
On Decidability of LTL Model Checking for Process
Rewrite Systems?

Laura Bozzelli1, Mojmı́r Křetı́nský2, VojtěchŘehák2, and Jan Strejček2

1 Dipartimento di Matematica e Apllicazioni, Università degli Studi di Napoli “Federico II”,
Via Cintia, 80126 Napoli, Italy,laura.bozzelli@dma.unina.it

2 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,fkretinsky,rehak,strecekg@fi.muni.cz
Abstract. We establish a decidability boundary of the model checking problem
for infinite-state systems defined byProcess Rewrite Systems(PRS) orweakly
extended Process Rewrite Systems(wPRS), and properties described by basic
fragments of action-basedLinear Temporal Logic(LTL) with both future and past
operators. It is known that the problem for general LTL properties is decidable for
Petri nets and for pushdown processes, while it is undecidable for PA processes.
We show that the problem is decidable for wPRS if we consider properties defined
by LTL formulae with only modalitiesstrict eventually, strict always, and their
past counterparts. Moreover, we show that the problem remains undecidable for
PA processes even with respect to the LTL fragment with the only modality until
or the fragment with modalitiesnextandinfinitely often.

1 Introduction

Automatic verification of current software systems often needs to model them as
infinite-state systems. One of the most powerful formalismsfor a finite description of
infinite-state systems (except formalisms which are language equivalent to Turing ma-
chines) is calledProcess Rewrite Systems(PRS) [May00]. The PRS framework, based
on term rewriting, subsumes many formalisms studied in the context of formal verifica-
tion, e.g.Petri nets(PN), pushdown processes(PDA), and process algebras like BPA,
BPP, or PA. PRS can be adopted as a formal model for programs with recursive pro-
cedures and restricted forms of dynamic creation and synchronization of concurrent
processes. A substantial merit of PRS is that some importantverification problems are
decidable for the whole PRS class. In particular, Mayr [May00] proved that the follow-
ing problems are decidable for PRS:

– thereachability problem- whether a given state is reachable,
– the reachable property problem- whether there is a reachable state where some

given actions are enabled and some given actions are disabled.

In [KŘS04b], we have presentedweakly extended PRS(wPRS), where a finite-state
control unit with self-loops as the only loops is added to thestandard PRS formalism? Some of the results presented in this paper have been alreadypublished in [BǨRS06]

and [KŘS07].

(addition of a general finite-state control unit makes PRS language equivalent to Turing
machines). Thisweakcontrol unit enriches PRS by abilities to model a bounded number
of arbitrary communication events and global variables whose values are changed only
a bounded number of times during any computation. We have proved that the reach-
ability problem remains decidable for wPRS [KŘS04a] and that the problem called
reachability Hennessy–Milner property(whether there is a reachable state satisfying a
given Hennessy–Milner formula) is decidable for wPRS as well [K ŘS05]. Note that
the latter problem is strictly more general than the reachable property problem. The
hierarchy of all PRS and wPRS classes is depicted in Figure 1.

Concerning the model checking problem, a broad overview of (un)decidability re-
sults for subclasses of PRS and various temporal logics can be found in [May98]. Here
we focus exclusively onLinear Temporal Logic(LTL). It is known that LTL model
checking of PDA isEXPTIME-complete [BEM97]. LTL model checking of PN is also
decidable, but at least as hard as the reachability problem for PN [Esp94] (the reachabil-
ity problem isEXPSPACE-hard [May84,Lip76] and no primitive recursive upper bound
is known). If we consider only infinite runs, then the problemfor PN is EXPSPACE-
complete [Hab97,May98].

Conversely, LTL model checking is undecidable for all the classes subsuming
PA [BH96,May98]. So far, there are only two positive resultsfor these classes. Bouaj-
jani and Habermehl [BH96] have identified a fragment calledsimple PLTL2 for which
model checking of infinite runs is decidable for PA (strictlyspeaking, simple PLTL2 is
not a fragment of LTL as it can express also some non-regular properties, while LTL
cannot). Only recently, Bozzelli [Boz05] has demonstratedthat model checking of in-
finite runs is decidable for PRS and the fragment of LTL capturing exactly fairness
properties.

Our contribution: This paper contains several results on decidability of LTL model
checking. In particular, we completely locate the decidability boundary of the model
checking problem for all subclasses of PRS (and wPRS) and allbasic LTL fragments,
where a basic LTL fragment is a set of all LTL formulae containing only a given subset
of standard temporal modalities and closed under boolean connectives. The boundary
is depicted in Figure 2. To locate the boundary, we demonstrate the following results.

1. We introduce a new LTL fragmentA . Then we prove that the problem whether
a given wPRS has a (finite or infinite) run satisfying a given formula ofA is de-
cidable. The proof employs our results presented in [Boz05,KŘS04a,ǨRS05] to
reduce the problem to LTL model checking for PDA and PN. This result directly
implies decidability of the model checking problem for wPRSand negated formu-
lae ofA .

2. We show that every formula of the basic fragment LTL(Fs;Gs) (i.e. the fragment
with modalitiesstrict eventuallyandstrict alwaysonly) can be effectively translated
intoA . As LTL(Fs;Gs) is closed under negation, we can also translate LTL(Fs;Gs)
formulae into negations ofA formulae. This translation yields decidability of
the model checking problem for wPRS and LTL(Fs;Gs). Note that LTL(Fs;Gs)
is strictly more expressive than theLamport logic (i.e. the basic fragment with
modalitieseventuallyandalways), which is again strictly more expressive than the

mentioned fragment of fairness properties and also than theregular part of simple
PLTL2.

3. We define a past extension PA of the fragmentA . Using the result forA ,
we show that the model checking problem for wPRS and negated formulae of
PA remains decidable. Further, we prove that every formula of the basic frag-
ment LTL(Fs;Gs;Ps;Hs) (LTL(Fs;Gs) extended with the past counterparts ofFs
and Gs) can be effectively translated into PA . Hence, we get decidability of
the model checking problem for wPRS and LTL(Fs;Gs;Ps;Hs). We note that
LTL(Fs;Gs;Ps;Hs) is strictly more expressive than LTL(Fs;Gs) (for example, the
formulaFs(b^Hsa) is not equivalent to any LTL(Fs;Gs) formula) and semantically
equivalent to First-Order Monadic Logic of Order restricted to 2 variables and with-
out successor predicate (FO2[<℄, see [EVW02] for effective translations). Thus we
also positively solve the model checking problem for wPRS and FO2[<℄.

4. We demonstrate that the model checking problem remains undecidable for PA even
if we consider the basic fragment with modalityuntil or the basic fragment with
modalitiesnextand infinitely often(which is strictly less expressive than the one
with nextandeventually).

The paper also presents two results that are not connected tothe decidability boundary.

5. We introduce a more generalpointed model checking problem(whether all runs of a
given wPRS system going through a given state satisfy a givenformula in the given
state). We show that this problem is decidable for wPRS and LTL(Fs;Gs;Ps;Hs).

6. Finally, we show that negated formulae of LTLdet (the fragment known as ‘the
common fragment of CTL and LTL’ [Mai00]) can be effectively translated intoA .
As a consequence we get that the model checking problem is decidable for wPRS
and LTLdet.

Structure of the paper: The following section recalls basic definitions. Sections 3,
4, 5, and 6 correspond, respectively, to the first four items listed above. Section 5 also
covers the results on the pointed model checking problem. Section 7 deals with the
model checking problem for LTLdet. The last section summarizes our results and tries
to give an intuitive explanation of the found decidability border location.

2 Preliminaries

2.1 PRS and Weakly Extended PRS

Let Const= fX; : : :g be a set ofprocess constants. The set ofprocess terms tis defined
by the abstract syntaxt ::= ε j X j t:t j tkt, whereε is the empty term, X 2 Const,
and ’:’ and ’k’ mean sequentialand parallel compositions, respectively. We always
work with equivalence classes of terms modulo commutativity and associativity of ’k’,
associativity of ’:’, and neutrality ofε, i.e. ε:t = t:ε = tkε = t. We distinguish four
classes of process termsas:

1 – terms consisting of a single process constant, in particular, ε 62 1,
S – sequentialterms - terms without parallel composition, e.g.X:Y:Z,

P – parallel terms - terms without sequential composition, e.g.XkYkZ,
G – generalterms - terms without any restrictions, e.g.(X:(YkZ))kW.

Let M = fo; p;q; : : :g be a set ofcontrol states, � be a partial ordering on this set,
andAct= fa;b;c; : : :g be a set ofactions. Let α;β 2 f1;S;P;Gg be classes of process
terms such thatα � β. An (α;β)-wPRS(weakly extended process rewrite system) ∆ is
a triple(R; p0; t0), where

– R is a finite set ofrewrite rulesof the form(p; t1) a,! (q; t2), wheret1 2 α, t1 6= ε,
t2 2 β, a2 Act, andp;q2M satisfyp� q,

– the pair(p0; t0) 2M�β forms the distinguishedinitial state.

By Act(∆), Const(∆), andM(∆) we denote the respective sets of actions, process con-
stants, and control states occurring in the rewrite rules orthe initial state of∆.

A wPRS∆ = (R; p0; t0) induces a labelled transition system, whose states are pairs(p; t) such thatp2M(∆) andt is a process term overConst(∆). The transition relation�!∆ is the least relation satisfying the following inference rules:((p; t1) a,! (q; t2)) 2 R(p; t1) a�!∆ (q; t2) (p; t1) a�!∆ (q; t2)(p; t1kt 01) a�!∆ (q; t2kt 01) (p; t1) a�!∆ (q; t2)(p; t1:t 01) a�!∆ (q; t2:t 01)
Sometimes we write�! instead of�!∆ if ∆ is clear from the context. The transition
relation can be extended to finite words overAct in a standard way. To shorten our
notation we writept in lieu of (p; t). A statept is reachable froma statep0t 0 if there
exists a wordu such thatp0t 0 u�! pt. We say that a state isreachableif it is reachable
from the initial statep0t0. Further, a statept is calledterminal if there is no statep0t 0
and no actiona such thatpt

a�!∆ p0t 0. In this paper we always consider only systems
where the initial state is not terminal. A (finite or infinite)sequence

σ = p1t1
a1�!∆ p2t2

a2�!∆ : : : an�!∆ pn+1tn+1

�
an+1�!∆ : : :�

is calledderivation over the word u= a1a2 : : :an(an+1 : : :) in ∆. Finite derivations are
also denoted asp1t1

u�!∆ pn+1tn+1, infinite ones asp1t1
u�!∆. A derivation in∆ is

called arun of∆ if it starts in the initial statep0t0 and it is either infinite, or its last state
is terminal. Further,L(∆) denotes the set of wordsu such that there is a run of∆ overu.

An (α;β)-wPRS∆ whereM(∆) is a singleton is called(α;β)-PRS(process rewrite
system) [May00]. In such systems we omit the single control state from rules and states.

Some classes of (α;β)-PRS correspond to widely known models, namelyfinite-state
systems(FS),basic process algebras(BPA),basic parallel processes(BPP),process al-
gebras(PA), pushdown processes(PDA), andPetri nets(PN). The other classes have
been named as PAD, PAN, and PRS [May00]. The relations between (α;β)-PRS and
the mentioned formalisms and names are indicated in Figure 1. Instead of (α;β)-wPRS
we juxtapose the prefix ‘w-’ with the acronym corresponding to the (α;β)-PRS class.
For example, we use wBPA rather than (1;S)-wPRS. Figure 1 shows the expressiveness
hierarchy of all the classes mentioned above, where expressive power of a class is mea-
sured by the set of transition systems that are definable (up to the strong bisimulation

wPRSqqqqqqqqqqqqqqqq KKKKKKKKKKKKKKKKPRS
(G;G)-PRSqqqqqqqqqqqqq LLLLLLLLLLLLLwPAD MMMMMMMMMMMMMMMM wPANrrrrrrrrrrrrrrrPAD

(S;G)-PRS MMMMMMMMMMMMM PAN
(P;G)-PRSssssssssssssswPAqqqqqqqqqqqqqqqq LLLLLLLLLLLLLLLwPDA=PDA

(S;S)-PRS
PA

(1;G)-PRSqqqqqqqqqqqqq LLLLLLLLLLLLL wPN=PN
(P;P)-PRS

wBPA wBPP

BPA
(1;S)-PRS OOOOOOOOOOOOO BPP

(1;P)-PRSpppppppppppp
wFS=FS
(1;1)-PRS

Fig. 1.The hierarchy of PRS and wPRS subclasses.

equivalence [Mil89]) by the class. This hierarchy is strict, with a possible exception
concerning the classes wPRS and PRS, where the strictness isjust our conjecture. For
details see [ǨRS04b].

