run σ(w) of
the semiautomaton T tracks all runs of A over w. More precisely, the state of T
reached after reading a finite input consists of all possible configurations in which
A can be after reading the same input. Hence, states of the semiautomaton are
sets of configurations of A and we call them macrostates. We use f, s, s1, s2, . . .
to denote states of A (f stands for an accepting state of F), c, c1, c2, . . . to denote
configurations of A, and m,m1,m2, . . . to denote macrostates of T . Further, we
use t, t1, t2 . . . to denote the transitions of A, T, T0, T1 . . . to denote multitran-
sitions of A, and r, r1, r2 . . . to denote the transitions of T , which are called
macrotransitions hereafter.

Formally, we define the semiautomaton T = (M,Σ, δT ,mI) for A as follows:

– M ⊆ 22
S

is the set macrostates, restricted to those reachable from the initial
macrostate mI by δT ,

– (m1, α,m2) ∈ δT iff m2 =
⋃
c∈m1

{c′ | (c, α, c′) ∈ ∆A}, i.e. for each m1 ∈
M and α ∈ Σ, there is a single macrotransition (m1, α,m2) ∈ δT , where
m2 consists of target configurations of all α-multitransitions leading from
configurations in m1, and

– mI = I is the initial macrostate.

Figure 2 depicts the semiautomaton T for the MMAA of Figure 1(a). Each
row in a macrostate represents one configuration.

{Gψ}
{Gb}

{Gψ,Fa,Fb}
{Gb} {Gψ,Fa,Fb}b

¬b

b

¬b

tt

Fig. 2. The semiautomaton T for the MMAA of Figure 1(a).

4.2 Acceptance Condition GR of the TGDRA G

For any subset Z ⊆ S, must(Z) denotes the set of must-states of Z. An MMAA
run ρ is bounded by Z ⊆ S iff Infs(ρ) ⊆ Z and must(Infs(ρ)) = must(Z). For
example, the run of Figure 1(b) is bounded by the set {Gψ,Fa,Fb}.

For any fixed Z ⊆ S, we define the set ACZ ⊆ 2S of allowed configurations
of A and the set ATZ ⊆ δT of allowed macrotransitions of T as follows:

ACZ = {c ⊆ Z | must(c) = must(Z)}
ATZ = {(m1, α,m2) ∈ δT | ∃c1 ∈ ACZ , c2 ∈ (m2 ∩ACZ) : (c1, α, c2) ∈ ∆A}1

Clearly, a run ρ of A is bounded by Z if and only if ρ has a suffix containing only
configurations of ACZ . Let ρ be a run over w with such a suffix. As the semiau-
tomaton T tracks all runs of A over a given input, the run σ(w) of T ‘covers’
also ρ. Hence, σ(w) has a suffix where, for each macrotransition (mi, wi,mi+1),
there exist configurations c1 ∈ mi ∩ ACZ and c2 ∈ mi+1 ∩ ACZ satisfying
(c1, wi, c2) ∈ ∆A. In other words, σ(w) has a suffix containing only macro-
transitions of ATZ . This observation is summarized by the following lemma.

Lemma 1. If A has a run over w bounded by Z, then the run σ(w) of T contains
a suffix of macrotransitions of ATZ .

In fact, the other direction can be proved as well: if σ(w) contains a suffix of
macrotransitions of ATZ , then A has a run over w bounded by Z.

For each f ∈ F ∩Z, we also define the set ATfZ as the set of all macrotransi-
tions in ATZ such that A contains a non-looping transition of f with the same
label and with the target configuration not leaving Z:

ATfZ = {(m1, α,m2) ∈ ATZ | ∃(f, α, c) ∈ δA : f 6∈ c, c ⊆ Z}

Using the sets ATZ and ATfZ , we define one generalized Rabin pair GRZ for
each subset of states Z ⊆ S:

GRZ = (δT r ATZ , {ATfZ}f∈F∩Z) (1)

Lemma 2. If there is an accepting run ρ of A over w then the run σ(w) of T
satisfies GRZ for Z = Infs(ρ).

1 A definition of ATZ with c1 ∈ (m1∩ACZ) would be more intuitive, but less effective.

Proof. As ρ is bounded by Z, Lemma 1 implies that σ(w) has a suffix riri+1 . . .
of macrotransitions of ATZ . Thus Inft(σ(w)) ∩ (δT r ATZ) = ∅.

