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Abstract. We establish a decidability boundary of the model checkiraiplem
for infinite-state systems defined I®rocess Rewrite Syster(BRS) orweakly
extended Process Rewrite SystgmBPRS), and properties described by basic
fragments of action-basednear Temporal Logi€LTL) with both future and past
operators. Itis known that the problem for general LTL prtigs is decidable for
Petri nets and for pushdown processes, while it is undelddab PA processes.
We show that the problem is decidable for wPRS if we consideperties defined
by LTL formulae with only modalitiestrict eventually strict always and their
past counterparts. Moreover, we show that the problem resmaidecidable for
PA processes even with respect to the LTL fragment with tte modality until
or the fragment with modalitiesextandinfinitely often

1 Introduction

Automatic verification of current software systems ofteredse to model them as
infinite-state systems. One of the most powerful formali$ons finite description of
infinite-state systems (except formalisms which are laggueuivalent to Turing ma-
chines) is calledProcess Rewrite SysterflBRS) [May00]. The PRS framework, based
on term rewriting, subsumes many formalisms studied in dmtext of formal verifica-
tion, e.g.Petri nets(PN), pushdown process€BDA), and process algebras like BPA,
BPP, or PA. PRS can be adopted as a formal model for prograthg&dursive pro-
cedures and restricted forms of dynamic creation and synération of concurrent
processes. A substantial merit of PRS is that some impovtaification problems are
decidable for the whole PRS class. In particular, Mayr [Ma@lyfroved that the follow-
ing problems are decidable for PRS:

— thereachability problem whether a given state is reachable,
— thereachable property problemwhether there is a reachable state where some
given actions are enabled and some given actions are disable

In [K RS04b], we have presentaeakly extended PR&PRS), where a finite-state
control unit with self-loops as the only loops is added tostendard PRS formalism

* Some of the results presented in this paper have been alfmailished in [BKRS06]
and [KRSO7].



(addition of a general finite-state control unit makes PRgU&ge equivalent to Turing
machines). Thigveakcontrol unit enriches PRS by abilities to model a boundedtmem
of arbitrary communication events and global variablessehealues are changed only
a bounded number of times during any computation. We haveeprthat the reach-
ability problem remains decidable for WPRSR&04a] and that the problem called
reachability Hennessy—Milner properfwhether there is a reachable state satisfying a
given Hennessy—Milner formula) is decidable for wPRS ad {#¥eRS05]. Note that
the latter problem is strictly more general than the realehpltoperty problem. The
hierarchy of all PRS and wPRS classes is depicted in Figure 1.

Concerning the model checking problem, a broad overviewnfdecidability re-
sults for subclasses of PRS and various temporal logics eéound in [May98]. Here
we focus exclusively oiinear Temporal LogiqLTL). It is known that LTL model
checking of PDA isEXPTIME-complete [BEM97]. LTL model checking of PN is also
decidable, but at least as hard as the reachability proldePN [Esp94] (the reachabil-
ity problem isEXPSPACE-hard [May84,Lip76] and no primitive recursive upper bound
is known). If we consider only infinite runs, then the probléan PN is EXPSPACE-
complete [Hab97,May98].

Conversely, LTL model checking is undecidable for all thassks subsuming
PA [BH96,May98]. So far, there are only two positive restitisthese classes. Bouaj-
jani and Habermehl [BH96] have identified a fragment cadlisdple PLTIg for which
model checking of infinite runs is decidable for PA (stritfyeaking, simple PLT# is
not a fragment of LTL as it can express also some non-regutgoepties, while LTL
cannot). Only recently, Bozzelli [Boz05] has demonstrated model checking of in-
finite runs is decidable for PRS and the fragment of LTL céaptuexactly fairness
properties.

Our contribution: This paper contains several results on decidability of LTade
checking. In particular, we completely locate the decititgtboundary of the model
checking problem for all subclasses of PRS (and wPRS) arzhait LTL fragments
where a basic LTL fragment is a set of all LTL formulae conitagronly a given subset
of standard temporal modalities and closed under booleanemtives. The boundary
is depicted in Figure 2. To locate the boundary, we dematestine following results.

1. We introduce a new LTL fragmem. Then we prove that the problem whether
a given wPRS has a (finite or infinite) run satisfying a givemfola of 4 is de-
cidable. The proof employs our results presented in [Bd¢RS04a,KRS05] to
reduce the problem to LTL model checking for PDA and PN. Thisuit directly
implies decidability of the model checking problem for wPR®I negated formu-
lae of 4.

2. We show that every formula of the basic fragment [l G;) (i.e. the fragment
with modalitiesstrict eventuallyandstrict alwaysonly) can be effectively translated
into 4. As LTL(F;, Gs) is closed under negation, we can also translate(EJ;IG;)
formulae into negations off formulae. This translation yields decidability of
the model checking problem for wPRS and LFL,G;). Note that LTLF,G)
is strictly more expressive than themport logic(i.e. the basic fragment with
modalitieseventuallyandalway9, which is again strictly more expressive than the



mentioned fragment of fairness properties and also tharethdar part of simple
PLTLq.

3. We define a past extensiomdPof the fragment4. Using the result for4,
we show that the model checking problem for wPRS and negatedulae of
P4 remains decidable. Further, we prove that every formulaheftasic frag-
ment LTL(F,Gs,Ps,Hs) (LTL(Fs,Gs) extended with the past counterpartsFof
and Gs) can be effectively translated intagP Hence, we get decidability of
the model checking problem for wPRS and I(FL, G,Ps,Hs). We note that
LTL (Fs, Gs, Ps,Hs) is strictly more expressive than LTE,Gs) (for example, the
formulaFs(bA Hsa) is not equivalent to any LT(F;, Gs) formula) and semantically
equivalent to First-Order Monadic Logic of Order restritte 2 variables and with-
out successor predicatEQz[<], see [EVWO02] for effective translations). Thus we
also positively solve the model checking problem for WPREE®?[<].

4. We demonstrate that the model checking problem remaithsaidable for PA even
if we consider the basic fragment with modaliintil or the basic fragment with
modalitiesnextandinfinitely often(which is strictly less expressive than the one
with nextandeventually.

The paper also presents two results that are not connectied tiecidability boundary.

5. We introduce a more geneminted model checking problgmvhether all runs of a
given WPRS system going through a given state satisfy a doremula in the given
state). We show that this problem is decidable for wPRS and ETGq, Ps, Hs).

6. Finally, we show that negated formulae of 1%L(the fragment known as ‘the
common fragment of CTL and LTL' [Mai0Q]) can be effectivehahslated inta3.
As a consequence we get that the model checking problem idadée for WPRS
and LTL9et

Structure of the paper: The following section recalls basic definitions. Sections 3
4,5, and 6 correspond, respectively, to the first four itasied above. Section 5 also
covers the results on the pointed model checking problerctid®e7 deals with the
model checking problem for LTIt The last section summarizes our results and tries
to give an intuitive explanation of the found decidabilityrber location.

2 Preliminaries

2.1 PRS and Weakly Extended PRS

Let Const= {X,...} be a set ofrocess constant3 he set oprocess termsis defined
by the abstract syntaix::= ¢ | X | t.t | t]|t, wheree is the empty term X € Const
and '’ and ’||’ mean sequentialand parallel compositionsrespectively. We always
work with equivalence classes of terms modulo commutgtasitd associativity of||’,
associativity of ’, and neutrality ofe, i.e. e.t = t.e = t||e =t. We distinguish four
classes of process termas:

1 —terms consisting of a single process constant, in péatiaxZ 1,
S —sequentiaterms - terms without parallel composition, egY.Z,



P —parallelterms - terms without sequential composition, X{Y||Z,
G —generalterms - terms without any restrictions, e(¥..(Y||Z))||W.