For technical reasons, we define a normal form of wPRS systems. A rewrite rule is
parallel or sequentialif it has one of the following forms:

Parallel rules: pX1kX2k : : :kXn
a,! qY1kY2k : : :kYm

Sequential rules: pX
a,! qY:Z pX:Y a,! qZ pX

a,! qY pX
a,! qε

whereX;Y;Xi ;Yj ;Z2Const, p;q2M, n> 0,m� 0, anda2Act. A rule is calledtrivial

if it is both parallel and sequential, i.e. it has the formpX
a,! qY or pX

a,! qε. A wPRS
∆ = (R; p0; t0) is in normal formif t0 is a process constant andR contains only parallel
and sequential rewrite rules.

PRS, wPRS, other extensions of PRS, and their respective subclasses are discussed
in more detail in [̌Reh07].

2.2 Linear Temporal Logic

The syntax ofLinear Temporal Logic(LTL) [Pnu77] is defined as follows

ϕ ::= tt j a j :ϕ j ϕ^ϕ j Xϕ j ϕUϕ j Yϕ j ϕSϕ,

whereX andU are the future modal operatorsnextanduntil, whileY andS are their past
counterpartspreviouslyandsince, anda ranges overAct. The logic is interpreted over

infinite and nonempty finitepointedwords of actions. Given a wordu = a0a1a2 : : : 2
Act�[Actω, juj denotes the length of the word (we setjuj=∞ if u is infinite). Apointed
word is a pair(u; i) of a nonempty wordu and aposition0� i < juj in this word.

The semantics of LTL formulae is defined inductively as follows:(u; i) j= tt(u; i) j= a iff u= a0a1a2 : : : andai = a(u; i) j= :ϕ iff (u; i) 6j= ϕ(u; i) j= ϕ1^ϕ2 iff (u; i) j= ϕ1 and (u; i) j= ϕ2(u; i) j= Xϕ iff i +1< juj and (u; i +1) j= ϕ(u; i) j= ϕ1Uϕ2 iff 9k: �i � k< juj ^ (u;k) j= ϕ2 ^^ 8 j: (i � j < k) (u; j) j= ϕ1)�(u; i) j= Yϕ iff 0 < i and (u; i�1) j= ϕ(u; i) j= ϕ1Sϕ2 iff 9k: �0� k� i ^ (u;k) j= ϕ2 ^^ 8 j: (k< j � i) (u; j) j= ϕ1)�
We say that(u; i) satisfiesϕ whenever(u; i) j= ϕ. Further, a nonempty wordu satisfies
ϕ, writtenu j= ϕ, whenever(u;0) j= ϕ. Given a setL of words, we writeL j= ϕ if u j= ϕ
holds for allu2 L. Finally, we say that a runσ of a wPRS∆ over a wordu satisfiesϕ,
written σ j= ϕ, wheneveru j= ϕ.

Formulaeϕ;ψ are(initially) equivalent, writtenϕ�i ψ, iff, for all wordsu, it holds
thatu j= ϕ () u j= ψ. Formulaeϕ;ψ areglobally equivalent, written ϕ � ψ, iff, for
all pointed words(u; i), it holds that(u; i) j= ϕ () (u; i) j= ψ. Clearly, if two formulae
are globally equivalent then they are also initially equivalent. Moreover, two formulae
without past modalities are globally equivalent if and onlyif they are initially equiva-
lent. Therefore we do not distinguish between initial and global equivalence when we
talk about formulae without past.

The following table defines some derived future operators and their past counter-
parts.

future modality meaningpast modality meaningFϕ eventually ttUϕ Pϕ eventually in the past ttSϕGϕ always :F:ϕ Hϕ always in the past :P:ϕFsϕ strict eventually XFϕ Psϕ eventually in the strict past YPϕGsϕ strict always :Fs:ϕ Hsϕ always in the strict past :Ps:ϕ
∞Fϕ infinitely often GFϕ Iϕ initially HPϕ

Given a setfO1; : : : ;Ong of modalities, LTL(O1; : : : ;On) denotes the LTL fragment
(closed under boolean connectives) containing all formulae with modalitiesO1; : : : ;On

only. Such a fragment is calledbasic if either it contains future operators only, or for
each included future operator, it contains its past counterpart and vice versa. For exam-
ple, the fragment LTL(F;S) is not basic.

LTL(U;X)�i FO3

{{{{{{{{{{{{{{{{{{{
{{{{ NNNNNNNNNNNNNNN

LTL(U;Fs;S;Ps)
zzzzzzzzzzzzzzzzzzzLTL(F;X;P;Y) � FO2 SSSSSSSSSSSSSS LTL(U ;Fs)
{{{{{{{{{{{{{{{{{{{{LTL(F;X) RRRRRRRRRRRRRR � � }w k _ S G A ; 7

LTL(Fs;Ps)� FO2[<℄ QQQQQQQQQQQQ
����������������

����������� LTL(U)RMG� _ _ _ _
LTL(∞F;X)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
LTL(Fs;Gs) QQQQQQQQQQQQQ LTL(F;P)_______ l r z � � � � �

LTL(F;G)
LTL(X) IIIIIIIIIIIIIIIIIII LTL(∞F)wwwwwwwwwwwwwwwww

LTL()
Fig. 2. The hierarchy of basic LTL fragments with respect to the initial equivalence. The dashed
line shows the decidability boundary of the model checking problem for wPRS: the problem is
decidable for all the fragments below the line, while it is undecidable for all the fragments above
the line (even if we consider PA systems only).

Figure 2 shows an expressiveness hierarchy of all studied basic LTL fragments.
Indeed, every basic LTL fragment using standard3 modalities is equivalent to one of
the fragments in the hierarchy, where equivalence between fragments means that ev-
ery formula of one fragment can be effectively translated into an initially equivalent
formula of the other fragment and vice versa. In particular,LTL(Fs;Gs;Ps;Hs) is equiv-

3 By standard modalities we mean the ones defined here and also other commonly used modal-
ities like strict until, release, weak until, etc. However, it is well possible that one can define a
new modality such that there is a basic fragment not equivalent to any of the fragments in the
hierarchy.

alent to LTL(Fs;Ps).4 We also mind the result of [Gab87] stating that each LTL for-
mula can be converted into one which employs future operators only, i.e. LTL(U;X)�i

LTL(U;S;X;Y). The hierarchy is also strict: a solid line between two fragments indi-
cates that every formula of the lower fragment is initially equivalent to some formula
of the upper fragment, but the opposite relation does not hold. We refer to [Str04] for
details about the expressiveness of LTL fragments.

2.3 Studied Problems

Let F be an LTL fragment andC be a class of wPRS systems. This paper deals with
the following three verification problems.

1. Themodel checking problemfor F andC is to decide, for any given formulaϕ2F
and any given system∆ 2 C , whetherL(∆) j= ϕ holds.

2. We also consider the problem calledmodel checking of infinite runs, whereL(∆)\
Actω j= ϕ is examined.

3. Thepointed model checking problemfor F and wPRS is to decide whether a given
formula ϕ 2 F , a given wPRS system∆, and a given nonterminal statept of ∆
satisfyL(pt;∆) j= ϕ, whereL(pt;∆) is the set of all pointed words(u; i) such that

∆ has a runp0t0
a0�! p1t1

a1�! : : : ai�1�! piti
ai�! : : : satisfyingu = a0a1a2 : : : and

pt = piti .

3 Model Checking for NegatedA

This section starts with the definition of the LTL fragmentA . The rest of the section is
devoted to decidability of the model checking problem for wPRS and negated formulae
of this fragment.

Recall that LTL() denotes the fragment of formulae without any modality,
i.e. boolean combinations of actions. In the following we use ϕ1U+ ϕ2 to abbreviate
ϕ1^X(ϕ1Uϕ2).
Definition 1. Let δ = θ1O1θ2O2 : : :θnOnθn+1, where n> 0, eachθi 2 LTL(), On is
‘^Gs’, and, for each i< n, Oi is either ‘U’ or ‘ U+’ or ‘ ^X’. Further, letB � LTL() be
a finite set. Anα-formulais defined as

α(δ;B) = �θ1O1(θ2O2 : : : (θnOnθn+1) : : :)� ^
ψ̂2BGsFsψ :

The fragmentA consists of all finite disjunctions ofα-formulae.

Hence, a wordu satisfies α(δ;B) iff u can be written as a concatenation
u1:u2: � � � :un+1, where each wordui consists only of actions satisfyingθi and

– jui j � 0 if i = n+1 orOi is ‘U’,

4 As Fs;Gs and Ps;Hs are pairs of dual operators, the fragments LTL(Fs;Gs;Ps;Hs) and
LTL(Fs;Ps) are in fact equivalent even with respect to the global equivalence.

– jui j> 0 if Oi is ‘U+’,
– jui j= 1 if Oi is ‘^X’ or ‘^Gs’,
– un+1 satisfiesGsFsψ for everyψ 2 B .

In the following we use the fact that finite disjunctions ofα-formulae are closed
under conjunction.

Lemma 2. A conjunction ofα-formulae can be effectively converted into an equivalent
disjunction ofα-formulae.

The proof is a straightforward but quite technical exercise, see [̌Reh07] for some hints.
To support an intuition, we provide an example of a conjunction of two simpleα-
formulae and an equivalent disjunction.

Example 3.A conjunctionα(θ1Uθ2^Gsθ3;B)^α(θ01Uθ02^Gsθ03;B 0) is equivalent to
the following disjunction.

α((θ1^θ01)U (θ2^θ02)^Gs(θ3^θ03);B [B 0) __ α((θ1^θ01)U (θ2^θ01)^X(θ3^θ01)U (θ3^θ02)^Gs(θ3^θ03);B [B 0) __ α((θ1^θ01)U (θ1^θ02)^X(θ1^θ03)U (θ2^θ03)^Gs(θ3^θ03);B [B 0)
In order to show that the model checking problem for wPRS and negated formulae

ofA is decidable, we prove decidability of the dual problem, i.e. whether a given wPRS
system has a run satisfying a given formula ofA . Finite and infinite runs are treated
separately.

Theorem 4. The problem whether a given wPRS system has a finite run satisfying a
givenα-formula is decidable.

Proof. Let ∆ be a wPRS system andα(δ;B) be anα-formula. Note that a formulaGsFsψ is satisfied by a finite nonempty word if and only if the length of the word is 1.
Therefore, ifB 6= /0 then it is easy to check whether there is a finite run of∆ satisfying
α(δ;B). In what follows we assumeB = /0.

Let δ = θ1O1θ2O2 : : :θnOnθn+1. We construct a wPRS system∆0 with control states
M(∆)�f1;2; : : : ;n+1g and the following four types of transition rules.

1. For any 1� i � n and every rulept1
a,! qt2 of ∆ such that an actiona satisfiesθi ,

we add the rule(p; i)t1 a,! (q; i+1)t2 to ∆0. Moreover, ifOi isU orU+ then we also

add the rule(p; i)t1 a,! (q; i)t2.
2. Letebe a fresh action. For everyp2M(∆), X 2 Const(∆), and for alli, 1� i � n,

such thatOi = U, we add the rule(p; i)X e,! (p; i +1)X to ∆0.
3. For every rulept1

a,! qt2 of ∆ such thata satisfiesθn+1, we add the rule(p;n+
1)t1 a,! (q;n+1)t2 to ∆0.

4. For every rulept1
a,! qt2 of ∆ we add the rule(p;n+1)t1 a,! (p;n+1)t1 to ∆0.

Loosely speaking, the rules of type 1–3 allow∆0 to simulate all the runs of∆ which
satisfyα(δ; /0). The rules of type 4 assure that a state(p;n+1)t of ∆0 is terminal if and
only if the statept of ∆ is terminal.

Let p0t0 be the initial state of∆. There is a finite runp0t0
u�!∆ qt satisfyingα(δ; /0)

if and only if there is a finite run(p0;1)t0 v�!∆0 (q;n+1)t. Hence, we need to decide
whether there exists a state of the form(q;n+1)t that is terminal and reachable from(p0;1)t0. To that end, for everyp2M(∆) we add to∆0 the rule(p;n+1)Z end,! (p;n+1)ε,
whereend 62 Act(∆) is a fresh action andZ 62 Const(∆) is a fresh process constant.
Now, it holds that∆ has a finite run satisfyingα(δ; /0) if and only if there exists a state
of ∆0, which is reachable from(p0;1)(t0kZ) and the only enabled action in this state
is end. This last condition on the state can be expressed by formulaϕ = henditt ^V

a2Act(∆):haitt of the Hennessy–Milner logic. As reachability of a state satisfying a

given Hennessy–Milner formula is decidable for wPRS (see [KŘS05] for details), we
are done. ut

The problem for infinite runs is more complicated. In order tosolve it, we intro-
duce more terminology and notation. At first we defineβ-formulaeand regular lan-
guages calledγ-languages. Let w = a1O1a2O2 : : :anOn, wheren� 0, a1; : : : ;an 2 Act
are pairwise distinct actions and eachOi is either ‘U+’ or ‘^X’. Further, let B �
Actrfa1; : : : ;ang be a nonempty finite set of actions andC�B. A β-formulaβ(w;B;C)
andγ-languageγ(w;C) are defined as

β(w;B;C) = �a1O1(a2O2 : : :(anOnG_
b2B

b) : : :)� ^
b̂2C

GFb ^ ^
b2BrC

(Fb ^ :GFb)
γ(w;C) = ao1

1 :ao2
2 : � � � :aon

n :L,

where oi =(+ if Oi = U+
1 if Oi = ^X and L =(fεg if C = /0T

b2CC�:b:C� otherwise.