As Z = Infs(ρ) and ρ = T0T1 . . . is accepting, for each f ∈ F ∩ Z, ρ in-
cludes infinitely many multitransitions Tj where f ∈ dom(Tj) and Tj contains
a non-looping transition (f, wj , c) ∈ δA satisfying f 6∈ c and c ⊆ Z. Hence, the
corresponding macrotransitions rj that are also in the mentioned suffix riri+1 . . .

of σ(w) are elements of ATfZ . Therefore, Inft(σ(w))∩ATfZ 6= ∅ for each f ∈ F ∩Z
and σ(w) satisfies GRZ . ut

Lemma 3. If a run σ(w) of T satisfies GRZ then there is an accepting run of
A over w bounded by Z.

Proof. Let σ(w) = r0r1 . . . be a run of T satisfying GRZ , i.e. σ(w) has a suffix
of macrotransitions of ATZ and σ(w) contains infinitely many macrotransitions

of ATfZ for each f ∈ F ∩ Z. Let ri = (mi, wi,mi+1) be the first macrotransition
of the suffix. The definition of ATZ implies that there is a configuration c ∈
mi+1 ∩ ACZ . The construction of T guaranties that there exists a sequence of
multitransitions of A leading to the configuration c. More precisely, there is a
sequence T0T1 . . . Ti such that dom(T0) is an initial configuration of A, Tj is
labelled by wj for each 0 ≤ j ≤ i, range(Tj) = dom(Tj+1) for each 0 ≤ j < i,
and range(Ti) = c. We show that this sequence is in fact a prefix of an accepting
run of A over w bounded by Z.

We inductively define a multitransition sequence Ti+1Ti+2 . . . completing this
run. The definition uses the suffix ri+1ri+2 . . . of σ(w). Let us assume that j > i
and that range(Tj−1) is a configuration of ACZ . We define Tj to contain one wj-
transition of s for each s ∈ range(Tj−1). Thus we get dom(Tj) = range(Tj−1). As
rj ∈ ATZ , there exists a multitransition T ′ labelled by wj such that both source
and target configurations of T ′ are in ACZ . For each must-state s ∈ range(Tj−1),
Tj contains the same transition leading from s as contained in T ′. For may-

states f ∈ range(Tj−1), we have two cases. If rj ∈ ATfZ , Tj contains a non-
looping transition leading from f to some states in Z. The existence of such a
transition follows from the definition of ATfZ . For the remaining may-states, Tj
uses selfloops. Formally, Tj = {tsj | s ∈ range(Tj−1)}, where

tsj =

(s, wj , cs) contained in T ′ if s ∈ must(Z)

(s, wj , {s}) if s ∈ F ∧ rj /∈ ATsZ
(s, wj , cs) where cs ⊆ Z, s /∈ cs if s ∈ F ∧ rj ∈ ATsZ

One can easily check that range(Tj) ∈ ACZ and we continue by building Tj+1.
To sum up, the constructed run is bounded by Z. Moreover, Tj contains

no looping transition of f whenever rj ∈ ATfZ . As the run σ(w) is accepting,

rj ∈ ATfZ holds infinitely often for each f ∈ F ∩ Z. The constructed run of A
over w is thus accepting. ut

The previous two lemmata give us the following theorem.

Theorem 1. The TGDRA G = (T , {GRZ | Z ⊆ S}) is equivalent to A.

5 Translation of TGDRA to DRA

This section presents a variant of the standard degeneralization procedure. At
first we illustrate the idea on a TGDRA G′ = (M,Σ, δT ,mI , {(K, {Lj}1≤j≤h)})
with one generalized Rabin pair. Recall that a run is accepting if it has a suffix
not using macrotransitions of K and using macrotransitions of each Lj infinitely
often.

An equivalent DRA D′ consists of h + 2 copies of G′. The copies are called
levels. We start at the level 1. Intuitively, being at a level j for 1 ≤ j ≤ h
means that we are waiting for a transition from Lj . Whenever a transition of K
appears, we move to the level 0. A transition r 6∈ K gets us from a level j to
the maximal level l ≥ j such that r ∈ Lj′ for each j ≤ j′ < l. The levels 0 and
h+ 1 have the same transitions (including target levels) as the level 1. A run of
G′ is accepting if and only if the corresponding run of D′ visits the level 0 only
finitely often and it visits the level h+ 1 infinitely often.