LetM = {o,p,q,...} be a set otontrol states< be a partial ordering on this set,
andAct= {a,b,c,...} be a set ofactions Leta,p € {1,S,P,G} be classes of process
terms such thatt C . An (a, B)-wPRS(weakly extended process rewrite systénis
atriple (R, po,to), where

— Ris a finite set ofewrite rulesof the form(p,t1) & (q,t2), wherety € a, t1 # &,
to € B,a€ Act andp,q € M satisfyp < q,
— the pair(po,to) € M x 3 forms the distinguishehitial state

By Act(A), ConstA), andM(A) we denote the respective sets of actions, process con-
stants, and control states occurring in the rewrite ruléb@initial state ofA.

AWPRSA = (R, po,to) induces a labelled transition system, whose states are pair
(p,t) such thatp € M(A) andt is a process term ov&ons{A). The transition relation
— is the least relation satisfying the following inferencéera

(pt) S (@) ER  (pt) —5 (gt2) (p,t1) —55a (0,12)
(p,t1) —a>A (9,t2) (p,tallt]) —a>A (a,t2llt})  (p,t1-ty) im (9,t2.t7)

Sometimes we write— instead of—s, if A is clear from the context. The transition
relation can be extended to finite words oyt in a standard way. To shorten our
notation we writept in lieu of (p,t). A statept is reachable froma statep't’ if there
exists a wordi such thatp't’ LN pt. We say that a state isachableif it is reachable
from the initial statepotg. Further, a stat@t is calledterminalif there is no stateyt’
and no actiora such thatpt LI p't’. In this paper we always consider only systems
where the initial state is not terminal. A (finite or infinitsdquence

a a an an
0 = pit1 — Potz =24 .. —=A Prtatnil ( A )

is calledderivation over the word & a1@z...an(an+1...) in A. Finite derivations are
also denoted apit; ——a Pniitny1, infinite ones ait; —a. A derivation inA is
called arun of A if it starts in the initial statgogty and it is either infinite, or its last state
is terminal. Further_(A) denotes the set of wordssuch that there is a run éfoveru.
An (a,B)-wPRSA whereM(A) is a singleton is calle¢a, )-PRS(process rewrite
syste[MayO0Q]. In such systems we omit the single control stadefrules and states.
Some classes ofi( 8)-PRS correspond to widely known models, nanfalite-state
systemg¢FS),basic process algebrgdBPA), basic parallel processg8PP),process al-
gebras(PA), pushdown process€BDA), andPetri nets(PN). The other classes have
been named as PAD, PAN, and PRS [May00Q]. The relations bet¢e@)-PRS and
the mentioned formalisms and names are indicated in Figurestead of ¢, )-wPRS
we juxtapose the prefix ‘w-" with the acronym correspondiagtte @, 3)-PRS class.
For example, we use wBPA rather than$twPRS. Figure 1 shows the expressiveness
hierarchy of all the classes mentioned above, where expegsawer of a class is mea-
sured by the set of transition systems that are definableo(theetstrong bisimulation
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Fig. 1. The hierarchy of PRS and wPRS subclasses.

equivalence [Mil89]) by the class. This hierarchy is strigtth a possible exception
concerning the classes wPRS and PRS, where the strictnjess air conjecture. For
details see [RS04b].

For technical reasons, we define a normal form of WPRS systmeswrite rule is
parallel or sequentialf it has one of the following forms:

Parallel rules: pXa|[Xall. .. [[Xn < qY1[¥a]] ... [[ Y
Sequential rules pX & qY.Z pXY & gZ pX& qY pXi> ge
whereX,Y,X;,Yj,Z € Const p,g€ M, n>0,m> 0, anda € Act A rule is calledrivial
if it is both parallel and sequential, i.e. it has the fopix N gY or pX & ge. AWPRS
A = (R, po,to) is in normal formif tg is a process constant afRtontains only parallel
and sequential rewrite rules.

PRS, wPRS, other extensions of PRS, and their respectietessies are discussed
in more detail in Reh07].

2.2 Linear Temporal Logic
The syntax oLinear Temporal Logi¢LTL) [Pnu77] is defined as follows
pu=ttlal-¢ [ oAd | X[ US| YO [ 659,

whereX andU are the future modal operatarextanduntil, while Y andS are their past
counterpartpreviouslyandsince anda ranges oveAct The logic is interpreted over



infinite and nonempty finitpointedwords of actions. Given a wond = apajay... €
Act'UAct?, |u| denotes the length of the word (we §gt= w if uis infinite). A pointed
word is a pair(u,i) of a nonempty wordi and aposition0 < i < |u] in this word.

The semantics of LTL formulae is defined inductively as fato

(u,i) =tt

(ui)yEa iff u=apaay...anda =a

Ui E-¢  iff (i) Ko

(i) E01Ad2 iff  (ui) 01 and (ui) = ¢
(u,i) = Xo iff i+1<|uand(u,i+1)E=¢
(u,i)

Eo1Udp iff Ik (i<k<|u A (UK FEod2 A

AV (i<i<k= (u]) F 1))
(uWi)EYd iff 0<iand(ui—-1)F¢
(Ui) = 01502 iff Ik (0<Kk<i A (k) Ed2 A
AV (k<i<i= (u,]) F 1))

We say thafu,i) satisfiesh whenever(u,i) = ¢. Further, a nonempty wond satisfies
¢, writtenu = ¢, whenevefu,0) = ¢. Given a set of words, we writdL = ¢ if u= ¢
holds for allu € L. Finally, we say that a rug of a wPRSA over a wordu satisfiesp,
writteno = ¢, wheneveu = ¢.

Formulaed, Y are(initially) equivalent written ¢ =; W, iff, for all words u, it holds
thatu = ¢ <= u = . Formulaep, Y areglobally equivalentwritten$ = , iff, for
all pointed wordgu, i), it holds that(u,i) = ¢ <= (u,i) = . Clearly, if two formulae
are globally equivalent then they are also initially eqiévé. Moreover, two formulae
without past modalities are globally equivalent if and oifilihey are initially equiva-
lent. Therefore we do not distinguish between initial anabgl equivalence when we
talk about formulae without past.

The following table defines some derived future operatodstarir past counter-
parts.

future modality meaningpast modality meaning
F¢ eventually tye | Po eventually in the past (0]
G always —-F-¢ | Hd always in the past —P-d

Fs¢ strict eventually XF¢ | Psd eventually in the strict past YP¢
Gs¢ strictalways  —F,—¢ | Hi¢ always in the strict past  —Ps—¢
oFocl) infinitely often ~ GF¢ | 1 initially HPd

Given a sefOq,...,0n} of modalities, LTL(Os,...,0y) denotes the LTL fragment
(closed under boolean connectives) containing all forewdh modalities,...,0y
only. Such a fragment is calldabsicif either it contains future operators only, or for
each included future operator, it contains its past coparéand vice versa. For exam-
ple, the fragment LTLF,S) is not basic.



LTL(U,X) =; FO®

LTL(U,Fs,S,Ps)

LTL(F,X,P,Y) = FO?

/
LTL(F,X)

LTL(X) LTL (F)

LTL()

Fig. 2. The hierarchy of basic LTL fragments with respect to theahiequivalence. The dashed
line shows the decidability boundary of the model checkingpfem for wPRS: the problem is

decidable for all the fragments below the line, while it islanidable for all the fragments above
the line (even if we consider PA systems only).