Roughly speaking, aβ-formula is a more restrictive version of anα-formula and in the
context ofβ-formulae we consider infinite words only. Contrary toδ of anα-formula,
w of aβ-formula employs actions rather than LTL() formulae. While a tail of an infinite
word satisfying anα-formula is specified byθn+1, in the definition ofβ-formulae we
use a setB containing exactly all the actions of the tail and its subsetC of exactly all
those actions occurring infinitely many times in the tail.

Remark 5.Note that an infinite word satisfies a formulaβ(w;B;C) if and only if it can
be divided into a prefixu 2 γ(w;B) and a suffixv2Cω such thatv contains infinitely
many occurrences of everyc2C.

LetB,C, andw=a1O1a2O2 : : :anOn be defined as above. We say that a finite deriva-
tion σ over a wordu satisfiesγ(w;C) if and only ifu2 γ(w;C). We write(w0;B0)v (w;B)
wheneverB0 � B andw0 = ai1Oi1ai2Oi2 : : :aikOik for some 1� i1 < i2 < :: : < ik � n.
Moreover, we write(w0;B0;C0) v (w;B;C) whenever(w0;B0) v (w;B), B0 is nonempty,
andC0 �C\B0.
Remark 6.If u is an infinite word satisfyingβ(w;B;C) and v is an infinitesubword
of u (i.e. it arises fromu by omitting some letters), then there is exactly one triple(w0;B0;C0) v (w;B;C) such thatv j= β(w0;B0;C0). Further, for each finite subwordv of
u, there is exactly one pair(w0;B0) such that(w0;B0)v (w;B) andv2 γ(w0;B0).

Given a PRS in normal form, bytri(∆), par(∆), andseq(∆) we denote the system
∆ restricted to trivial, parallel, and sequential rules, respectively. A derivation intri (∆)
is called atrivial derivation in∆. In what follows we write simplytri ;par;seqas∆ is
always clearly determined by the context.

Definition 7. Let ∆ be a PRS in normal form andβ(w;B;C) be aβ-formula. The PRS
∆ is in flat (w;B;C)-form if and only if, for each X;Y 2 Const(∆), each(w0;B0;C0) v(w;B;C), and each B00 � B, the following conditions hold:

1. If there is a finite derivation X
u�!Y satisfyingγ(w0;B00), then there is also a finite

derivation X
v�!tri Y satisfyingγ(w0;B00).

2. If there is a term t and a finite derivation X
u�! t satisfyingγ(w0;B00), then there is

also a constant Z and a finite derivation X
v�!tri Z satisfyingγ(w0;B00).

3. If w0 = ε and there is an infinite derivation X
u�! satisfyingβ(w0;B0;C0), then there

is also an infinite derivation X
v�!tri satisfyingβ(w0;B0;C0).

4. If there is an infinite derivation X
u�!par satisfyingβ(w0;B0;C0), then there is also

an infinite derivation X
v�!tri satisfyingβ(w0;B0;C0);

5. If there is an infinite derivation X
u�!seq satisfyingβ(w0;B0;C0), then there is also

an infinite derivation X
v�!tri satisfyingβ(w0;B0;C0).

Intuitively, the system is in flat(w;B;C)-form if, for every derivation of one of the
listed types there is an “equivalent” trivial derivation. All conditions of the definition
can be checked due to the following lemma, results of [Boz05], and decidability of
LTL model checking for PDA and PN. Lemma 9 says that every PRS in normal form
can be transformed into an “equivalent” flat system. Finally, Lemma 12 says that if a
PRS system in flat(w;B;C)-form has an infinite derivation satisfyingβ(w;B;C), then it
has also a trivial infinite derivation satisfyingβ(w;B;C). Note that it is easy to check
whether such a trivial derivation exists.

Lemma 8. Given aγ-languageγ(w;C), a PRS system∆, and constants X;Y, the fol-
lowing problems are decidable:
(i) Is there any derivation X

u�!Y satisfyingγ(w;C)?
(ii) Is there any derivation X

u�! t such that t is a term and u2 γ(w;C)?
Proof. The two problems can be reduced to the reachability problem for wPRS (i.e. to
decide whether given statesp1t1; p2t2 of a given wPRS system∆0 satisfyp1t1

v�!∆0 p2t2
for somev), which is known to be decidable [ǨRS04a].

(i) Let w = a1O1 : : :anOn. We construct a wPRS∆0 with the set of control statesf1;2; : : : ;ng[2C. Intuitively, control states 1;2; : : : ;n are used to check that the ac-
tionsa1;a2; : : : ;an appear in the right order and quantity due tow, while the other
actions are not allowed. After that, the control states in 2C are used to check that
every action inC appears at least once. The set of rewrite rules is defined as follows.
For the sake of compactness, we use(n+1) as another name for the control state
/0.

– For every 1� i � n and every rulet1
ai,! t2 of ∆, we add to∆0 the ruleit1

ai,!(i +1)t2 and if Oi = U+ then also the ruleit1
ai,! it2.

– For everyb2C, everyD�C, and every rulet1
b,! t2 of ∆, we add to∆0 the rule

Dt1
b,! (D[fbg)t2.

Obviously, a wordu 2 Act� satisfies 1X
u�!∆0 CY if and only if it satisfies both

X
u�!∆ Y andu2 γ(w;C). As we can decide whether 1X

u�!∆0 CY holds for some
u, we can decide Problem (i).

(ii) We construct a wPRS∆0 as in the previous case. Moreover, for everyZ2Const(∆),
we add to∆0 the ruleCZ

e,! Cε. It is easy to see that if a wordu 2 γ(w;C) satis-

fies X
u�!∆ t for somet, then 1X

uem�!∆0 Cε holds for somem� 0. Conversely, if
1X

v�!∆0 Cε holds for somev, then some prefixu of v satisfies bothu2 γ(w;C) and
X

u�!∆ t for somet. As we can decide whether, for somev, 1X
v�!∆0 Cε holds, we

can decide Problem (ii). ut
The proof of the following lemma contains the algorithmic core of this section.

Lemma 9. Let∆ be a PRS in normal form andβ(w;B;C) be aβ-formula. One can con-
struct a PRS∆0 in flat (w;B;C)-form such that, for each(w0;B0;C0)v (w;B;C) and each
X 2 Const(∆), ∆0 has an infinite derivation starting from X and satisfyingβ(w0;B0;C0)
if and only if∆ has an infinite derivation starting from X and satisfyingβ(w0;B0;C0).
Proof. In order to obtain∆0, we describe an algorithm extending∆ with trivial rewrite
rules in accordance with Conditions 1–5 of Definition 7.

All the conditions of Definition 7 can be checked for eachX;Y 2 Const(∆),
each(w0;B0;C0) v (w;B;C), and eachB00 � B. For Conditions 1 and 2, this follows
from Lemma 8. The problem whether there is an infinite derivation X

u�! satisfying
β(ε;B0;C0) is a special case of thefairness problem, which is decidable due to [Boz05].
Finally, Conditions 4 and 5 can be checked due to decidability of LTL model checking
for PDA [BEM97] and PN [Esp94]. If there is a non-satisfied condition, we add some
trivial rules forming the missing derivation.

Let us assume that Condition 3 (or 4 or 5, respectively) is notsatisfied, i.e. there
exists an infinite derivationX

u�! (or X
u�!par or X

u�!seq, respectively) satisfying
β(w0;B0;C0) for some(w0;B0;C0)v (w;B;C) and violating the condition. Remark 5 im-
plies thatC0 is nonempty and there is a finite derivationX

v�!∆ t satisfyingγ(w0;B0).
Hence, there exists an ordering ofB0 = fb1;b2; : : : ;bmg such that

(*) for each 1� j � m, there is a finite derivation in∆ starting fromX and satisfying
γ(w0;fb1; : : : ;b jg).

We can effectively select such an ordering out of all orderings of B0 using Lemma 8.
Further, letw0= a1O1a2O2 : : :anOn and letC0= fc1;c2; : : : ;ckg. Then, we add the trivial

ruleZi�1
ai,!Zi for each 1� i � n, the trivial ruleZn+ j�1

b j,!Zn+ j for each 1� j �m, and

the trivial ruleZn+m+ j�1
cj,!Zn+m+ j for each 1� j � k, whereZ0 =X, Z1; : : : ;Zn+m+k�1

are fresh process constants, andZn+m+k = Zn+m. These added rules form an infinite
derivation using only trivial rules, starting fromX, and satisfyingβ(w0;B0;C0).

Similarly, if there areX, Y, andγ(w0;B00) with w0 = a1O1a2O2 : : :anOn such that
Condition 1 or 2 of Definition 7 is violated, then we first compute an ordering

fb1; : : : ;bmg of B00 satisfying (*), and then we add the trivial ruleZi�1
ai,! Zi for each

1� i � n, and the trivial ruleZn+ j�1
b j,! Zn+ j for each 1� j � m, whereZ0 = X and

Z1; : : : ;Zn+m are fresh process constants (with exception ofZn+m which isY in the case

of Condition 1). The added trivial rules generate derivation X
a1:::anb1:::bm�! Zn+m satisfy-

ing γ(w0;B00).
Let ∆00 be the PRS∆ extended with the new rules. The condition (*) ensures that,

for eachX 2 Const(∆) and each(w0;B0;C0) v (w;B;C), the system∆00 is equivalent to
∆ with respect to the existence of an infinite derivation starting from X and satisfying
β(w0;B0;C0). If ∆00 is not in flat(w;B;C)-form, then the algorithm repeats the procedure
described above on the system∆00 with the difference thatX andY range over the
constants of the original system∆. The algorithm eventually terminates as the number
of iterations is bounded by the number of pairs of process constantsX;Y of ∆, times the
number of triples(w0;B0;C0) satisfying(w0;B0;C0) v (w;B;C), and times the number
of subsetsB00 � B. Let ∆0 be the resulting PRS. We claim that∆0 is in flat (w;B;C)-
form. For the process constants of the original system∆, by construction∆0 satisfies
all conditions of Definition 7. For the added constants, it issufficient to observe that
any derivation in∆0 starting from such a constant either is trivial or has a trivial prefix
leading to a constant of∆. Hence,∆0 is the desired PRS system. ut
Definition 10 (Subderivation).Let ∆ be a PRS in normal form andσ1 be a (finite or
infinite) derivation s1

a1�! s2
a2�! : : :, where s1

a1�! s2 has the form X
a1�!Y:Z and, for

each i� 2, if si is not the last state of the derivation, then it has the form si = ti :Z with
ti 6= ε. Thenσ1 is called asubderivationof a derivationσ if σ has a suffixσ0 satisfying
the following:

1. every transition step inσ0 is of the form sikt 0 ai�! si+1kt 0 or sikt 0 b�! sikt 00, where

t 0 b�! t 00,
2. in σ0, if we replace every step of the form sikt 0 ai�! si+1kt 0 by the step si

ai�! si+1

and we skip every step of the form sikt 0 b�! sikt 00, we get preciselyσ1.

Further, if σ1 andσ are finite, the last term ofσ1 is a process constant, andσ is a prefix
of a derivationσ0, thenσ1 is also asubderivationof σ0.
Remark 11.Let ∆ be a PRS in normal form andσ be a derivation of∆ having a suffix
σ0 of the formσ0 = Xkt a�! (Y:Z)kt u�!. Then, there is a subderivation ofσ whose first
transition stepX

a�!Y:Z corresponds to the first transition step ofσ0.
Intuitively, the subderivation captures the behaviour of the subtermY:Z since its emer-
gence until it is possibly reduced to a term without any sequential composition. Due to
the normal form of∆, the subtermY:Z behaves independently on the rest of the term (as
long as it contains a sequential composition).

Lemma 12. Let ∆ be a PRS in flat(w;B;C)-form. Then, for each X2 Const(∆) and
each(w0;B0;C0)v (w;B;C), the following condition holds:
If there is an infinite derivation X

u�! satisfyingβ(w0;B0;C0), then there is also an
infinite derivation X

v�!tri satisfyingβ(w0;B0;C0).