In general case, we track the levels for all generalized Rabin pair simul-
taneously. Given a TGDRA G = (M,Σ, δT ,mI , {(Ki, {Lji}1≤j≤hi)}1≤i≤k), we
construct an equivalent DRA as D = (Q,Σ, δD, qi, {(K ′i, L′i)}1≤i≤k), where

– Q = M × {0, 1, . . . , h1+1} × · · · × {0, 1, . . . , hk+1},
– ((m, l1, . . . , lk), α, (m′, l′1, . . . , l

′
k)) ∈ δD iff r = (m,α,m′) ∈ δT and for each

1 ≤ i ≤ k it holds

l′i =

0 if r ∈ Ki

max{li ≤ l ≤ hi+1 | ∀li ≤ j < l : r ∈ Lji} if r /∈ Ki ∧ 1 ≤ li ≤ hi
max{1 ≤ l ≤ hi+1 | ∀1 ≤ j < l : r ∈ Lji} if r /∈ Ki ∧ li ∈ {0, hi+1},

– qi = (mI , 1, . . . , 1),
– K ′i = {(m, l1, . . . , lk) ∈ Q | li = 0}, and
– L′i = {(m, l1, . . . , lk) ∈ Q | li = hi + 1}.

6 Complexity

This section discusses the upper bounds of the individual steps of our translation
and compares the overall complexity to complexity of the other translations.

Given a formula ϕ of LTL(Fs,Gs), we produce an MMAA with at most n
states, where n is the length of ϕ. Then we build the TGDRA G with at most
22
n

states and at most 2n generalized Rabin pairs. To obtain the DRA D, we
multiply the state space by at most |Z|+2 for each generalized Rabin pair GRZ .
The value of |Z| is bounded by n. Altogether, we can derive an upper bound on
the number of states of the resulting DRA as

|Q| ≤ 22
n

· (n+ 2)2
n

= 22
n

· 22
n·log2 (n+2) = 22

n

· 22
n+log2 log2(n+2)

∈ 2O(2n+log logn),

which is the same bound as in [19], but lower than 2O(2n+logn) of ltl2dstar.
It is worth mentioning that the number of states of our TGDRA is bounded by

22
|ϕ|

while the number of states of the GDRA produced by Rabinizer is bounded

by 22
|ϕ| · 2AP(ϕ).

7 Simplifications and Translation Improvements

An important aspect of our translation process is simplification of all interme-
diate results leading to smaller resulting DRA.

We simplify input formulae by reduction rules of LTL3BA, see [4] for more
details. Additionally, we rewrite the subformulae of the form GFψ and FGψ
to equivalent formulae GFsψ and FGsψ respectively. This preference of strict
temporal operators often yields smaller resulting automata.

Alternating automata are simplified in the same way as in LTL2BA: re-
moving unreachable states, merging equivalent states, and removing redundant
transitions, see [15] for details.

We improve the translation of an MMAA A to a TGDRA G in order to
reduce the number of generalized Rabin pairs of G. One can observe that, for
any accepting run ρ of A, Infs(ρ) contains only states reachable from some must-
state. Hence, in the construction of acceptance condition of G we can consider
only subsets Z of states of A of this form. Further, we omit a subset Z if, for
each accepting run over w bounded by Z, there is also an accepting run over w
bounded by some Z ′ ⊆ Z. The formal description of subsets Z considered in the
construction of the TGDRA G is described in the full version of this paper [3].

If a run T0T1 . . . of an MMAA satisfies range(Ti) = ∅ for some i, then Tj = ∅
for all j ≥ i and the run is accepting. We use this observation to improve
the construction of the semiautomaton T of the TGDRA G: if a macrostate m
contains the empty configuration, we remove all other configurations from m.

After we build the TGDRA, we simplify its acceptance condition in three
ways (similar optimizations are also performed by Rabinizer).

1. We remove some generalized Rabin pairs (Ki, {Lji}j∈Ji) that cannot be sat-

isfied by any run, in particular when Ki = δT or Lji = ∅ for some j ∈ Ji.
2. We remove Lji if there is some l ∈ Ji such that Lli ⊆ L

j
i .