Figure 2 shows an expressiveness hierarchy of all studieit haL fragments.
Indeed, every basic LTL fragment using standambdalities is equivalent to one of
the fragments in the hierarchy, where equivalence betwesmfents means that ev-
ery formula of one fragment can be effectively translatad &n initially equivalent
formula of the other fragment and vice versa. In particulat, (Fs, G, P, Hs) is equiv-

3 By standard modalities we mean the ones defined here andthlsocommonly used modal-
ities like strict until, release weak unti] etc. However, it is well possible that one can define a
new modality such that there is a basic fragment not equivateany of the fragments in the
hierarchy.



alent to LTL(F;,Ps).* We also mind the result of [Gab87] stating that each LTL for-
mula can be converted into one which employs future opesataly, i.e. LTL(U, X) =;
LTL(U,S,X,Y). The hierarchy is also strict: a solid line between two fragts indi-
cates that every formula of the lower fragment is initiallyuazalent to some formula
of the upper fragment, but the opposite relation does nat.\k refer to [StrO4] for
details about the expressiveness of LTL fragments.

2.3 Studied Problems

Let ¥ be an LTL fragment and” be a class of WPRS systems. This paper deals with
the following three verification problems.

1. Themodel checking problefor & and( is to decide, for any given formutpe F
and any given systeth € C, whetheri.(A) = ¢ holds.

2. We also consider the problem calleddel checking of infinite runssherel (A) N
Act® |= ¢ is examined.

3. Thepointed model checking probleior ¥ and wPRS is to decide whether a given
formulad € ¥, a given wPRS systery, and a given nonterminal stajg of A
satisfyL(pt,A) = ¢, WhereL(pt A) is the set of all pointed worda, i) such that

A has a runpgtp 2o, pat1 T piti — ... satisfyingu = apaja,... and
pt = piti.

3 Model Checking for NegatedA4

This section starts with the definition of the LTL fragmehtThe rest of the section is
devoted to decidability of the model checking problem folR@Pand negated formulae
of this fragment.

Recall that LTL) denotes the fragment of formulae without any modality,
i.e. boolean combinations of actions. In the following we tis U, ¢» to abbreviate

b1 AX(d1Ud2).

Definition 1. Let d = 6:016,0;...6,0n6n+1, Wwhere n> 0, each6; € LTL(), O, is
‘AG¢’, and, for each i< n, Q is either ‘U’ or * Uy’ or * AX'. Further, let B C LTL() be
a finite set. Aru-formulais defined as

a(d,B) = (9101(9202 . (6rOnBn+1) - /\ /\ GsF.
YeB

The fragmentq consists of all finite disjunctions afformulae.

Hence, a wordu satisfiesa(d,B) iff u can be written as a concatenation
Up.Up.--- .Unp1, Where each word; consists only of actions satisfyirfy and

— Ju|>0ifi=n+1o0rGis ‘U,

4 As Fs,Gs and Ps,Hs are pairs of dual operators, the fragments A Gs,Ps,Hs) and
LTL (Fs, Ps) are in fact equivalent even with respect to the global edemnce.



— |Ju| >0if G is Uy,
— |ui|=1if O is ‘AX or ‘AG,
— Uny1 SatisfiesGsFs Y for everyy € B.
In the following we use the fact that finite disjunctionseformulae are closed
under conjunction.

Lemma 2. A conjunction ofx-formulae can be effectively converted into an equivalent
disjunction ofa-formulae.

The proof is a straightforward but quite technical exercise Reh07] for some hints.
To support an intuition, we provide an example of a conjurcif two simplea-
formulae and an equivalent disjunction.

Example 3.A conjunctiona (0, U8z A Gs83,B) Aa (8] U, AGs65, B') is equivalent to
the following disjunction.

a((61A07)U(B2A05) AGs(B3AB5), BUB') Vv
V a((81A07)U(B2A07) AX(B3A07)U (B3AB5) A Gs(eg/\eg),ﬂu@’)v
V a((61A6))U (81 AB,) AX(B1 ABL) U (82 ABL) AGs(B3AB5), BUB)

In order to show that the model checking problem for wPRS aghted formulae
of 4 is decidable, we prove decidability of the dual problem wkether a given wPRS
system has a run satisfying a given formulaafFinite and infinite runs are treated
separately.

Theorem 4. The problem whether a given wPRS system has a finite runysadjsd
givena-formula is decidable.

Proof. Let A be a wPRS system ar(8,B) be ana-formula. Note that a formula
GsFsW is satisfied by a finite nonempty word if and only if the lengfhhe word is 1.
Therefore, ifB # 0 then it is easy to check whether there is a finite rua shtisfying
a(d,B). In what follows we assums = 0.

Letd=01016,0;...8,0,6n11. We construct a wPRS systekhwith control states
M(A) x {1,2,...,n+ 1} and the following four types of transition rules.

1. Forany 1< i < nand every rulepty 4 gty of A such that an actioa satisfiesd;,
we add the rulép,i)t; & (9,i +1)ta to A'. Moreover, ifO; is U or Uy then we also
add the ruleg(p, ity <> (q,i)ta.

2. Letebe a fresh action. For evepye M(A), X € ConstA), and for alli, 1 <i <n,
such thaD; = U, we add the rulép,i)X S (p,i+1)X tod.

3. For every rulepty & gtz of A such thata satisfiesB,1, we add the ruldp,n+
Dty S (gn+ L)tz to A,

4. For every rulepty & gt; of A we add the rulép,n+ 1)t; & (p,n+ 1)ty to &',

Loosely speaking, the rules of type 1-3 alldéto simulate all the runs oA which

satisfya(d,0). The rules of type 4 assure that a stgten + 1)t of A’ is terminal if and
only if the statept of A is terminal.



Let poto be the initial state oA. There is a finite rumoty —x gt satisfyinga(3, 0)
if and only if there is a finite rurfpo, 1)to —s (g,n+ 1)t. Hence, we need to decide
whether there exists a state of the fofgqan + 1)t that is terminal and reachable from

(po, )to. To thatend, for everp € M(A) we add ta\' the rule(p,n+1)Z efﬂﬁj(p, n+1)e,
whereend ¢ Act(A) is a fresh action and ¢ ConstA) is a fresh process constant.
Now, it holds thatA has a finite run satisfying (9, 0) if and only if there exists a state
of &', which is reachable fronipo, 1)(tp||Z) and the only enabled action in this state
is end This last condition on the state can be expressed by forgutalendtt A
/\aeAC,(A)ﬁ(aﬁt of the Hennessy—Milner logic. As reachability of a statés$ging a
given Hennessy—Milner formula is decidable for wPRS (selvéi’éKlS] for details), we
are done. 0

The problem for infinite runs is more complicated. In ordestdve it, we intro-
duce more terminology and notation. At first we defflormulaeand regular lan-
guages calleg-languagesLet w = a;01a,0;....a,0;,, wheren > 0, a1, ...,a, € Act
are pairwise distinct actions and ea€h is either U, or ‘AX'. Further, letB C
Act~ {ay,...,an} be anonempty finite set of actions a@d- B. A B-formulaf3(w, B,C)
andy-languagey(w,C) are defined as

B(W,B,C) = (a101(a20z...(a0nG\/b)...)) A A\ GFb A A\ (Fb A ~GFb)

beB beC beB~\.C
y(w,C) = at.a?.---.ad.L,
if O, =U € ifC=0
where o; = + o T oandL= { } .
1 ifQ=nAX NbecC*.b.C* otherwise.