A sketch of the proof.Given an infinite derivationσ satisfying a formulaβ(σ) =
β(w0;B0;C0) where(w0;B0;C0) v (w;B;C), by trivial equivalentof σ we mean an in-
finite trivial derivation starting with the same term asσ and satisfyingβ(σ). Similarly,
given a finite derivationσ satisfying someγ(σ) = γ(w0;B0) where(w0;B0)v (w;B), by
trivial equivalentof σ we mean a finite trivial derivationσ0 such thatσ0 starts with the
same term asσ, it satisfiesγ(σ), and if the last term ofσ is a process constant, then the
last term ofσ0 is the same process constant.

The lemma is proven by contradiction. We assume that there exist some infinite
derivations violating the condition of the lemma. Letσ be one of these derivations such
that the number of transition steps ofσ generated by sequential non-trivial rules with
actionsa 62 B is minimal (note that this number is always finite as we consider deriva-
tions satisfyingβ(w0;B0;C0) for some(w0;B0;C0)v (w;B;C)). First, we prove that every
subderivation ofσ has a trivial equivalent. Then we replace all subderivations of σ by
the corresponding trivial equivalents. This step is technically nontrivial becauseσ may
have infinitely many subderivations. By the replacement we obtain an infinite derivation
σ0 satisfyingβ(σ) and starting with the same process constant asσ. Moreover,σ0 has
no subderivations and hence it does not contain any sequential operator. Flat(w;B;C)-
form of ∆ (Condition 4) implies thatσ0 has a trivial equivalent. This is also a trivial
equivalent ofσ which means thatσ does not violate the condition of our lemma.

Proof. In this proof, by aβ-formula we always mean a formula of the formβ(w0;B0;C0)
where(w0;B0;C0)v (w;B;C). We also consider only infinite derivations satisfying some
of theseβ-formulae. Remark 6 implies that such an infinite derivationσ satisfies exactly
oneβ-formula. We denote thisβ-formula byβ(σ). Further, bySEQ(σ) we denote the
number of transition stepsti

a�! ti+1 of σ generated by a sequential non-trivial rule and
such thata 62 B. Note thatSEQ(σ) is always finite due to the restrictions on considered
infinite derivations. Given an infinite derivationσ, by its trivial equivalentwe mean an
infinite trivial derivation starting with the same term asσ and satisfyingβ(σ).

Similarly, we consider only finite derivations satisfying some γ(w0;B0) where(w0;B0) v (w;B). Remark 6 implies that such a finite derivationσ satisfies exactly one
γ-language, which is denoted byγ(σ). Given a finite derivationσ, by its trivial equiva-
lent we mean a finite trivial derivationσ0 such thatσ0 starts with the same term asσ, it
satisfiesγ(σ), and if the last term ofσ is a process constant, then the last term ofσ0 is
the same process constant.

Using the introduced terminology, the lemma says that everyinfinite derivation
starting with a process constant has a trivial equivalent. For the sake of contradiction, we
assume that the lemma does not hold. LetΣ be the nonempty set of infinite derivations
violating the lemma and letk= minfSEQ(σ) j σ 2 Σg.

First of all, we prove two claims.

Claim 1 Let σ be an infinite derivation satisfyingSEQ(σ)� k. Then every subderivation
of σ has a trivial equivalent.

Proof of the claimFor finite subderivations, the existence of trivial equivalents follows
directly from the flat(w;B;C)-form of ∆ (Conditions 1 and 2). Letσ1 be an infinite

subderivation ofσ. It has the formσ1 = X
a�!seqY:Z b1�! t1:Z b2�! t2:Z b3�! : : : where

t1; t2; : : : are nonempty terms. There are two cases:

– If a2 B, thenβ(σ1) has the formβ(ε;B0;C0). Hence,σ1 has a trivial equivalent due
to the flat(w;B;C)-form of ∆ (Condition 3).

– If a 62 B, then the first stepX
a�!seqY:Z of σ1 is counted inSEQ(σ1) and the corre-

sponding stepXkt 0 a�!seqY:Zkt 0 of σ is counted inSEQ(σ). Hence, 0< SEQ(σ).
Let σ2 be the derivationσ2 =Y

b1�! t1
b2�! t2

b3�! : : :. As SEQ(σ2)< SEQ(σ1)� k,

the definition ofk implies thatσ2 has a trivial equivalentσ02 = Y
c1�!tri Y1

c2�!tri

Y2
c3�!tri . Further, asσ02 satisfiesβ(σ2), the derivationσ01 = X

a�!seqY:Z c1�!tri

Y1:Z c2�!tri Y2:Z c3�!tri : : : satisfiesβ(σ1). Moreover, the flat(w;B;C)-form of ∆
(Condition 5) implies thatσ01 has a trivial equivalent. Obviously, it is also a trivial
equivalent ofσ1. ut

Claim 2 Let σ be an infinite derivation such thatSEQ(σ) � k, it starts with a paral-
lel term p, and it satisfies a formulaβ(w0;B0;C0). Then there is an infinite derivation
p

u�!par p0 v�! such thatp0 is a parallel term,u2 γ(w0;B0), andv satisfiesβ(ε;C0;C0).
Proof of the claimRemark 5 implies thatσ can be written asp

u1�! t
u2�! wherep

u1�! t
is theminimalprefix of σ satisfyingγ(w0;B0) and such thatt

u2�! satisfiesβ(ε;C0;C0).
Let gSEQ(σ) denote the number of transition steps in the prefixp

u1�! t generated by
sequential non-trivial rules (note thatgSEQ(σ)�SEQ(σ) as inSEQ(σ) we do not count
transition steps labelled with actions ofB). We prove the claim by induction ongSEQ(σ).
The base casegSEQ(σ) = 0 is obvious. Now, assume thatgSEQ(σ)> 0. Sincep is parallel
term and∆ is in normal form, the first transition step ofp

u1�! t counted ingSEQ(σ) has
the formYkp0 a�! (W:Z)kp0 and it corresponds to the first transition stepY

a�!W:Z
of a subderivationσ1. In σ, we replace the subderivationσ1 with its trivial equiva-
lent (whose existence is guaranteed by Claim 1) and we obtaina new derivationσ00
starting withp, satisfyingβ(σ) and such thatgSEQ(σ00) < gSEQ(σ). Hence, the second
claim directly follows from the induction hypothesis. In the following, we describe the
replacement of such a subderivation.

Let σ1 = Y
u�! and σ01 = Y

v�!tri be its trivial equivalent. Letβ(σ1) =
β(c1O1c2O2 : : :cnOn;B00;C00). Thenu;v2 c+1 c+2 : : :c+n :Bω. Recall thatc1;c2; : : : ;cn are
pairwise distinct andB� Actrfc1; : : : ;cng. Intuitively, for every 1� i � n, we replace
the first transition step ofσ1 labelled withci by the sequence of transition steps ofσ01
labelled withci , and then we cancel the other transition steps ofσ1 labelled withci .5

Further, the first transition step ofσ1 labelled with an action ofB is replaced with the
minimal prefix of the remaining part ofσ01 satisfyingγ(ε;B00). Finally, the remaining

5 By replacement of a transition steps1
a�! s2 of σ1 by a sequenceY1

v0�!tri Y2 of transition
steps ofσ0

1 we mean that the corresponding transition steps1kt 0 a�! s2kt 0 of σ is replaced

by Y1kt 0 v0�!tri Y2kt 0, and all immediately succeeding stepss2kt 00 b�! s2kt 000 of σ are replaced

by Y2kt 00 b�! Y2kt 000. Further, by cancellation of a transition steps1
ci�! s2 of σ1 we mean

that the corresponding transition steps1kt 0 ci�! s2kt 0 of σ is replaced byY2kt 0, whereY2 is
the last process constant ofσ0

1 such that a transition underci leads toY2, and all immediately

succeeding stepss2kt 00 b�! s2kt 000 of σ are replaced byY2kt 00 b�!Y2kt 000.

transition steps ofσ1 are orderly replaced with the remaining transition steps ofσ01. The
case whenσ1 and its trivial equivalentσ01 are finite is similar.

It is easy to see that the described replacement operation preserves the fulfilment of
β(σ) and the obtained derivationσ00 satisfiesgSEQ(σ00)< gSEQ(σ). ut

With this claim, we can easily derive a contradiction. Letσ = X
u�! be an infinite

derivation such thatSEQ(σ) = k and it has no trivial equivalent. Further, letβ(σ) =(w0;B0;C0). Note thatC0 is nonempty. Claim 2 says that there is a derivationX
u1�!par

p1
v1�! wherep1 is a parallel term,u1 2 γ(w0;B0), andv1 satisfiesβ(ε;C0;C0). Applying

this claim on the suffixp1
v1�!, we get a derivationp1

u2�!par p2
v2�! wherep2 is a

parallel term,u2 2 γ(ε;C0), andv2 satisfiesβ(ε;C0;C0). Iterating this argument, we get

a sequence(pi
ui+1�!par pi+1)i2N of derivations satisfyingγ(ε;C0). These derivations are

nonempty asC0 is nonempty. Let us consider the derivation

σ0 = X
u1�!par p1

u2�!par p2
u3�!par p3

u4�!par : : :
Flat (w;B;C)-form of ∆ (Condition 4) implies thatσ0 has a trivial equivalent. However,
this is also a trivial equivalent ofσ as bothσ;σ0 start withX andσ0 satisfiesβ(σ). This
is a contradiction. ut
Theorem 13. The problem whether a given PRS∆ in normal form has an infinite run
satisfying a given formulaβ(w;B;C) is decidable.

Proof. Due to Lemmata 9 and 12, the problem can be reduced to the problem whether
there is an infinite derivationX

v�!tri satisfyingβ(w;B;C). This problem corresponds
to LTL model checking of finite-state systems, which is decidable. ut

The following three theorems show that Theorem 13 holds evenfor wPRS andα-
formulae.

Theorem 14. The problem whether a given PRS∆ in normal form has an infinite run
satisfying a givenα-formula is decidable.

Proof. Let ∆ be a PRS in normal form andα(θ1O1 : : :θnOnξ;B) be anα-formula. For

everyθi and every rulet1
b,! t2 such thatb satisfiesθi , we add a rulet1

ai,! t2, whereai

is a fresh action corresponding toθi . Similarly, for everyψ 2 B [fξg and every rule

t1
b,! t2 such thatb satisfiesψ^ ξ, we add a rulet1

aψ,! t2, whereaψ is a fresh action.
Let ∆0 be the resulting PRS system. Note that∆0 is also in normal form. Obviously,∆
has an infinite run satisfying the originalα-formula if and only if∆0 has an infinite run
satisfyingα(a1O1 : : :anOn(aξ_Wb2C b);C), whereC = faψ j ψ 2 Bg. It is an easy ex-
ercise to show that this newα-formula can be effectively transformed into a disjunction
of β-formulae which is equivalent with respect to infinite words. Hence, the problem is
decidable due to Theorem 13. ut
Theorem 15. The problem whether a given PRS∆ has an infinite run satisfying a given
α-formula is decidable.

Proof. Let ∆ be a PRS,α(δ;B) be anα-formula, ande 62 Act(∆) be a fresh action. First
of all, we describe our modification of the standard algorithm [May00] that transforms
∆ into a PRS in normal form.

Let t0 be the initial state of∆. If t0 is not a process constant, we replace it by a fresh

process constantX0 and we add a rewrite ruleX0
a,! t for each actiona and each termt

such thatt0
a�!∆ t. Note that the number of added rules is always finite.

If ∆ is still not in normal form, then there exists a ruler which is neither parallel nor
sequential;r has one of the following forms:

1. r = t
a,! t1kt2 (resp.,r = t1kt2 a,! t) wheret or t1 or t2 is not a parallel term. Let

Z1;Z2;Z 62 Const(∆) be fresh process constants. We replacer with the rulest
e,! Z,

Z
a,!Z1kZ2, Z1

e,! t1, andZ2
e,! t2 (resp.,t1

e,!Z1, t2
e,! Z2, Z1kZ2

a,!Z, andZ
e,! t).

2. r = t
a,! t1:(t2kt3) (resp.,r = t1:(t2kt3) a,! t). Let Z 62 Const(∆) be a fresh process

constant. We modify∆ in two steps. First, we replacet2kt3 by Z in left-hand and

right-hand sides of all rules of∆. Then, we add the rulesZ
e,! t2kt3 andt2kt3 e,! Z.

3. r = t1
a,! t2:X (resp.,r = t2:X a,! t1) wheret1 or t2 is not a process constant. Let

Z1;Z2 62 Const(∆) be fresh process constants. We replacer with the rulest1
e,! Z1,

Z1
a,! Z2:X, andZ2

e,! t2 (resp.,t2
e,! Z2, Z2:X a,! Z1, andZ1

e,! t1).

After a finite number of applications of this procedure (withthe same actione), we
obtain a PRS∆0 in normal form.