3. If the fact that a run ρ satisfies the pair GRZ implies that ρ satisfies also
some other pair GRZ′ , we remove GRZ .

Finally, we simplify the state spaces of both TGDRA and DRA such that we
iteratively merge the equivalent states. Two states of a DRA D are equivalent
if they belong to the same sets of the acceptance condition of D and, for each
α, their α-transitions lead to the same state. Two states of a TGDRA G are
equivalent if, for each α, their α-transitions lead to the same state and belong
to the same sets of the acceptance condition of G. Moreover, if the initial state
of D or G has no selfloop, we check its equivalence to another state regardless of
the acceptance condition (note that a membership in acceptance condition sets
is irrelevant for states or transitions that are passed at most once by any run).

Of course, we consider only the reachable state space at every step.

8 Beyond LTL(Fs,Gs) Fragment: May/Must in the Limit

The Section 4 shows a translation of MMAA into TGDRA. In fact, our trans-
lation can be used for a larger class of very weak alternating automata called

may/must in the limit automata (limMMAA). A VWAA B is a limMMAA if
B contains only must-states, states without looping transitions, and co-Büchi
accepting states (not exclusively may-states), and each state reachable from a
must-state is either a must- or a may-state. Note that each accepting run of a
limMMAA has a suffix that contains either only empty configurations, or con-
figurations consisting of must-states and may-states reachable from must-states.
Hence, the MMAA to TGDRA translation produces correct results also for lim-
MMAA under an additional condition: generalized Rabin pairs GRZ are con-
structed only for sets Z that contain only must-states and may-states reachable
from them.

We can obtain limMMAA by the LTL to VWAA translation of [15] when it
is applied to an LTL fragment defined as

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where ψ ranges over LTL(Fs,Gs). Note that this fragment is strictly more expres-
sive than LTL(Fs,Gs).

9 Experimental Results

We have made an experimental implementation of our translation (referred to
as LTL3DRA). The translation of LTL to alternating automata is taken from
LTL3BA [4]. We compare the automata produced by LTL3DRA to those pro-
duced by Rabinizer and ltl2dstar. All the experiments are run on a Linux
laptop (2.4GHz Intel Core i7, 8GB of RAM) with a timeout set to 5 minutes.

Tables given below (i) compare the sizes of the DRA produced by all the
tools and (ii) show the number of states of the generalized automata produced by
LTL3DRA and Rabinizer. Note that LTL3DRA uses TGDRA whereas Rabinizer
uses (state-based) GDRA, hence the numbers of their states cannot be directly
compared. The sizes of DRA are written as s(r), where s is the number of states
and r is the number of Rabin pairs. For each formula, the size of the smallest
DRA (measured by the number of states and, in the case of equality, by the
number of Rabin pairs) is printed in bold.

Table 1 shows the results on formulae from [14] extended with another para-
metric formula. For the two parametric formulae, we give all the parameter
values n for which at least one tool finished before timeout. For all formulae
in the table, our experimental implementation generates automata of the same
or smaller size as the others. Especially in the case of parametric formulae, the
automata produced by LTL3DRA are considerably smaller. We also note that
the TGDRA constructed for the formulae are typically very small.

Table 2 shows the results on formulae from Spec Patterns [13] (available
online2). We only take formulae LTL3DRA is able to work with, i.e. the formulae
of the LTL fragment defined in Section 8. The fragment covers 27 out of 55
formulae listed on the web page. The dash sign in Rabinizer’s column means

2 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Formula
LTL3DRA Rabinizer ltl2dstar

DRA TGDRA DRA GDRA DRA

G(a ∨ Fb) 3(2) 2 4(2) 5 4(1)
FGa ∨ FGb ∨ GFc 8(3) 1 8(3) 8 8(3)

F(a ∨ b) 2(1) 2 2(1) 2 2(1)
GF(a ∨ b) 2(1) 1 2(1) 4 2(1)
G(a ∨ Fa) 2(1) 1 2(2) 2 2(1)
G(a ∨ b ∨ c) 2(1) 2 2(1) 8 3(1)

G(a ∨ F(b ∨ c)) 3(2) 2 4(2) 9 4(1)
Fa ∨ Gb 3(2) 3 3(2) 3 4(2)

G(a ∨ F(b ∧ c)) 3(2) 2 4(2) 11 4(1)
FGa ∨ GFb 4(2) 1 4(2) 4 4(2)