Roughly speaking, B-formula is a more restrictive version of amformula and in the
context of3-formulae we consider infinite words only. Contrarydof ana-formula,
w of a3-formula employs actions rather than L{jlformulae. While a tail of an infinite
word satisfying aro-formula is specified b¥y.1, in the definition of3-formulae we
use a seB containing exactly all the actions of the tail and its sulisef exactly all
those actions occurring infinitely many times in the tail.

Remark 5.Note that an infinite word satisfies a form@éw, B,C) if and only if it can
be divided into a prefixi € y(w,B) and a suffixv € C® such thatv contains infinitely
many occurrences of evege C.

LetB, C, andw=a;01a,0;...a,0, be defined as above. We say that a finite deriva-
tion o over a wordu satisfieg(w,C) if and only ifu € y(w,C). We write(w',B’) C (w,B)
wheneveB' C B andw = &,0;,a;,0;, ...a,0j, for some 1< iy <ix <... <ix<n.
Moreover, we writgw,B',C") C (w,B,C) wheneverw',B") C (w,B), B is nonempty,
andC’' CCnB.

Remark 6.If u is an infinite word satisfying3(w,B,C) andv is an infinite subword

of u (i.e. it arises fromu by omitting some letters), then there is exactly one triple
(w,B',C") C (w,B,C) such thaw = B(w,B’,C'). Further, for each finite subwordof

u, there is exactly one pafw/,B’) such thai{w/,B") C (w,B) andv € y(w/,B').



Given a PRS in normal form, blyi (A), par(A), andsedA) we denote the system
A restricted to trivial, parallel, and sequential rulespedively. A derivation irtri (A)
is called atrivial derivation inA. In what follows we write simpltri, par,seqasA is
always clearly determined by the context.

Definition 7. LetA be a PRS in normal form an@g{w, B,C) be ap-formula. The PRS
Ais in flat (w,B,C)-form if and only if, for each XY € Cons{A), each(w/,B,C") C
(w,B,C), and each B C B, the following conditions hold:

1. If there is a finite derivation X Y satisfyingy(w,B"), then there is also a finite
derivation X —5sy; Y satisfyingy(w/,B").

2. Ifthere is a term t and a finite derivation X5 t satisfyingy(w',B”), then there is
also a constant Z and a finite derivation>syi Z satisfyingy(w',B").

3. If W =& and there is an infinite derivation X satisfyingB(w/,B’,C'), then there
is also an infinite derivation X satisfyingB(w',B',C).

4. If there is an infinite derivation Xi>par satisfyingB(w,B’,C’), then there is also
an infinite derivation X— ;i satisfyingB(w',B',C');

5. If there is an infinite derivation Xi>Seq satisfyingB(w/,B’,C'), then there is also
an infinite derivation X—s; satisfyingB(w',B',C").

Intuitively, the system is in flafw, B,C)-form if, for every derivation of one of the
listed types there is an “equivalent” trivial derivationll Aonditions of the definition
can be checked due to the following lemma, results of [Boz@BH decidability of
LTL model checking for PDA and PN. Lemma 9 says that every RRSormal form
can be transformed into an “equivalent” flat system. Findlgmma 12 says that if a
PRS system in flafw, B,C)-form has an infinite derivation satisfyifg{w,B,C), then it
has also a trivial infinite derivation satisfyirgfw,B,C). Note that it is easy to check
whether such a trivial derivation exists.

Lemma 8. Given ay-languagey(w,C), a PRS system, and constants X/, the fol-
lowing problems are decidable:

(i) Is there any derivation X~ Y satisfyingy(w,C)?

(ii) Is there any derivation X t such thatt is a term and @ y(w,C)?

Proof. The two problems can be reduced to the reachability probterwPRS (i.e. to
decide whether given statest, poto of a givenvaRS systed satisfypity lw pata
for somev), which is known to be decidable RS04a].

(i) Let w= a;0;...a,0n. We construct a wPR®A' with the set of control states
{1,2,...,n}U2C. Intuitively, control states P, ...,n are used to check that the ac-
tionsay,ay,...,a, appear in the right order and quantity duentowhile the other
actions are not allowed. After that, the control statesSrag used to check that
every action irC appears at least once. The set of rewrite rules is definedas o
For the sake of compactness, we (is&- 1) as another name for the control state
0.

— For every 1< i < nand every rule; B to of A, we add tod’ the ruleit; e

(i+ 1)t and if O; = U, then also the rulé; S ito.



— Forevenp € C, everyD C C, and every ruléy £> to of A, we add ta)' the rule

Dt; <% (DU {b})ta.
Obviously, a wordu € Act* satisfies X —L, CY if and only if it satisfies both
X —5a Y andu € y(w,C). As we can decide whetheXl—-s, CY holds for some
u, we can decide Problem (i).
(i) We constructa wPR@' as in the previous case. Moreover, for evéry ConstA),
we add toA’ the ruleCZ < Ce. It is easy to see that if a womde y(w,C) satis-

fies X —a t for somet, then X ﬂN Ce holds for somem > 0. Conversely, if
1X —Ls Ce holds for somey, then some prefin of v satisfies bothi y(w,C) and
X —U>At for somet. As we can decide whether, for somelX Lw Ce holds, we
can decide Problem (ii). O

The proof of the following lemma contains the algorithmiceof this section.

Lemma 9. LetA be a PRS in normal form arfé{w, B,C) be ap-formula. One can con-
struct a PR in flat (w, B,C)-form such that, for eactw’,B’,C’) C (w,B,C) and each
X € ConstA), A’ has an infinite derivation starting from X and satisfyiggv,B',C’)
if and only ifA has an infinite derivation starting from X and satisfyipigv,B’,C").

Proof. In order to obtain\’, we describe an algorithm extendiagwith trivial rewrite
rules in accordance with Conditions 1-5 of Definition 7.

All the conditions of Definition 7 can be checked for ea¥hy € ConstA),
each(w,B',C’) C (w,B,C), and eachB” C B. For Conditions 1 and 2, this follows
from Lemma 8. The problem whether there is an infinite deioveX — satisfying
B(e,B',C") is a special case of tHairness probleqwhich is decidable due to [Boz05].
Finally, Conditions 4 and 5 can be checked due to decidglofit TL model checking
for PDA [BEM97] and PN [Esp94]. If there is a non-satisfied dition, we add some
trivial rules forming the missing derivation.

Let us assume that Condition 3 (or 4 or 5, respectively) issadisfied, i.e. there
exists an infinite derivatiol — (or X ——par OF X —seq respectively) satisfying
B(w,B',C’) for some(w,B’,C") C (w,B,C) and violating the condition. Remark 5 im-
plies thatC' is nonempty and there is a finite derivati¥n—s, t satisfyingy(w',B').
Hence, there exists an ordering®f= {bs,by,...,bm} such that

(*) for each 1< j < m, there is a finite derivation if starting fromX and satisfying
y(W, {b,...,bj}).

We can effectively select such an ordering out of all ordgsiof B’ using Lemma 8.
Further, lew = a;01a,0;...a,0n and letC’ = {cj,Cy, - .., ¢k} Then, we add the trivial

rulezZi_1 fi> Z; foreach 1< i < n, the trivial ruleZn, 1 A Znyjforeach I< j <m,and

the trivial ruleZnymyj—1 fC—J> Znimyj foreach 1< j <k, whereZo =X, Z1,..., Znymik—1
are fresh process constants, adm.k = Zn+m- These added rules form an infinite
derivation using only trivial rules, starting froi, and satisfyind3(w,B’,C’).