We define a formulaα(δ0;B 0), whereB 0 = B [fWa2Act(∆)ag and δ0 arises from
δ = θ1O1 : : :θnOnξ by the following substitution for everyi, 1� i � n.

– If Oi isU, then replace the pairθi U by the pair(e_θi)U .
– If Oi isU+, then replace the pairθi U+ by the sequence(e_θi)UθiU+ .
– If Oi is^X, then replace the pairθi ^X by the sequenceeUθi ^X.
– θnOn = θn^Gs is replaced by the sequenceeUθn^Gs.
– ξ is replaced by(ξ_e).

Let us note that the construction ofB 0 ensures that any word with a suffixeω does
not satisfyα(δ0;B 0). Observe thatu0 j= α(δ0;B 0) if and only if u j= α(δ;B), whereu is
obtained fromu0 by eliminating all occurrences of actione.

Clearly,∆ has an infinite run satisfyingα(δ;B) if and only if ∆0 has an infinite run
satisfyingα(δ0;B 0). As ∆0 is in normal form, we can now apply Theorem 14. ut
Theorem 16. The problem whether a given wPRS system has an infinite run satisfying
a givenα-formula is decidable.

Proof. Let ∆ be a wPRS with the initial statep0t0 andα(δ;B) be anα-formula. We
construct a PRS∆0 with the initial statet0 which can simulate∆. We also define a set of
formulae recognizing correct simulations.

The system∆0 is very similar to∆. We change only actions of rules to hold informa-
tion about control states in the rules and then we remove all control states. To be more

precise, for every rule of the formpt1
a,! pt2 of ∆, we add the rulet1

a[p℄,! t2 to ∆0, and for

every rule of the formpt1
a,! qt2 of ∆, we add the rulet1

a[p<q℄,! t2 to ∆0.

Further, we modify the formulaα(δ;B) in such a way that every occurrence of
each actiona is replaced by

W
q2M(∆)(a[q℄_Wp<qa[p<q℄). Let α(δ0;B 0) be the resulting

formula.
Moreover, for every nonempty subsetfp1; p2; : : : ; pkg �M(∆) of control states sat-

isfying p1 < p2 < :: : < pk andp1 = p0, we define anα-formula

ϕ[p1<:::<pk℄ = α(θ[p1℄Uθ[p1<p2℄^Xθ[p2℄Uθ[p2<p3℄^X : : : θ[pk�1<pk℄^Gsθ[pk℄; /0)
whereθ[pi ℄ =Wa2Act(∆) a[pi ℄ andθ[pi<p j ℄ =Wa2Act(∆) a[pi<p j ℄.

It is easy to see that there is an infinite run of∆ satisfyingα(δ;B) if and only if
there is an infinite run of∆0 satisfyingα(δ0;B 0) andϕ[p1<p2<:::<pk℄ for some control
statesp1; p2; : : : ; pk such thatp1 < p2 < :: : < pk andp1 = p0. As the number of such
sequences is finite and eachϕ[p1<p2<:::<pk℄ is anα-formula, Theorem 15 and Lemma 2
imply that the considered problem is decidable. ut

Theorems 4 and 16 imply the following corollary.

Corollary 17. The model checking problem for wPRS and negated formulae ofA is
decidable.

4 Model Checking for LTL (Fs;Gs)
This section focuses on the fragment LTL(Fs;Gs): we show that formulae of this frag-
ment can be translated intoA and thus the model checking problem for LTL(Fs;Gs) and
wPRS is decidable.

Theorem 18. Every LTL(Fs;Gs) formula can be translated into an equivalent disjunc-
tion ofα-formulae.

Proof. As Fs andGs are dual modalities, we can assume that every LTL(Fs;Gs) for-
mula contains negations only in front of actions. Given an LTL(Fs;Gs) formulaϕ, we
construct a finite setAϕ of α-formulae such thatϕ is equivalent to the disjunction of
formulae inAϕ. Although our proof looks like by induction on the structureof ϕ, it is
in fact by induction on the length ofϕ. Thus, if ϕ 62 LTL(), then we assume that for
every LTL(Fs;Gs) formulaϕ0 shorter thanϕ we can construct the corresponding setAϕ0 .
In this proof,p represents a formula of LTL(). The structure ofϕ fits into one of the
following cases.�p Casep: In this case,ϕ is equivalent top^Gstt. HenceAϕ = fα(p^Gstt; /0)g.�_ Caseϕ1_ϕ2: Due to induction hypothesis, we can assume that we have setsAϕ1

andAϕ2. Clearly,Aϕ = Aϕ1 [Aϕ2.�^ Caseϕ1^ϕ2: Due to Lemma 2, the setAϕ can be constructed from the setsAϕ1

andAϕ2.�Fs CaseFsϕ1: As Fs(α1_α2)� (Fsα1)_ (Fsα2) andFs(α^GsFsφ)� (Fsα)^ (GsFsφ),
we setAϕ = fα(ttU+ δ;B) j α(δ;B) 2 Aϕ1g.�Gs CaseGsϕ1: This case is divided into the following subcases according to the struc-
ture ofϕ1.

Æp CaseGsp: AsGsp is equivalent tott^Gsp, we setAϕ = fα(tt^Gsp; /0)g.Æ^ CaseGs(ϕ2^ϕ3): As Gs(ϕ2^ϕ3) � (Gsϕ2)^ (Gsϕ3), the setAϕ can be con-
structed fromAGsϕ2 andAGsϕ3 using Lemma 2. Note thatAGsϕ2 andAGsϕ3 can
be constructed becauseGsϕ2 andGsϕ3 are shorter thanGs(ϕ2^ϕ3).ÆFs CaseGsFsϕ2: This case is again divided into the following subcases.�p CaseGsFsp: As p2 LTL(), we directly setAϕ = fα(tt^Gstt;fpg)g.�_ CaseGsFs(ϕ3_ϕ4): AsGsFs(ϕ3_ϕ4)� (GsFsϕ3)_(GsFsϕ4), we setAϕ =

AGsFsϕ3[AGsFsϕ4.�^ CaseGsFs(ϕ3^ϕ4): This case is also divided into subcases depending on
the formulaeϕ3 andϕ4.�p CaseGsFs(p3^ p4): As p3^ p42 LTL(), this subcase has already been

covered by CaseGsFsp.�_ CaseGsFs(ϕ3^(ϕ5_ϕ6)): AsGsFs(ϕ3^(ϕ5_ϕ6))�GsFs(ϕ3^ϕ5)_GsFs(ϕ3^ϕ6), we setAϕ = AGsFs(ϕ3^ϕ5)[AGsFs(ϕ3^ϕ6).�Fs CaseGsFs(ϕ3^Fsϕ5): AsGsFs(ϕ3^Fsϕ5)� (GsFsϕ3)^ (GsFsϕ5), the
setAϕ can be constructed fromAGsFsϕ3 andAGsFsϕ5 using Lemma 2.�Gs CaseGsFs(ϕ3^Gsϕ5): AsGsFs(ϕ3^Gsϕ5)� (GsFsϕ3)^ (GsFsGsϕ5),
the set Aϕ can be constructed fromAGsFsϕ3 and AGsFsGsϕ5 using
Lemma 2.�Fs CaseGsFsFsϕ3: AsGsFsFsϕ3 � GsFsϕ3, we setAϕ = AGsFsϕ1.�Gs CaseGsFsGsϕ3: A word u satisfiesGsFsGsϕ3 iff juj= 1 or u is an infinite

word satisfyingFsGsϕ3. Note thatGs:tt is satisfied only by finite words of
length one. Further, a wordu satisfies(Fstt)^(GsFstt) iff u is infinite. Thus,GsFsGsϕ3 � (Gs:tt)_ϕ0 whereϕ0 = (Fstt)^ (GsFstt)^ (FsGsϕ3). Hence,
Aϕ = AGs:tt [Aϕ0 whereAϕ0 is constructed fromAFstt, AGsFstt, andAFsGsϕ3

using Lemma 2.Æ_ CaseGs(ϕ2_ϕ3): According to the structure ofϕ2 andϕ3, there are the fol-
lowing subcases.�p CaseGs(p2_ p3): As p2_ p3 2 LTL(), this subcase has already been cov-

ered by CaseGsp.�^ CaseGs(ϕ2_ (ϕ4^ϕ5)): As Gs(ϕ2_ (ϕ4^ϕ5)) � Gs(ϕ2_ϕ4)^Gs(ϕ2_
ϕ5), the setAϕ can be constructed fromAGs(ϕ2_ϕ4) andAGs(ϕ2_ϕ5) using
Lemma 2.�Fs CaseGs(ϕ2_Fsϕ4): It holds thatGs(ϕ2_Fsϕ4) � (Gsϕ2)_Fs(ϕ4^ϕ2^Gsϕ2) _ GsFsϕ4. Therefore, the setAϕ can be constructed asAGsϕ2 [fα(ttU+ δ;B) j α(δ;B) 2 Aϕ4^ϕ2^Gsϕ2g [AGsFsϕ4, whereAϕ4^ϕ2^Gsϕ2 is
constructed fromAϕ4, Aϕ2, andAGsϕ2 due to Lemma 2.�Gs CaseGs(ϕ2_Gsϕ4): There are only the following two subcases (the others
fit to some of the previous cases).(i) Case Gs(Wϕ02GGsϕ0): It holds that Gs(Wϕ02GGsϕ0) � (Gs:tt) _W

ϕ02G(XGsϕ0). Therefore, the setAϕ can be constructed asAGs:tt [S
ϕ02Gfα(tt^Xδ;B) j α(δ;B) 2 AGsϕ0g.(ii) Case Gs(p2 _ Wϕ12GGsϕ1): As Gs(p2 _ Wϕ02GGsϕ0) � (Gsp2) _W
ϕ02G(X(p2UGsϕ0)), the set Aϕ can be constructed asAGs p2 [S
ϕ02Gfα(tt^Xp2Uδ;B) j α(δ;B) 2 AGsϕ0g.

ÆGs CaseGs(Gsϕ2): As Gs(Gsϕ2) � (Gs:tt)_ (XGsϕ2), the setAϕ can be con-
structed asAGs:tt[fα(tt^Xδ;B) j α(δ;B) 2 AGsϕ2g. ut

As LTL(Fs;Gs) is closed under negation, Theorem 18 and Corollary 17 give usthe
following.

Corollary 19. The model checking problem for wPRS and LTL(Fs;Gs) is decidable.

This problem isEXPSPACE-hard due toEXPSPACE-hardness of the model checking
problem for LTL(F;G) and PN [Hab97]. Our decidability proof does not provide any
primitive recursive upper bound as it employs reachabilityfor PN (for example, it is
used in a decision procedure for reachability for wPRS [KŘS04a]), for which no prim-
itive recursive upper bound is known.

5 Model Checking for LTL (Fs;Gs;Ps;Hs)
This section extends the results of the previous two sections to handle past modalities
eventually in the strict pastandalways in the strict pastas well.

We start with a past extension ofα-formulae called Pα-formulae. Intuitively, a Pα-
formula is a conjunction of anα-formula and a past version of theα-formula.

A formal definition of a Pα-formula makes use ofϕ1S+ ϕ2 to abbreviateϕ1 ^Y(ϕ1Sϕ2).
Definition 20. Let η = ι1P1ι2P2 : : : ιmPmιm+1, where m> 0, eachι j 2 LTL(), Pm is
‘^Hs’, and, for each j< m, Pj is either ‘S’ or ‘ S+’ or ‘ ^Y’. Further, let α(δ;B) be an
α-formula. Then aPα-formulais defined as

Pα(η;δ;B) = �ι1P1(ι2P2 : : : (ιmPmιm+1) : : :)� ^ α(δ;B) :
The fragmentPA consists of all finite disjunctions ofPα-formulae.

Note that the definition of a Pα-formula does not contain any past counterpart of^ψ2BGsFsψ as every history is finite.
Therefore, a pointed word(u;k), whereu = a0a1a2 : : :, satisfies Pα(η;δ;B) if and

only if a0a1 : : :ak can be written as a concatenationvm+1:vm: � � � :v2:v1, where each word
vi consists only of actions satisfyingιi and

– jvi j � 0 if i = m+1 orPi is ‘S’,
– jvi j> 0 if Pi is ‘S+’,
– jvi j= 1 if Pi is ‘^Y’ or ‘^Hs’.

The following lemma says that the fragment PA is ‘semantically closed’ under con-
junction and application of some temporal operators. As in the case of Lemma 2, the
proof is intuitively clear but some parts are quite technical. We refer to [̌Reh07] for
some hints.

Lemma 21. Let ϕ be a Pα-formula and p2 LTL(). FormulaeXϕ, Yϕ, pUϕ, pSϕ,Fsϕ, Psϕ, and also any conjunction ofPα-formulae can be effectively converted into
a globally equivalent disjunction ofPα-formulae.