GF(a ∨ b) ∧ GF(b ∨ c) 3(1) 1 3(1) 8 7(2)
(FFa ∧ G¬a) ∨ (GG¬a ∧ Fa) 1(0) 1 1(0) 1 1(0)

GFa ∧ FGb 3(1) 1 3(1) 4 3(1)
(GFa ∧ FGb) ∨ (FG¬a ∧ GF¬b) 4(2) 1 4(2) 4 5(2)

FGa ∧ GFa 2(1) 1 2(1) 2 2(1)
G(Fa ∧ Fb) 3(1) 1 3(1) 4 5(1)
Fa ∧ F¬a 4(1) 4 4(1) 4 4(1)

(G(b ∨ GFa) ∧ G(c ∨ GF¬a)) ∨ Gb ∨ Gc 12(3) 4 18(4) 18 13(3)
(G(b ∨ FGa) ∧ G(c ∨ FG¬a)) ∨ Gb ∨ Gc 4(2) 4 6(3) 18 14(4)
(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 5(2) 4 5(2) 18 7(1)
(F(b ∧ GFa) ∨ F(c ∧ GF¬a)) ∧ Fb ∧ Fc 5(2) 4 5(2) 18 7(2)

GF(Fa ∨ GFb ∨ FG(a ∨ b)) 4(3) 1 4(3) 4 14(4)
FG(Fa ∨ GFb ∨ FG(a ∨ b)) 4(3) 1 4(3) 4 145(9)

FG(Fa ∨ GFb ∨ FG(a ∨ b) ∨ FGb) 4(3) 1 4(3) 4 145(9)

∧n
i=1(GFai → GFbi)

n = 1 4(2) 1 4(2) 4 4(2)
n = 2 18(4) 1 20(4) 16 11324(8)
n = 3 166(8) 1 470(8) 64 timeout
n = 4 7408(16) 1 timeout timeout

∧n
i=1(GFai ∨ FGai+1)

n = 1 4(2) 1 4(2) 4 4(2)
n = 2 10(4) 1 11(4) 8 572(7)
n = 3 36(6) 1 52(6) 16 290046(13)
n = 4 178(9) 1 1288(9) 32 timeout
n = 5 1430(14) 1 timeout timeout
n = 6 20337(22) 1 timeout timeout

Table 1. The benchmark from [14] extended by one parametric formula.

that Rabinizer cannot handle the corresponding formula as it is not from the
LTL(F,G) fragment. For most of the formulae in the table, LTL3DRA produces
the smallest DRA. In the remaining cases, the DRA produced by our translation
is only slightly bigger than the smallest one. The table also illustrates that
LTL3DRA handles many (pseudo)realistic formulae not included in LTL(F,G).

Experimental results for another four parametric formulae are provided in
the full version of this paper [3].

LTL3DRA Rabinizer ltl2dstar LTL3DRA Rabinizer ltl2dstar

DRA TGDRA DRA GDRA DRA DRA TGDRA DRA GDRA DRA

ϕ2 4(2) 4 — 5(2) ϕ27 4(2) 4 — 5(2)
ϕ3 4(2) 3 4(2) 5 4(1) ϕ28 6(3) 3 8(3) 14 5(1)
ϕ7 4(2) 3 — 4(2) ϕ31 4(2) 4 — 6(2)
ϕ8 3(2) 3 3(2) 5 4(2) ϕ32 5(2) 5 — 7(2)
ϕ11 6(2) 6 — 10(3) ϕ33 5(2) 5 — 7(3)
ϕ12 8(2) 8 — 9(2) ϕ36 6(3) 4 — 6(2)
ϕ13 7(3) 7 — 11(3) ϕ37 6(2) 6 — 8(3)
ϕ17 4(2) 4 — 5(2) ϕ38 7(4) 5 — 6(3)
ϕ18 4(2) 3 4(2) 5 4(1) ϕ41 21(3) 7 — 45(3)
ϕ21 4(2) 3 — 4(2) ϕ42 12(2) 12 — 17(2)
ϕ22 4(2) 4 — 5(2) ϕ46 15(3) 5 — 20(2)
ϕ23 5(3) 4 — 5(3) ϕ47 7(2) 7 — 6(2)
ϕ26 3(2) 2 4(2) 5 4(1) ϕ48 14(3) 6 — 24(2)

ϕ52 7(2) 7 — 6(2)

Table 2. The benchmark with selected formulae from Spec Patterns. ϕi denotes the
i-th formula on the web page.