Similarly, if there areX, Y, andy(w,B") with w = a;01a,0,...a,0, such that
Condition 1 or 2 of Definition 7 is violated, then we first conpuan ordering



{by,...,bm} of B” satisfying (*), and then we add the trivial rufg_; & Z; for each

b,
1<i<n,and the trivial ruleZ,j_1 A Zn.j for each 1< j <m, whereZg = X and
Za,...,Zn1m are fresh process constants (with exceptiodgf, which isY in the case

of Condition 1). The added trivial rules generate deri\mb'(oal“'a"—blf'bm Znm satisfy-
ing y(w,B").

Let A” be the PR\ extended with the new rules. The condition (*) ensures that,
for eachX € ConstA) and eachw/,B’,C’) C (w,B,C), the systemd\” is equivalent to
A with respect to the existence of an infinite derivation stgrfrom X and satisfying
B(w,B,C). If A" is not in flat(w, B,C)-form, then the algorithm repeats the procedure
described above on the systeifi with the difference thaX andY range over the
constants of the original systefm The algorithm eventually terminates as the number
of iterations is bounded by the number of pairs of processtemsX, Y of A, times the
number of triples(w’,B’,C') satisfying(w',B',C') C (w,B,C), and times the number
of subsetB” C B. Let A be the resulting PRS. We claim that is in flat (w,B,C)-
form. For the process constants of the original sysferby constructiony' satisfies
all conditions of Definition 7. For the added constants, isufficient to observe that
any derivation ind’ starting from such a constant either is trivial or has aatipirefix
leading to a constant &. Hence A’ is the desired PRS system. O

Definition 10 (Subderivation).LetA be a PRS in normal form angh be a (finite or
infinite) derivation g A, S 2, ..., Where g A s has the form X2 vz and, for
eachi> 2, if 5 is not the last state of the derivation, then it has the form §.Z with
ti # €. Thenoy is called asubderivatiorof a derivationg if o has a suffixo’ satisfying
the following:

1. every transition step io’ is of the form g|t’ - s.4.1||t’ or st — s]|t", where
{2y

2. ind’, if we replace every step of the formj[ts Ll s+1/|t’ by the stepisi> Si1
and we skip every step of the forffjts — s|[t”, we get preciselg;.

Further, if o1 ando are finite, the last term af; is a process constant, aris a prefix
of a derivationg’, thenoy is also asubderivatiorof o’.

Remark 11.Let A be a PRS in normal form arabe a derivation ol having a suffix
o' of the forma’ = X ||t = (Y.Z)||t —. Then, there is a subderivation@fvhose first
transition steX 2vz corresponds to the first transition stepadf

Intuitively, the subderivation captures the behaviourhaf subternY.Z since its emer-
gence until it is possibly reduced to a term without any setjiaecomposition. Due to
the normal form ofy, the subternY.Z behaves independently on the rest of the term (as
long as it contains a sequential composition).

Lemma 12. Let A be a PRS in flafw, B,C)-form. Then, for each X Cons{A) and
each(w,B',C') C (w,B,C), the following condition holds:

If there is an infinite derivation X— satisfyingB(w,B’,C’), then there is also an
infinite derivation X—; satisfyingB(w,B’,C’).



A sketch of the proofGiven an infinite derivatioro satisfying a formula3(o) =
B(w,B',C") where(w,B',C") C (w,B,C), by trivial equivalentof ¢ we mean an in-
finite trivial derivation starting with the same termasind satisfying3(c). Similarly,
given a finite derivatiom satisfying someg/(a) = y(w,B') where(w',B') C (w, B), by
trivial equivalentof o we mean a finite trivial derivatioa’ such that’ starts with the
same term as, it satisfiesy(g), and if the last term of is a process constant, then the
last term ofo’ is the same process constant.

The lemma is proven by contradiction. We assume that thest same infinite
derivations violating the condition of the lemma. leebe one of these derivations such
that the number of transition steps @fgenerated by sequential non-trivial rules with
actionsa ¢ B is minimal (note that this number is always finite as we cossiteriva-
tions satisfyind3(w', B’,C") for some(w/, B',C’) C (w,B,C)). First, we prove that every
subderivation ot has a trivial equivalent. Then we replace all subderivatioio by
the corresponding trivial equivalents. This step is techify nontrivial because may
have infinitely many subderivations. By the replacementbtaio an infinite derivation
o’ satisfyingB(o) and starting with the same process constard.ddoreover,c’ has
no subderivations and hence it does not contain any seqliepgrator. Flatw, B,C)-
form of A (Condition 4) implies that’ has a trivial equivalent. This is also a trivial
equivalent ofo which means that does not violate the condition of our lemma.

Proof. In this proof, by g3-formula we always mean a formula of the foptw/,B',C')
where(w,B',C") C (w,B,C). We also consider only infinite derivations satisfying some
of theseB3-formulae. Remark 6 implies that such an infinite derivatiaratisfies exactly
one-formula. We denote thig-formula by (o). Further, bySEQo) we denote the
number of transition stepsi> ti11 of 0 generated by a sequential non-trivial rule and
such that ¢ B. Note thatSEQo) is always finite due to the restrictions on considered
infinite derivations. Given an infinite derivatian by itstrivial equivalentwe mean an
infinite trivial derivation starting with the same termasnd satisfyind3(o).

Similarly, we consider only finite derivations satisfyingnse y(w,B’) where
(w',B') C (w,B). Remark 6 implies that such a finite derivatiorsatisfies exactly one
y-language, which is denoted o). Given a finite derivatiow, by itstrivial equiva-
lentwe mean a finite trivial derivatioo’ such that’ starts with the same term asit
satisfiesy(a), and if the last term of is a process constant, then the last terng’df
the same process constant.

Using the introduced terminology, the lemma says that eudigite derivation
starting with a process constant has a trivial equivaleortthie sake of contradiction, we
assume that the lemma does not hold. L& the nonempty set of infinite derivations
violating the lemma and l&¢= min{SEQQ) | 0 € Z}.

First of all, we prove two claims.

Claim 1 Let o be an infinite derivation satisfyirgEQ o) < k. Then every subderivation
of o has a trivial equivalent.

Proof of the claimFor finite subderivations, the existence of trivial equévds follows
directly from the flat(w, B,C)-form of A (Conditions 1 and 2). Let; be an infinite

L b b b
subderivation ob. It has the formo; = X —25eqY.Z =5 t1.Z =2 t2.Z — ... where
t1,to,... are nonempty terms. There are two cases:



— If a€ B, thenB(o1) has the fornB(g,B’,C"). Henceo; has a trivial equivalent due
to the flat(w, B,C)-form of A (Condition 3).

— If a¢ B, then the first steX i>SeqY.Z of g is counted ifSEQ a1 ) and the corre-
sponding stefX ||t —sseqY.Z||t" of 0 is counted iISEQG). Hence, 0< SEQ0).
Let o, be the derivatiow, =Y ﬂ) t1 & to &) ....AsSEQ0y) < SEQo;) <Kk,
the definition ofk implies thato, has a trivial equivalent, =Y imi Y1 imi
Yo ﬂnri. Further, aso’, satisfiesp(oz), the derivationo; = X —a>seqY.Z imi
Y1.Z 2o Yo.Z oy ... satisfiesp(o1). Moreover, the flafw, B,C)-form of A
(Condition 5) implies that’ has a trivial equivalent. Obviously, it is also a trivial
equivalent ofo;. O

Claim 2 Let g be an infinite derivation such th&EQo) < k, it starts with a paral-
lel term p, and it satisfies a formulg(w',B',C’). Then there is an infinite derivation

P —par P — such thapp' is a parallel termy € y(w, B'), andv satisfies3(g,C',C').