The next step is to show that we can decide whether a given wPRSsystem has a run
satisfying a given Pα-formula. The proof utilizes Corollary 17.

Theorem 22. The problem whether a given wPRS system has a run satisfying agiven
Pα-formula is decidable.

Proof. A run over a nonempty (finite or infinite) wordu= a0a1a2 : : : satisfies a formula
ϕ iff (u;0) j= ϕ. Moreover,(u;0) j= Pα(η;δ;B) iff (a0;0) j= η and(u;0) j= α(δ;B).
Let η = ι1P1ι2P2 : : : ιmPmιm+1. It follows from the semantics of LTL that(a0;0) j= η if
and only if (a0;0) j= ιm andPi = S for all i < m. Therefore, the problem is to check
whetherPi = S for all i < m and whether the given wPRS system has a run satisfying
ιm^α(δ;B). As ιm^α(δ;B) can be easily translated into a disjunction ofα-formulae,
Corollary 17 finishes the proof. ut

It remains to show that every LTL(Fs;Gs;Ps;Hs) formula can be translated into a
PA formula. The proof uses the same approach as the one of Theorem 18: it proceeds
by a thorough analysis of the structure of a translated formula. The full proof is in
Appendix A.

Theorem 23. Every LTL(Fs;Gs;Ps;Hs) formula ϕ can be translated into a globally
equivalent disjunction ofPα-formulae.

As LTL(Fs;Gs;Ps;Hs) is closed under negation, Theorems 23 and 22 give us the
following.

Corollary 24. The model checking problem for wPRS and LTL(Fs;Gs;Ps;Hs) is decid-
able.

Moreover, we can show that the pointed model checking problem is decidable
for wPRS and LTL(Fs;Gs;Ps;Hs) as well. Again, we solve the dual problem for Pα-
formulae.

Theorem 25. Let ∆ be a wPRS and pt be a reachable nonterminal state of∆. The
problem whether L(pt;∆) contains a pointed word(u; i) satisfying a givenPα-formula
is decidable.

Proof. Let ∆ = (R; p0; t0) be a wPRS andpt be a reachable nonterminal state of∆. We
construct a wPRS∆0 = (R0; p0; t0:X) whereX 62 Const(∆) is a fresh process constant,

R0 = R[f(p(t:X) a,! pXa);(pXa
f,! pYa);(pYa

a,! p0t 0) j pt
a�! p0t 0g,

f 62 Act(∆) is a fresh action, andXa;Ya 62 Const(∆) are fresh process constants for each
a2 Act(∆).

Let u = a0a1a2 : : : be a word. It is easy to see that(u; i) is in L(pt;∆) iff
a0a1 : : :ai�1ai : f :ai :ai+1 : : : is in L(∆0). Hence, for any given Pα-formulaϕ=Pα(η;δ;B)
we construct a Pα-formulaϕ0 = Pα(η; tt^X f ^Xδ;B). We get that

L(pt;∆) j= Pα(η;δ;B) () L(∆0) j= F(Pα(η; tt^X f ^Xδ;B))
and due to Lemma 21 and Theorem 22 the proof is done. ut

As LTL(Fs;Gs;Ps;Hs) is closed under negation and Theorem 23 works with global
equivalence, Theorem 25 gives us the following.

Corollary 26. The pointed model checking problem is decidable for wPRS and
LTL(Fs;Gs;Ps;Hs).
6 Undecidability Results

Obviously, the model checking for wPRS and LTL(X) is decidable. Hence, to show that
the decidability boundary of Figure 2 is drawn correctly, wehave to prove that the model

checking problem is undecidable for wPRS and the fragments LTL(U) and LTL(∞F;X).
In fact, we show that the problem is undecidable even for the subclass of PA systems
and the mentioned LTL fragments. The undecidability proofsare based on reductions
from the non-halting problem for Minsky 2-counter machines, which is known to be
undecidable [Min67].

First of all, we recall the definition of Minsky machines. AMinsky 2-counter ma-
chine, or amachinefor short, is a finite sequenceN = l1 : i1; l2 : i2; : : : ; ln�1 : in�1; ln :
halt, wheren� 1, l1; l2; : : : ; ln arelabels, and eachi j is an instruction for either

– increment: ck:= ck+1; goto lr , or
– test-and-decrement: if ck>0 then ck:= ck-1; goto lr else goto ls

wherek2 f1;2g and 1� r;s� n.
The machineN induces a transition relation�! over configurationsof the form(l j ;v1;v2), wherel j is a label of an instruction to be executed andv1;v2 � 0 represent

current values of countersc1 andc2, respectively.
We say that the machineN halts if (l1;0;0) �!� (ln;v1;v2) for some numbers

v1;v2 � 0, where�!� denotes the reflexive and transitive closure of�!. The non-
halting problemis to decide whether a given machineN does not halt. The problem is
undecidable [Min67].

Theorem 27. Model checking of PA against LTL(U) is undecidable.

Proof. Given a machineN, we construct a PA system∆N with the initial stateD1kD2kH
and set of rules containing

– for every instructionl i : ck:= ck+1; goto lr , the rules

Dk
l i,! Sk:Dk Ck

l i,! Sk:Ck Sk
inci,!Ck:Sk

– for every instructionl i : if ck>0 then ck:= ck-1; goto lr else goto ls, the
rules

Dk
l i,! Ek Ek

zeroi,! Dk Ck
l i,! ε Sk

deci,! ε

– the ruleH
ln,! H corresponding to the instructionln : halt.

Now, we define a formulaψ describing a correct step of the constructed PA system∆N

when simulating the machineN. The formulaψ is the following conjunction:

V
eachl i :ck:= ck+1; goto lr

�(l i =) (l i U inci)) ^ (inci =) (inci U lr))� ^V
eachl i :if ck>0 then ck:= ck-1; goto lr else goto ls

�(l i =) (l i U(deci _zeroi)))^ (deci =) (deciU lr))^ (zeroi =) (zeroiU ls))�
Finally, we setϕ = l1^ (ψU ln). It is easy to see that the machineN halts if and only
if the system∆N has a run satisfyingϕ. In other words, the machineN does not halt if
and only ifL(∆N) j= :ϕ. ut
Theorem 28. Model checking of PA against LTL(∞F;X) is undecidable.

Proof. Given a machineN = l1 : i1; l2 : i2; : : : ; ln�1 : in�1; ln : halt, we construct a PA
system∆N with initial stateD1kD2kH and set of rules containing

– for every instructionl i : ck:= ck+1; goto lr , the rules

Dk
inci,!Ck:Dk Ck

inci,!Ck:Ck

– for every instructionl i : if ck>0 then ck:= ck-1; goto lr else goto ls, the
rules

Dk
zeroi,! Dk Ck

deci,! ε

– rules corresponding tohalt and instruction labels

H
halt,! H H

l i,! H for every 1� i � n

– and the rules allowing to reset the counters

C1
del1,! ε C2

del2,! ε D1
reset1,! D1 D2

reset2,! D2

As in the previous proof, we define a formulaψ describing a correct step of the con-
structed PA system∆N when simulating the machineN. The formulaψ is the following
conjunction:V

eachl i :ck:= ck+1; goto lr

�(l i =) Xinci) ^ (inci =) Xlr)� ^V
eachl i :if ck>0 then ck:= ck-1; goto lr else goto ls

�(l i =) X(deci _zeroi))^ (deci =) Xlr)^ (zeroi =) Xls)�^ (ln =) Xhalt)
Moreover, we define a formulaρ describing a correct step of resetting counters and
restarting the simulation.

ρ = (halt=) X(del1_ reset1)) ^ (del1 =) X(del1_ reset1))^ (reset1 =) X(del2_ reset2)) ^ (del2 =) X(del2_ reset2))^ (reset2 =) Xl1)

The formulaϕ = ∞G(ψ ^ ρ) ^ ∞Fhalt says that at some point thehalt action occurs, both
counters are reset, a correct simulation is started, and whenever the simulation ends
(with halt action), this sequence of events is performed again. Moreover, note thatϕ is
satisfied only if the actionhalt appears infinitely many times. Hence, there is a run of
∆N satisfyingϕ if and only if N halts. In other words, the machineN does not halt if
and only ifL(∆N) j= :ϕ. ut

In the proofs of the previous two theorems, the PA systems constructed there have
only infinite runs. This means that model checking of infiniteruns remains undecidable

for PA and both LTL(U) and LTL(∞F;X).
It can be easily shown that model checking of finite runs for PAand LTL(U) is

undecidable as well. To that end, it suffices to modify the construction in the proof of

Theorem 27 by adding a ruleX
e,! ε for everyX 2 fH;C1;D1;S1;C2;D2;S2g.

In contrast, model checking offinite runs for LTL(∞F;X) is decidable, even for

wPRS. The proof is based on the observation that a nonempty finite run satisfies
∞Fϕ

if and only if the last action of the run satisfiesϕ. The same holds for the formula
∞Gϕ.

Hence, if we restrict only to nonempty finite runs, the modalities
∞F; ∞G are equivalent.

The observation also implies that
∞F:ϕ is equivalent to:∞Fϕ,

∞F(ϕ1^ϕ2) is equivalent to(∞Fϕ1)^ (∞Fϕ2), ∞F∞Fϕ is equivalent to
∞Fϕ, and that

∞FXϕ never holds. It is now easy to see

that every LTL(∞F;X) formula can describe only a bounded prefix of a finite run (using
the modalityX) and the last action of the run. Thus, decidability of model checking of

finite runs for LTL(∞F;X) follows from decidability of thereachability Hennessy-Milner
propertyproblem [KŘS05].

7 Model Checking for LTL det

This section deals with the LTLdet fragment also known as ‘the common fragment of
CTL and LTL’ [Mai00]. Using our results of Section 3 we show that the model checking
problem for wPRS and this fragment is decidable. A definitionof LTLdet employs a
binary modalityweak until, denoted withW, with the meaningϕWψ � Gϕ _ ϕUψ.

Definition 29. Let Act= fa;b; � � �g be a countably infinite set of atomic actions. The
syntax ofLTLdet formulais defined as follows.

ϕ ::= p j ϕ1^ϕ2 j (p^ϕ1)_ (:p^ϕ2) j Xϕ1 j(p^ϕ1)U(:p^ϕ2) j (p^ϕ1)W (:p^ϕ2),
where p ranges over LTL().

Note that LTLdet is not closed under application of negation. To prove the decidabil-
ity of model checking for wPRS an LTLdet, we show that thenegationof every LTLdet

formula can be converted into an equivalent disjunction ofα-formulae.

Theorem 30. A negation of every LTLdet formula can be translated into an equivalent
disjunction ofα-formulae.

Proof. Given an LTLdet formulaϕ, we construct a finite setA:ϕ of α-formulae such that:ϕ is equivalent to the disjunction of formulae inA:ϕ. The proof uses the following
equivalences. Gstt � tt (1):Xϕ � Gs:tt _ X:ϕ (2)

The formulaGs:tt occurring in the second equivalence is satisfied only by words of
length 1. These words satisfy also every formula of the form:Xϕ, but no formula of
the formX:ϕ.

The proof is by induction on the structure ofϕ. The formula has one of the following
forms:�p Casep: Using (1), we get that:p� :p^Gstt. Hence, we defineA:ϕ = fα(:p^Gstt; /0)g.�X CaseXϕ1: Using (2), we get that:Xϕ1 � Gs:tt _ X:ϕ1. Hence, we setA:ϕ =fα(tt^ Gs:tt; /0)g[fα(tt^ Xδ;B) j α(δ;B) 2 A:ϕ1g.�^ Caseϕ1^ϕ2: Clearly, we setA:ϕ = A:ϕ1 [A:ϕ2.�_ Case(p^ϕ1)_(:p^ϕ2): We obtainA:ϕ from the set of conjunctionsfα(δ1;B1)^

α(δ2;B2) j α(δ1;B1) 2 A:(p^ϕ1) andα(δ2;B2) 2 A:(:p^ϕ2)g using Lemma 2.�U Case(p^ϕ1)U(:p^ϕ2): As :((p^ϕ1)U (:p^ϕ2)) � pW ((p^:ϕ1)_ (:p^:ϕ2)) � Gp_ pU ((p^ :ϕ1) _ (:p^ :ϕ2)) � (p^ Gsp) _ pU(:((:p_ ϕ1) ^(p_ϕ2))), the construction can be done as follows. Applying the previous con-
structions, we obtainA0 = A:((:p_ϕ1)^(p_ϕ2)). Now, A:ϕ can be defined asfα(p^Gsp; /0)g[fα(pUδ;B) j α(δ;B) 2 A0g.�W Case (p^ ϕ1)W (:p^ ϕ2): Similarly to the case(p^ ϕ1)U(:p^ ϕ2), we get:((p^ϕ1)W (:p^ϕ2)) � pU(:((:p_ϕ1)^ (p_ϕ2))). Therefore,A:ϕ can be
constructed asfα(pUδ;B) j α(δ;B) 2 A:((:p_ϕ1)^(p_ϕ2))g. ut

The previous theorem and Corollary 17 give us the following.