10 Conclusion

We present another Safraless translation of an LTL fragment to deterministic
Rabin automata (DRA). Our translation employs a new class of may/must al-
ternating automata. We prove that the class is expressively equivalent to the
LTL(Fs,Gs) fragment. Experimental results show that our translation typically
produces DRA of a smaller or equal size as the other two translators of LTL
(i.e. Rabinizer and ltl2dstar) and it sometimes produces automata that are
significantly smaller.

References

1. R. Alur and S. L. Torre. Deterministic generators and games for LTL fragments.
ACM Trans. Comput. Log., 5(1):1–25, 2004.

2. T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, and J. Strejček. Compositional
approach to suspension and other improvements to ltl translation. In SPIN 2013,
volume 7976 of LNCS, pages 81–98. Springer, 2013.

3. T. Babiak, F. Blahoudek, M. Kret́ınský, and J. Strejcek. Effective translation
of LTL to deterministic rabin automata: Beyond the (F,G)-fragment. CoRR,
abs/1306.4636, 2013.

4. T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In TACAS’12, volume 7214 of LNCS,
pages 95–109. Springer, 2012.

5. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
6. K. Chatterjee, A. Gaiser, and J. Křet́ınský. Automata with generalized Rabin

pairs for probabilistic model checking and LTL synthesis. In CAV’13, volume 8044
of LNCS, pages 559–575. Springer, 2013.

7. A. Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
9. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.

J. ACM, 42(4):857–907, 1995.
10. J.-M. Couvreur. On-the-fly verification of temporal logic. In FM’99, volume 1708

of LNCS, pages 253–271. Springer, 1999.
11. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for

linear temporal logic. In CAV ’99, volume 1633 of LNCS, pages 249–260. Springer,
1999.

12. A. Duret-Lutz. LTL translation improvements in Spot. In VECoS’11, Electronic
Workshops in Computing. British Computer Society, 2011.

13. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE 1999, pages 411–420. IEEE, 1999.

14. A. Gaiser, J. Křet́ınský, and J. Esparza. Rabinizer: Small deterministic automata
for LTL(F,G). In ATVA’12, volume 7561 of LNCS, pages 72–76, 2012.

15. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In CAV’01,
volume 2102 of LNCS, pages 53–65. Springer, 2001.

16. J. Klein. ltl2dstar – LTL to deterministic Streett and Rabin automata.
http://www.ltl2dstar.de.

17. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci., 363(2):182–195, 2006.

18. J. Klein and C. Baier. On-the-fly stuttering in the construction of deterministic
ω-automata. In CIAA 2007, volume 4783 of LNCS, pages 51–61. Springer, 2007.

19. J. Křet́ınský and J. Esparza. Deterministic automata for the (F, G)-fragment of
LTL. In CAV’12, volume 7358 of LNCS, pages 7–22. Springer, 2012.

20. O. Kupferman. Recent challenges and ideas in temporal synthesis. In SOFSEM
2012, volume 7147 of LNCS, pages 88–98. Springer, 2012.

21. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In CAV’11, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

22. A. Morgenstern and K. Schneider. From LTL to symbolically represented determin-
istic automata. In VMCAI 2008, volume 4905 of LNCS, pages 279–293. Springer,
2008.

23. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science, 3(3), 2007.

24. N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VM-
CAI’06, volume 3855 of LNCS, pages 364–380. Springer, 2006.

25. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE, 1977.
26. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.

In ICALP’89, volume 372 of LNCS, pages 652–671. Springer, 1989.
27. S. Safra. On the complexity of omega-automata. In FOCS’88, pages 319–327.

IEEE Computer Society, 1988.
28. S. Schewe. Tighter bounds for the determinisation of Büchi automata. In FOS-

SACS’09, volume 5504 of LNCS, pages 167–181. Springer, 2009.
29. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In

CAV’00, volume 1855 of LNCS, pages 248–263. Springer, 2000.
30. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-

grams. In FOCS’85, pages 327–338. IEEE Computer Society, 1985.
31. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In LICS’86, pages 332–344. IEEE Computer Society, 1986.