Proof of the claimRemark 5 implies that can be written ap BN N wherep Lyt

is theminimal prefix of o satisfyingy(w',B') and such that —2 satisfies3(,C’,C).
Let S/I\E/QG) denote the number of transition steps in the prpﬁauén generated by
sequential non-trivial rules (note thABEQ0) > SEQ0) as inNSEQa) we do not count
transition steps labelled with actionsB)f. We prove the claim by induction cﬁfﬁ/Q(c).
The base casBEQ o) = 0 is obvious. Now, assume tHBEQ o) > 0. Sincepis parallel
term andA is in normal form, the first transition step pfin counted inS?Qo) has
the formY||p’ =% (W.Z)||p’ and it corresponds to the first transition steps W.Z
of a subderivatioro;. In g, we replace the subderivatian with its trivial equiva-
lent (whose existence is guaranteed by Claim 1) and we obtaiew derivations”
starting withp, satisfyingB(o) and such thaBEQc”) < SEQ0). Hence, the second
claim directly follows from the induction hypothesis. Iretfollowing, we describe the
replacement of such a subderivation.

Let o1 =Y - and o), = Y — be its trivial equivalent. LetB(o1) =
B(€101C203...cn0n,B",C"). Thenu,v € cfc; ...ct.B®. Recall thatcy,cy,. .., Cq are
pairwise distinct an@® C Act~ {c,...,Cq}. Intuitively, for every 1<i < n, we replace
the first transition step af; labelled withc; by the sequence of transition stepsogf
labelled withc;, and then we cancel the other transition stepsplabelled withc;.°
Further, the first transition step of; labelled with an action oB is replaced with the
minimal prefix of the remaining part af} satisfyingy(e,B”). Finally, the remaining

5 By replacement of a transition step A, s, of 01 by a sequenc¥; Lm Y, of transition
steps ofa} we mean that the corresponding transition sgft’ 25 s|t’ of o is replaced

by Yalt' i Y2 |t', and all immediately succeeding stepdt” 2+ s,|[t" of o are replaced

by Y, ||t" b, Y|[t"”. Further, by cancellation of a transition step—» s, of 0; we mean

that the corresponding transition stefiit’ - s||t’ of ¢ is replaced byY,||t’, whereY; is
the last process constant@f such that a transition undey leads toY,, and all immediately

succeeding stes|[t” —2 s,||t" of o are replaced by|[t” —25 Y|t



transition steps ofi; are orderly replaced with the remaining transition steps,ofrhe
case whemw; and its trivial equivalent; are finite is similar.

Itis easy to see that the described replacement operasepes the fulfilment of
B(o) and the obtained derivatiast’ satisfiesSEQa”) < SEQ0). |

With this claim, we can easily derive a contradiction. bet X —s be an infinite
derivation such thaBEQa) = k and it has no trivial equivalent. Further, Rfo) =

(w,B',C"). Note thatC' is nonempty. Claim 2 says that there is a derivab'ﬂ)iculji>F,ar
p1 — wherepy is a parallel termy; € y(w,B'), andv; satisfies3(e,C’,C’). Applying
this claim on the suffixp; —s, we get a derivationp; ipar p2 —2 wherep; is a
parallel termu, € y(g,C'), andv, satisfies3(g,C’,C’). Iterating this argument, we get
a sequenceép; ui#par pi+1)ien Of derivations satisfying(e,C’). These derivations are
nonempty a€’ is nonempty. Let us consider the derivation

/ Ui Uz u3 Ug
0 = X —par P1 —*par P2 —*par P3 —par - - -

Flat (w, B,C)-form of A (Condition 4) implies that’ has a trivial equivalent. However,
this is also a trivial equivalent af as botho, o’ start withX andg’ satisfief3(o). This
is a contradiction. O

Theorem 13. The problem whether a given PRSn normal form has an infinite run
satisfying a given formul@(w, B,C) is decidable.

Proof. Due to Lemmata 9 and 12, the problem can be reduced to thespnokhether
there is an infinite derivatioX — s; satisfyingB(w, B,C). This problem corresponds
to LTL model checking of finite-state systems, which is dabie. O

The following three theorems show that Theorem 13 holds &wewPRS andi-
formulae.

Theorem 14. The problem whether a given PRSn normal form has an infinite run
satisfying a givem-formula is decidable.

Proof. Let A be a PRS in normal form ara(6,0; ...6,0r¢, B) be ana-formula. For

every6; and every ruld; £> to such thab satisfiesd;, we add a ruleq ﬂ) to, whereg;
is a fresh action corresponding @ Similarly, for everyy € BU {&} and every rule

t1 <3> t2 such thatb satisfiesp A €, we add a ruld; ca—L'J> to, whereay is a fresh action.
Let A’ be the resulting PRS system. Note thais also in normal form. Obviously
has an infinite run satisfying the origin@iformula if and only ifA" has an infinite run
satisfyinga(a10s ... anOn(ag V Vpec b),C), whereC = {ay | Y € B}. Itis an easy ex-
ercise to show that this nes+formula can be effectively transformed into a disjunction
of B-formulae which is equivalent with respect to infinite warbgnce, the problem is
decidable due to Theorem 13. O

Theorem 15. The problem whether a given PR®ias an infinite run satisfying a given
o-formula is decidable.



Proof. LetA be a PRSq(5, B) be ana-formula, ande ¢ Act(A) be a fresh action. First
of all, we describe our modification of the standard algonifiMay00] that transforms
Ainto a PRS in normal form.

Lettg be the initial state of\. If tg is not a process constant, we replace it by a fresh
process constaiXy and we add a rewrite rubé < t for each actiora and each terr
such thaty —2s, t. Note that the number of added rules is always finite.

If Ais still notin normal form, then there exists a ralehich is neither parallel nor
sequentialr has one of the following forms:

Lr=tS ta|t2 (resp.,r = ti]|t2 & t) wheret ort; ortz is not a parallel term. Let
Z1,Z5,Z ¢ ConstA) be fresh process constants. We replagéth the rules & Z,
Z ‘i) Z1||Z2, 21 ‘E) t1, andZy ‘E) to (resp.t1 ‘E) Z1,1 ‘E) Z3,21||Z2 ‘i Z,andZ ‘E> t).
2.r=t> t1.(t2||ts) (resp.r = t1.(t2|ts) & t). LetZ ¢ ConstA) be a fresh process
constant. We modifyA in two steps. First, we repladg||t3 by Z in left-hand and
right-hand sides of all rules &. Then, we add the rules< to|/ts andty||ts Sz
3.r=t & t2.X (resp.,r =t2.X & t1) wheret; or tp is not a process constant. Let
Z1,Z» ¢ ConstA) be fresh process constants. We replaagth the rulest; & Zs,
Z1 S Zo.X, andZy < tp (resp. o < Za, Zo.X < Z1, andZy < ty).

After a finite number of applications of this procedure (witle same actio®), we
obtain a PR in normal form.

We define a formulax(&',8’), where B’ = BU {V eacya)@} andd’ arises from
0=010;...6,0n¢ by the following substitution for every 1 <i < n.

If Oj is U, then replace the pafi; U by the pair(eVv 6;)U.