Corollary 31. The model checking problem for wPRS and LTLdet is decidable.

8 Conclusion

The paper brings several new (un)decidability results on model checking of wPRS
classes and fragments of LTL with both future and past modalities (see Figure 2). In
particular, we have established the decidability border ofthe problem for basic LTL
fragments by showing that it is decidable for wPRS and LTL(Fs;Gs;Ps;Hs), but it is

undecidable even for PA and LTL(U) or LTL(∞F;X). It is known that the problem is
decidable for all wPRS classes not subsuming PA (i.e. pushdown processes, Petri nets,
and all their subclasses) and the whole LTL.

Now we try to provide some intuitive explanations of the decidability boundary lo-
cation. Going through the paper, one can verify that every formula of LTL(Fs;Gs;Ps;Hs)
can be translated into an initially equivalent disjunctionof α-formulae. Hence, the

model checking problem for LTL(Fs;Gs;Ps;Hs) reduces to the problem whether a given
wPRS system has a run satisfying a givenα-formula. Everyα-formula α(δ;B) (see
Definition 1) consists of two parts. The first part, corresponding to α(δ; /0), can be
translated into a1-weak automaton(also calledvery weak automaton– an automa-
ton without cycles except of self loops). The problem of existence of a run accepted
by such an automaton reduces to the reachability problem forwPRS, which is decid-
able due to [ǨRS04a]. The second part is a conjunction of formulae of the formGsFsψ,
i.e. a fairness condition. Such a fairness condition corresponds to an automaton that is
not 1-weak. Fortunately, there is a result of [Boz05] sayingthat the problem whether a
PRS has an infinite run satisfying a given fairness conditionis decidable. These obser-
vations support an intuition for decidability of the model checking problem for wPRS
and LTL(Fs;Gs;Ps;Hs).

Looking at the decidability border passing between LTL(∞F) and LTL(∞F;X), one
may naturally ask whether theX operator causes undecidability. Let us note that theX
operator does not lead to undecidability in general. For example,α-formulae employs

next operators too. The proof showing undecidability of model checking for LTL(∞F;X)
contains an LTL formula where theX operator is nested in the left argument of anU
operator. Similarly, in the case of the undecidability proof for LTL (U), the constructed
formula employsU operator nested in the left argument of anotherU operator. These
are quintessential LTL constructions leading to (non-self) loops in the corresponding
automata. That is why our decidability proof cannot work forthese fragments.

Acknowledgment. We would like to thank an anonymous referee for valuable com-
ments.

The authors have been partially supported as follows: M. Křetı́nský by Ministry of
Education of the Czech Republic, project No. MSM 0021622419, and by the Czech
Science Foundation, grant No. 201/06/1338. V.Řehák by the research centreInstitute
for Theoretical Computer Science (ITI), project No. 1M0545. J. Strejček by the Czech
Science Foundation, grant No. 201/08/P375.

A preliminary version of this paper has been written during L. Bozzelli’s postdoc
stay in LSV, CNRS & ENS Cachan and J. Strejček’s postdoc stayin LaBRI, Université
Bordeaux 1.

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata:
Application to Model-Checking. InProc. of CONCUR’97, volume 1243 ofLNCS,
pages 135–150, 1997.

[BH96] A. Bouajjani and P. Habermehl. Constrained Properties, Semilinear Systems, and Petri
Nets. InProc. of CONCUR’96, volume 1119 ofLNCS, pages 481–497. Springer,
1996.

[BKŘS06] Laura Bozzelli, Mojmı́r Křetı́nský, VojtěcȟRehák, and Jan Strejček. On decidability
of LTL model checking for process rewrite systems. InFSTTCS 2006, volume 4337
of LNCS, pages 248–259. Springer-Verlag, 2006.

[Boz05] L. Bozzelli. Model checking for process rewrite systems and a class of action-based
regular properties. InProc. of VMCAI’05, volume 3385 ofLNCS, pages 282–297.
Springer, 2005.

[Esp94] J. Esparza. On the Decidability of Model Checking for Several mu-calculi and Petri
Nets. InCAAP, volume 787 ofLNCS, pages 115–129. Springer, 1994.

[EVW02] K. Etessami, M. Y. Vardi, and Th. Wilke. First-orderlogic with two variables and
unary temporal logic.Information and Computation, 179(2):279–295, 2002.

[Gab87] Dov Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic
for Interactive Systems. InTemporal Logic in Specification, volume 398 ofLNCS,
pages 409–448, 1987.

[Hab97] P. Habermehl. On the complexity of the linear-timeµ-calculus for Petri nets. In
Proceedings of ICATPN’97, volume 1248 ofLNCS, pages 102–116. Springer, 1997.

[KŘS04a] M. Křetı́nský, V.̌Rehák, and J. Strejček. Extended Process Rewrite Systems: Expres-
siveness and Reachability. InProceedings of CONCUR’04, volume 3170 ofLNCS,
pages 355–370. Springer, 2004.

[KŘS04b] M. Křetı́nský, V.Řehák, and J. Strejček. On Extensions of Process Rewrite Sys-
tems: Rewrite Systems with Weak Finite-State Unit. InProceedings of INFINITY’03,
volume 98 ofElectr. Notes Theor. Comput. Sci., pages 75–88. Elsevier, 2004.

[KŘS05] M. Křetı́nský, V.Řehák, and J. Strejček. Reachability of Hennessy-Milnerproperties
for weakly extended PRS. InProceedings of FSTTCS 2005, volume 3821 ofLNCS,
pages 213–224. Springer, 2005.

[KŘS07] M. Křetı́nský, V.Řehák, and J. Strejček. On Decidability of LTL+Past ModelCheck-
ing for Process Rewrite Systems. InProceedings of INFINITY’07, Electr. Notes Theor.
Comput. Sci. Elsevier, 2007. To appear.

[Lip76] R. Lipton. The reachability problem is exponential-space hard. Technical Report 62,
Department of Computer Science, Yale University, 1976.

[Mai00] M. Maidl. The common fragment of CTL and LTL. InProc. 41th Annual Symposium
on Foundations of Computer Science, pages 643–652, 2000.

[May84] Ernst W. Mayr. An algorithm for the general Petri netreachability problem.SIAM
Journal on Computing, 13(3):441–460, 1984.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems forInfinite-State
Systems. PhD thesis, Technische Universität München, 1998.

[May00] R. Mayr. Process rewrite systems.Information and Computation, 156(1):264–286,
2000.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
[Pnu77] A. Pnueli. The Temporal Logic of Programs. InProc. 18th IEEE Symposium on the

Foundations of Computer Science, pages 46–57, 1977.
[Řeh07] V.Řehák. On Extensions of Process Rewrite Systems. PhD thesis, Faculty of Infor-

matics, Masaryk University, Brno, 2007.
[Str04] J. Strejček.Linear Temporal Logic: Expressiveness and Model Checking. PhD thesis,

Faculty of Informatics, Masaryk University, Brno, 2004.

A Proof of Theorem 23

Theorem 23 Every LTL(Fs;Gs;Ps;Hs) formula ϕ can be translated into a globally
equivalent disjunction of Pα-formulae.

Proof. As Fs;Gs and Ps;Hs are dual modalities, we can assume thatϕ is an
LTL(Fs;Gs;Ps;Hs) formula containing negations in front of actions only. We construct
a finite setAϕ of Pα-formulae such thatϕ is globally equivalent to the disjunction of
formulae inAϕ. As in the case of Theorem 18, the proof is done by induction onthe
length ofϕ. Thus, ifϕ 62 LTL(), then we assume that, for each LTL(Fs;Gs;Ps;Hs) for-
mulaϕ0 shorter thanϕ, we can construct the corresponding setAϕ0 . Let p be a formula
of LTL(). The structure ofϕ fits into one of the following cases.�p Case p: In this case,ϕ is equivalent top^Gstt. HenceAϕ = fPα(tt^Hstt; p^Gstt; /0)g.�_ Caseϕ1_ϕ2: Due to induction hypothesis, we can assume that we have setsAϕ1

andAϕ2. Clearly,Aϕ = Aϕ1 [Aϕ2.�^ Caseϕ1^ϕ2: Due to Lemma 21,Aϕ can be constructed from the setsAϕ1 andAϕ2.�Fs CaseFsϕ1: Due to Lemma 21, the setAϕ can be constructed from the setAϕ1.�Ps CasePsϕ1: Due to Lemma 21, the setAϕ can be constructed from the setAϕ1.�Gs CaseGsϕ1 is divided into the following subcases according to the structure ofϕ1

:Æp CaseGsp: As Gsp is equivalent tott^ Gsp, we setAϕ = fPα(tt ^Hstt; tt ^Gsp; /0)g.Æ^ CaseGs(ϕ2^ϕ3): As Gs(ϕ2^ϕ3) � (Gsϕ2)^ (Gsϕ3), the setAϕ can be con-
structed fromAGsϕ2 andAGsϕ3 using Lemma 21. Note thatAGsϕ2 andAGsϕ3 can
be constructed becauseGsϕ2 andGsϕ3 are shorter thanGs(ϕ2^ϕ3).ÆFs CaseGsFsϕ2: This case is again divided into the following subcases.�p Case GsFsp: As p 2 LTL(), we directly setAϕ = fPα(tt ^ Hstt; tt ^Gstt;fpg)g.�_ CaseGsFs(ϕ3_ϕ4): AsGsFs(ϕ3_ϕ4)� (GsFsϕ3)_(GsFsϕ4), we setAϕ =

AGsFsϕ3[AGsFsϕ4.�^ CaseGsFs(ϕ3^ϕ4): This case is also divided into subcases depending on
the formulaeϕ3 andϕ4.�p CaseGsFs(p3^ p4): As p3^ p42 LTL(), this subcase has already been

covered by CaseGsFsp.�_ CaseGsFs(ϕ3^(ϕ5_ϕ6)): AsGsFs(ϕ3^(ϕ5_ϕ6))�GsFs(ϕ3^ϕ5)_GsFs(ϕ3^ϕ6), we setAϕ = AGsFs(ϕ3^ϕ5)[AGsFs(ϕ3^ϕ6).�Fs CaseGsFs(ϕ3^Fsϕ5): AsGsFs(ϕ3^Fsϕ5)� (GsFsϕ3)^ (GsFsϕ5), the
setAϕ can be constructed fromAGsFsϕ3 andAGsFsϕ5 using Lemma 21.�Ps CaseGsFs(ϕ3^Psϕ5): As GsFs(ϕ3^Psϕ5) � (GsFsϕ3)^ (GsFsPsϕ5),
the set Aϕ can be constructed fromAGsFsϕ3 and AGsFsPsϕ5 using
Lemma 21.�Gs CaseGsFs(ϕ3^Gsϕ5): AsGsFs(ϕ3^Gsϕ5)� (GsFsϕ3)^(GsFsGsϕ5),
the set Aϕ can be constructed fromAGsFsϕ3 and AGsFsGsϕ5 using
Lemma 21.�Hs CaseGsFs(ϕ3^Hsϕ5): AsGsFs(ϕ3^Hsϕ5)� (GsFsϕ3)^(GsFsHsϕ5),
the set Aϕ can be constructed fromAGsFsϕ3 and AGsFsHsϕ5 using
Lemma 21.�Fs CaseGsFsFsϕ3: AsGsFsFsϕ3 � GsFsϕ3, we setAϕ = AGsFsϕ3.