If Oj is Uy, then replace the pafi; U by the sequencgeV 6;) U6; U;. .
If Ojis AX, then replace the pafi; A X by the sequenceU 6; A X.

— 6,0On = Bh A G is replaced by the sequenel 6, A Gs.

— & isreplaced by¢ Ve).

Let us note that the construction #f ensures that any word with a sufi# does
not satisfya (&', B'). Observe that' = a(d,B') if and only if u |= a(d, B), whereu is
obtained fromu’ by eliminating all occurrences of acti@n

Clearly,A has an infinite run satisfying(d, B) if and only if A" has an infinite run
satisfyinga (&', B'). AsA' is in normal form, we can now apply Theorem14. O

Theorem 16. The problem whether a given wPRS system has an infinite risfiysad
a givena-formula is decidable.

Proof. Let A be a wPRS with the initial statpoto anda (8, B) be ana-formula. We
construct a PR&’ with the initial stateg which can simulaté&. We also define a set of
formulae recognizing correct simulations.

The systend' is very similar taA. We change only actions of rules to hold informa-
tion about control states in the rules and then we remov&)aljrolastates. To be more

precise, for every rule of the foript; & pty of A, we add the rulé; ﬂ to to A, and for

every rule of the fornpty & gty of A, we add the rulé; a{<p—<>q] tato .



Further, we modify the formula(,8) in such a way that every occurrence of
each actiorais replaced bW qema) (g V Vp<q@p<q))- LELA(E,B') be the resulting
formula.

Moreover, for every nonempty subggis, pz, ..., px} € M(A) of control states sat-
isfying p1 < p2 < ... < px andpy = po, we define am-formula

Olpy<...<p] = A(B1py] UB[py <) AX B[, UBppy o) AX ... B, 1 < A GsOpp, . 0)

whered|p) = Vacacta) ap) @ndOp <) = Vacacta) &p<pj)-

It is easy to see that there is an infinite runfo§atisfyinga(d, B) if and only if
there is an infinite run od’ satisfyinga(&', 8’) and ¢rp, <p,<..<p, for some control
statespy, p2, - - -, Pk such thatp; < p2 < ... < px andpz = po. As the number of such
sequences is finite and eapfy, < p,< .. <, is ana-formula, Theorem 15 and Lemma 2
imply that the considered problem is decidable. O

Theorems 4 and 16 imply the following corollary.

Corollary 17. The model checking problem for wPRS and negated formulag isf
decidable.

4 Model Checking for LTL (Fs, Gs)

This section focuses on the fragment I(FL, Gs): we show that formulae of this frag-
ment can be translated intband thus the model checking problem for L(A, G¢) and
WPRS is decidable.

Theorem 18. Every LTLF, G¢) formula can be translated into an equivalent disjunc-
tion of a-formulae.

Proof. As F; and G are dual modalities, we can assume that every (EJ)G;) for-
mula contains negations only in front of actions. Given ah (F, G;) formula, we
construct a finite sefy of a-formulae such tha is equivalent to the disjunction of
formulae inAy. Although our proof looks like by induction on the structurfed, it is
in fact by induction on the length df. Thus, if¢ ¢ LTL (), then we assume that for
every LTL(Fs, Gs) formula¢’ shorter thad we can construct the correspondingAgt

In this proof,p represents a formula of LT.. The structure of fits into one of the
following cases.

ep Casep: Inthis caseg is equivalent tqp A Gstt. HenceAy = {a(p A Gstt,0) }.
oV Case¢:V ¢o: Due to induction hypothesis, we can assume that we havé\gets

andAy,. Clearly,Ay = Ay, UAy,.

oA Casedi A¢o: Due to Lemma 2, the s&, can be constructed from the sétg,
andAy,.

oF, CaseF¢1: AsFs(a1Vay) = (Fa1)V (Faz) andFs(a A GsFs@) = (Fa) A (GsF9),
we setAy = {a(ttU; 5, B) | a(d,B) € Ay, }.

oG, CaseG 1: This case is divided into the following subcases accordirthé struc-
ture of 1.



op CaseGsp: As Gsp is equivalent tdt A Gsp, we sethAy = {a(ttAGsp,0)}.

oA CaseGs(h2 A h3): As Gs(dp2 A d3) = (Gsh2) A (Gshs), the sethy can be con-
structed fromAg,¢, andAg,¢, Using Lemma 2. Note tha#tg ¢, andAg ¢, can
be constructed becau6gd, andGsd3 are shorter thaGs(d2 A d3).

oFs CaseGsF;¢2: This case is again divided into the following subcases.

—p CaseGsF;p: As p € LTL (), we directly sety = {a(ttA Gstt, {p})}.

—V CaseGsFs(93V ha): As GsFs(d3V da) = (GsFsda) V (GsFsda), we sethy =
AGst¢3 UAGSFS¢4'

—N CaseGsF(p3 A da): This case is also divided into subcases depending on
the formulaeds anda.
xp CaseGsF(p3Apa): As psApa € LTL(), this subcase has already been

covered by Casé;Fp.

*V CaseGst(q)g A (¢5 V(I)G))Z As GSFS((I)g A (¢5 V¢6)) = GSFS(¢3/\ ¢5) V
GsFs(d3 A P6), We sethy = Ac.r, (93nds) U AGF (0ande)

xF; CaseGsFs(d3AFsds): As GsFs(d3 AFsds) = (G Fsd3) A (GsFsds), the
setAy can be constructed fromg,r, ¢, andAg,r¢s USiNg Lemma 2.

*xGs CaseGsF (93 A Gshs): As GoFs(P3 A Gsds) = (GsFsd3) A (GsFsGss),
the setAy can be constructed fromg,re, and Ag.rc.05 USING
Lemma 2.

—F; CaseGsFFsd3: As GsFFsd3 = GsFod3z, we sethy = Ag,r.o,-

—Gs CaseGsFGs¢s: A word u satisfiesGsFGs3 iff |ul = 1 oruis an infinite
word satisfyingFsGs$3. Note thatG;—tt is satisfied only by finite words of
length one. Further, a wordsatisfieg Fstt) A (GsFstt) iff uis infinite. Thus,
GsFGsh3 = (Gs—tt) V ¢’ whered’ = (Fitt) A (GsFstt) A (FsGsd3). Hence,
Ap = Ag,-tt UAy WhereAy is constructed fromgy, Ag,rtt, aNdAF G,
using Lemma 2.

oV CaseGs(d2V ¢3): According to the structure dafi; andds, there are the fol-
lowing subcases.

—p CaseGs(p2V p3): As p2V ps € LTL(), this subcase has already been cov-
ered by Casé&p.

—NA CaseGs(¢2V (9aAds)): As Gs(h2V (daAds)) = Gs(d2V da) AGs(d2V
¢s), the setAy can be constructed frolg, (y,ve,) aNdAg,(p,ves) USING
Lemma 2.

—Fs CaseGs(d2V Fsda): It holds thatGs(dp2 V Fsda) = (Gsd2) V Fs(da A d2 A
Gsb2) V GsFsda. Therefore, the sefy can be constructed agg, U
{a(ttUs3,B) | a(3,B) € Apsnoon6sto } U AGsRpas WhereAg,ngoncsp, 1S
constructed fromiy,, Ay,, andAg,¢, due to Lemma 2.

—Gs CaseGs(d2V Gsda): There are only the following two subcases (the others
fit to some of the previous cases).