�Ps CaseGsFsPsϕ3: A pointed word(u; i) satisfiesGsFsPsϕ3 iff i = juj�1 oru
is an infinite word satisfyingFϕ3. Note thatGs:tt is satisfied only by finite
words at their last position. Further, a wordu satisfies(Fstt)^ (GsFstt) iff
u is infinite. Thus,GsFsPsϕ3 � (Gs:tt)_ϕ0 whereϕ0 = (Fstt)^ (GsFstt)^(ϕ3_Psϕ3_Fsϕ3). Hence,Aϕ =AGs:tt[Aϕ0 whereAϕ0 is constructed from
AFstt, AGsFstt, andAϕ3[APsϕ3 [AFsϕ3 using Lemma 21.�Gs CaseGsFsGsϕ3: A pointed word(u; i) satisfiesGsFsGsϕ3 iff i = juj�1
or u is an infinite word satisfyingFsGsϕ3. Thus,GsFsGsϕ3 � (Gs:tt)_ϕ0
whereϕ0 = (Fstt)^ (GsFstt)^ (FsGsϕ3). Hence,Aϕ = AGs:tt [Aϕ0 where
Aϕ0 is constructed fromAFstt, AGsFstt, andAFsGsϕ3 using Lemma 21.�Hs CaseGsFsHsϕ3: A pointed word(u; i) satisfiesGsFsHsϕ3 iff i = juj � 1
or u is an infinite word satisfyingGϕ3. Thus,GsFsHsϕ3 � (Gs:tt) _ ϕ0
whereϕ0 = (Fstt)^(GsFstt)^(ϕ3^Hsϕ3^Gsϕ3). Hence,Aϕ =AGs:tt[Aϕ0
whereAϕ0 is constructed fromAFstt, AGsFstt, Aϕ3, AHsϕ3, andAGsϕ3 using
Lemma 21.ÆPs CaseGsPsϕ2: A pointed word(u; i) satisfiesGsPsϕ2 iff i = juj � 1 or (u; i)

satisfiesPϕ2. Hence,Aϕ = AGs:tt[Aϕ2 [APsϕ2.Æ_ CaseGs(ϕ2_ϕ3): According to the structure ofϕ2 andϕ3, there are the fol-
lowing subcases.�p CaseGs(p2_ p3): As p2_ p3 2 LTL(), this subcase has already been cov-

ered by CaseGsp.�^ CaseGs(ϕ2_ (ϕ4^ϕ5)): AsGs(ϕ2_ (ϕ4^ϕ5))� Gs(ϕ2_ϕ4)^Gs(ϕ2_
ϕ5), the setAϕ can be constructed fromAGs(ϕ2_ϕ4) andAGs(ϕ2_ϕ5) using
Lemma 21.�Fs CaseGs(ϕ2 _ Fsϕ4): It holds thatGs(ϕ2 _ Fsϕ4) � (Gsϕ2) _ Fs(Fsϕ4 ^Gsϕ2) _ GsFsϕ4. Therefore, the setAϕ can be constructed asAGsϕ2 [
AFs(Fsϕ4^Gsϕ2) [AGsFsϕ4, whereAFs(Fsϕ4^Gsϕ2) is obtained fromAFsϕ4 and
AGsϕ2 using Lemma 21.�Hs Case Gs(ϕ2 _ Hsϕ4): As Gs(ϕ2 _ Hsϕ4) � (Gsϕ2) _ Fs(Hsϕ4 ^Gsϕ2) _ GsHsϕ4. Hence,Aϕ = AGsϕ2 [AFs(Hsϕ4^Gsϕ2) [A(GsHsϕ4) where
AFs(Hsϕ4^Gsϕ2) can be obtained fromAHsϕ4 andAGsϕ2 using Lemma 21.�Gs;Ps There are only the following six subcases (the others fit to some of the
previous cases).(i) Case Gs(Wϕ02GGsϕ0): It holds that Gs(Wϕ02GGsϕ0) � (Gs:tt) _W

ϕ02G(XGsϕ0). Therefore, the setAϕ can be constructed asAGs:tt [S
ϕ02G AXGsϕ0 where eachAXGsϕ0 is obtained from AGsϕ0 using

Lemma 21.(ii) Case Gs(p2 _ Wϕ02GGsϕ0): As Gs(p2 _ Wϕ02GGsϕ0) � (Gsp2) _W
ϕ02G(X(p2U (Gsϕ0))), the setAϕ can be constructed asAGs p2 [S
ϕ02G AX(p2U(Gsϕ0)) where eachAX(p2U(Gsϕ0)) is obtained fromAGsϕ0

using Lemma 21.(iii) Case Gs(Wϕ002PPsϕ00): It holds thatGs(Wϕ002PPsϕ00) � (Gs:tt) _W
ϕ002P(XPsϕ00). Therefore, the setAϕ can be constructed asAGs:tt [S
ϕ002PAXPsϕ00 where eachAXPsϕ00 is obtained from APsϕ00 using

Lemma 21.

(iv) Case Gs(p2 _ Wϕ002PPsϕ00): As Gs(p2 _ Wϕ002PPsϕ00) � (Gsp2) _W
ϕ002P(X(p2U (Psϕ00))), the setAϕ can be constructed asAGsp2 [S
ϕ002PAX(p2U(Psϕ00)) where eachAX(p2U (Psϕ00)) is obtained fromAPsϕ00

using Lemma 21.(v) Case Gs(Wϕ02GGsϕ0 _ W
ϕ002PPsϕ00): As Gs(Wϕ02GGsϕ0 _W

ϕ002PPsϕ00) � (Gs:tt) _ Wϕ02G(XGsϕ0) _ Wϕ002P(XPsϕ00), the set
Aϕ can be constructed asAGs:tt[Sϕ02G AXGsϕ0 [Sϕ002PAXPsϕ00 where
eachAXGsϕ0 is obtained fromAGsϕ0 and eachAXPsϕ00 is obtained from
APsϕ00 using Lemma 21.(vi) Case Gs(p2 _ W

ϕ02GGsϕ0 _ W
ϕ002PPsϕ00): As Gs(p2 _W

ϕ02GGsϕ0 _ Wϕ002PPsϕ00) � (Gsp2) _ Wϕ02G(X(p2U(Gsϕ0))) _W
ϕ002P(X(p2U (Psϕ00))), the set Aϕ can be constructed as

AGsp2 [Sϕ02GAX(p2U(Gsϕ0)) [Sϕ002PAX(p2U(Psϕ00)) where each
AX(p2U(Gsϕ0)) is obtained from AGsϕ0 and eachAX(p2U(Psϕ00)) is
obtained fromAPsϕ00 using Lemma 21.ÆGs CaseGsGsϕ2: As Gs(Gsϕ2) � (Gs:tt) _ (XGsϕ2), the setAϕ can be con-

structed asAGs:tt [AXGsϕ2 where AXGsϕ2 is obtained fromAGsϕ2 using
Lemma 21.ÆHs CaseGsHsϕ2: A pointed word(u; i) satisfiesGs(Hsϕ2) iff i = juj � 1 or(u; juj�1) satisfiesHsϕ2 or u is infinite and all its positions satisfyϕ2. Hence,
Aϕ = AGs:tt [AFs((Gs:tt)^(Hsϕ2)) [A(Hsϕ2)^ϕ2^(Gsϕ2) where AFs((Gs:tt)^(Hsϕ2))
and A(Hsϕ2)^ϕ2^(Gsϕ2) are obtained fromAGs:tt, AHsϕ2, Aϕ2, andAGsϕ2 using
Lemma 21.�Hs CaseHsϕ1: This case is divided into the following subcases according to the struc-

ture ofϕ1.Æp CaseHsp: As Hsp is globally equivalent tott^Hsp, we setAϕ = fPα(tt^Hsp; tt^Gstt; /0)g.Æ^ CaseHs(ϕ2^ϕ3): As Hs(ϕ2^ϕ3)� (Hsϕ2)^ (Hsϕ3), the setAϕ can be con-
structed fromAHsϕ2 andAHsϕ3 using Lemma 21.ÆFs CaseHsFsϕ2: A pointed word(u; i) satisfiesHsFsϕ2 iff i = 0 or (u; i) satisfiesFϕ2. Note thatHs:tt is satisfied by(u; i) only if i = 0. Therefore,Aϕ =AHs:tt[
Aϕ2 [AFsϕ2.ÆPs CaseHsPsϕ2: A pointed word(u; i) satisfiesHsPsϕ2 iff i = 0. Therefore,Aϕ =
AHs:tt.Æ_ CaseHs(ϕ2_ϕ3): According to the structure ofϕ2 andϕ3, there are the fol-
lowing subcases.�p CaseHs(p2_ p3): As p2_ p3 2 LTL(), this subcase has already been cov-

ered by CaseHsp.�^ CaseHs(ϕ2_ (ϕ4^ϕ5)): AsHs(ϕ2_ (ϕ4^ϕ5))�Hs(ϕ2_ϕ4)^Hs(ϕ2_
ϕ5), the setAϕ can be constructed fromAHs(ϕ2_ϕ4) andAHs(ϕ2_ϕ5) using
Lemma 21.�Ps CaseHs(ϕ2_Psϕ4): It holds thatHs(ϕ2 _Psϕ4) � (Hsϕ2)_Ps(Psϕ4^Hsϕ2). Therefore, the setAϕ can be constructed asAHsϕ2 [APs(Psϕ4^Hsϕ2),
whereAPs(Psϕ4^Hsϕ2) is obtained fromAPsϕ4 andAHsϕ2 using Lemma 21.�Gs CaseHs(ϕ2_Gsϕ4): AsHs(ϕ2_Gsϕ4)� (Hsϕ2)_Ps(Gsϕ4^Hsϕ2), Aϕ
is constructed asAHsϕ2 [APs(Gsϕ4^Hsϕ2) whereAPs(Gsϕ4^Hsϕ2) is obtained
from AGsϕ4 andAHsϕ2) using Lemma 21.

�Fs;Hs There are only the following six subcases (the others fit to some of the
previous cases).(i) Case Hs(Wϕ02F Fsϕ0): It holds that Hs(Wϕ02F Fsϕ0) � (Hs:tt) _W

ϕ02F(YFsϕ0). Therefore, the setAϕ can be constructed asAHs:tt [S
ϕ02F AYFsϕ0 where eachAYFsϕ0 is obtained from AFsϕ0 using

Lemma 21.(ii) Case Hs(p2 _ Wϕ02F Fsϕ0): As Hs(p2 _ Wϕ02F Fsϕ0) � (Hsp2) _W
ϕ02F(Y(p2S(Fsϕ0))), the setAϕ can be constructed asAHsp2 [S
ϕ02F AY(p2S(Fsϕ0)) where eachAY(p2S (Fsϕ0)) is obtained fromAFsϕ0 us-

ing Lemma 21.(iii) CaseHs(Wϕ002HHsϕ00): It holds thatHs(Wϕ002HHsϕ00) � (Hs:tt) _W
ϕ002H(YHsϕ00). Therefore, the setAϕ can be constructed asAHs:tt [S
ϕ002H AYHsϕ00 where eachAYHsϕ00 is obtained fromAHsϕ00 using

Lemma 21.(iv) CaseHs(p2 _Wϕ002HHsϕ00): As Hs(p2 _Wϕ002HHsϕ00) � (Hsp2) _W
ϕ002H(Y(p2S(Hsϕ00))), the setAϕ can be constructed asAHsp2 [S
ϕ002H AY(p2S(Hsϕ00)) where eachAY(p2S(Hsϕ00)) is obtained fromAHsϕ00

using Lemma 21.(v) Case Hs(Wϕ02F Fsϕ0 _ W
ϕ002HHsϕ00): As Hs(Wϕ02F Fsϕ0 _W

ϕ002HHsϕ00) � (Hs:tt) _ Wϕ02F(YFsϕ0) _ Wϕ002H(YHsϕ00), the
set Aϕ can be constructed asAHs:tt [Sϕ02F AYFsϕ0 [Sϕ002H AYHsϕ00
where eachAYFsϕ0 is obtained fromAFsϕ0 and eachAYHsϕ00 is obtained
from AHsϕ00 using Lemma 21.(vi) Case Hs(p2 _ W

ϕ02F Fsϕ0 _ W
ϕ002HHsϕ00): As Hs(p2 _W

ϕ02F Fsϕ0 _ Wϕ002HHsϕ00) � (Hsp2) _ Wϕ02F(Y(p2S (Fsϕ0))) _W
ϕ002H(Y(p2S(Hsϕ00))), the set Aϕ can be constructed as

AHsp2 [Sϕ02F AY(p2S(Fsϕ0)) [Sϕ002H AY(p2S(Hsϕ00)) where each
AY(p2S(Fsϕ0)) is obtained fromAFsϕ0 and eachAY(p2S (Hsϕ00)) is obtained
from AHsϕ00 using Lemma 21.ÆGs CaseHsGsϕ2: A pointed word(u; i) satisfiesHs(Gsϕ2) iff i = 0 or (u;0) sat-

isfiesGsϕ2. Hence,Aϕ = AHs:tt[APs((Hs:tt)^(Gsϕ2)) whereAPs((Hs:tt)^(Gsϕ2)) is
obtained fromAHs:tt andAGsϕ2 using Lemma 21.ÆHs CaseHsHsϕ2: As Hs(Hsϕ2) � (Hs:tt) _ (YHsϕ2), the setAϕ can be con-
structed asAHs:tt [AYHsϕ2 where AYHsϕ2 is obtained fromAHsϕ2 using
Lemma 21. ut

Remark 32.In other words, we have just shown that LTL(Fs;Gs;Ps;Hs) is a semantic
subset (with respect to the global equivalence) of every formalism that is

– able to expressp, Gsp, Hsp, andGsFsp, wherep2 LTL(), and
– closed under disjunction, conjunction, and applications of X, Y, pU�, andpS�,

wherep2 LTL().