(i) Case Gs(VyregGsd'): It holds that Gs(VeregGsd') = (Gs—tt) Vv
V¢,€G(XGS¢’). Therefore, the sef\y can be constructed &g, U
Uprecla(ttAX3,B) | a(d, B) € A,y }-

(i) Case Gs(p2V Vg ecGsh1): As Gs(P2 V Ve Gsd') = (Gsp2) V
Virec(X(p2UGsd')), the setAy can be constructed alg,p, U
U¢’EG{u(tt/\ Xp2 U 6, @) | 0(6, @) S AGS(])’}-



oGs CaseGs(Gsh2): As Gs(Gsho) = (Gs—itt) V (XGsh2), the setAy can be con-
structed ag\g, ¢ U {a(ttAXd, B) | a(d, B) € Ac.¢, }-
0

As LTL(F;, Gs) is closed under negation, Theorem 18 and Corollary 17 gibeis
following.

Corollary 19. The model checking problem for wPRS and (F1G;) is decidable.

This problem isEXPSPACE-hard due tcEXPSPACE-hardness of the model checking
problem for LTL(F,G) and PN [Hab97]. Our decidability proof does not provide any
primitive recursive upper bound as it employs reachabitityPN (for example, it is
used in a decision procedure for reachability for wWPR&§04a]), for which no prim-
itive recursive upper bound is known.

5 Model Checking for LTL (Fs, Gs, Ps, Hs)

This section extends the results of the previous two sextiomandle past modalities
eventually in the strict pagtndalways in the strict pasts well.

We start with a past extension afformulae called &-formulae. Intuitively, a 8-
formula is a conjunction of aa-formula and a past version of tleeformula.

A formal definition of a B-formula makes use 015, ¢» to abbreviateps A

Y(01S92).

Definition 20. Let n = 11P112P5. . .ImPmlm+1, Where m> 0, eachtj € LTL(), Pn is
‘AHg’, and, for each j< m, B is either S’ or * S’ or * AY'. Further, leta(d, B) be an
a-formula. Then & -formulais defined as

Ri(n,d,B) = (11PL(12P2. .. (ImPmlmg1) --.)) A a(,B).
The fragmenP4 consists of all finite disjunctions &-formulae.

Note that the definition of acRformula does not contain any past counterpart of
AyesGsFsY as every history is finite.

Therefore, a pointed worfl, k), whereu = apa;a; . . ., satisfies &(n, 0, B) if and
onlyif apa; ... ax can be written as a concatenatign 1.Vm. - - - .V2.v1, where each word
v; consists only of actions satisfyingand

— |vi|>0ifi=m+1orRis'S,
— |vi| >0if Ris ‘S,
— vil=1ifRis‘AY’ or ‘AH".
The following lemma says that the fragmer# B ‘semantically closed’ under con-
junction and application of some temporal operators. Aherdase of Lemma 2, the

proof is intuitively clear but some parts are quite techhivée refer to Reh07] for
some hints.

Lemma 21. Let ¢ be aRu-formula and pe LTL(). FormulaeXd, Y¢, pU, pSd,
F¢, Ps¢, and also any conjunction di-formulae can be effectively converted into
a globally equivalent disjunction ¢t-formulae.



The next step is to show that we can decide whether a given vep&8m has a run
satisfying a given &@-formula. The proof utilizes Corollary 17.

Theorem 22. The problem whether a given wPRS system has a run satisfighga
Ra-formula is decidable.

Proof. A run over a nonempty (finite or infinite) word= apa;a; . . . satisfies a formula

¢ iff (u,0) = ¢. Moreover,(u,0) = Rx(n,6,B) iff (ap,0) = n and(u,0) = a(d,B).
Letn =11P112P2.. . imPmims1. It follows from the semantics of LTL thdig,0) = n if

and only if (ap,0) = 1m andP, =S for all i < m. Therefore, the problem is to check
whetherP, =S for all i < mand whether the given wPRS system has a run satisfying
ImAa(d,B). AsimA (0, B) can be easily translated into a disjunctioroeformulae,
Corollary 17 finishes the proof. O

It remains to show that every LTE;, G, Ps,Hs) formula can be translated into a
P4 formula. The proof uses the same approach as the one of Thdd@eit proceeds
by a thorough analysis of the structure of a translated ftamChe full proof is in
Appendix A.

Theorem 23. Every LTUF,Gs,Ps,Hs) formula ¢ can be translated into a globally
equivalent disjunction dfa-formulae.

As LTL(F,Gs,Ps,Hs) is closed under negation, Theorems 23 and 22 give us the
following.

Corollary 24. The model checking problem for wPRS and (F[1G, P, Hs) is decid-
able.

Moreover, we can show that the pointed model checking prokite decidable
for wPRS and LTIF, G, Ps,Hs) as well. Again, we solve the dual problem fax-P
formulae.

Theorem 25. Let A be a wPRS and pt be a reachable nonterminal statd.ofhe
problem whether [pt,A) contains a pointed wordu, i) satisfying a giverRa-formula
is decidable.

Proof. Let A = (R, po,to) be a wPRS angt be a reachable nonterminal stateofVe
construct a wPRA' = (R, po,t0.X) whereX ¢ ConstA) is a fresh process constant,
f
R =RU{(p(tX) > pXa), (pXa = PYa), (PYa <> P1') | pt = pt'},

f & Act(A) is a fresh action, an¥,, Yo ¢ ConstA) are fresh process constants for each
a € Act(d).

Let u = agayap... be a word. It is easy to see thém,i) is in L(pt,A) iff
apay ... 8-18.7.8.811...isinL(A"). Hence, for any givend®formulad = Ra(n,d, B)
we construct ad®formula¢’ = Ra(n,tt AXf A X0, B). We get that

L(pt,A) = Ra(N,5,8) <= L(A) = F(Ra(n,ttAX AXS,B))

and due to Lemma 21 and Theorem 22 the proof is done. O



As LTL(F, Gs,Ps, Hs) is closed under negation and Theorem 23 works with global
equivalence, Theorem 25 gives us the following.

Corollary 26. The pointed model checking problem is decidable for wPRS and
LTL(Fs, Gs, Ps, Hs).

6 Undecidability Results

Obviously, the model checking for wPRS and LK) is decidable. Hence, to show that
the decidability boundary of Figure 2 is drawn correctly,ive@e to prove that the model

checking problem is undecidable for wPRS and the fragmeFitll) and LTL(OE,X).
In fact, we show that the problem is undecidable even for thelass of PA systems
and the mentioned LTL fragments. The undecidability pr@vésbased on reductions
from the non-halting problem for Minsky 2-counter machingkich is known to be
undecidable [Min67].

First of all, we recall the definition of Minsky machines.Minsky 2-counter ma-
ching or amachinefor short, is a finite sequend®¢=11:1i1, I2:i2, ..., In-1:0in-1, In:
hal t, wheren>1,11,l5,...,l arelabels and each; is an instruction for either

— incrementcy: =cx+1; goto I, or
— test-and-decremenitf cy>0 then cx:=ck-1; goto I, else goto Ig

wherek € {1,2} and 1<r,s<n.

The machineN induces a transition relation— over configurationsof the form
(Ij,v1,Vv2), wherel; is a label of an instruction to be executed and/, > 0 represent
current values of countetg andc,, respectively.

We say that the machind haltsif (11,0,0) —* (I, v1,v2) for some numbers
vi,V2 > 0, where—* denotes the reflexive and transitive closure-e%. The non-
halting problemis to decide whether a given machiNedoes not halt. The problem is
undecidable [Min67].

Theorem 27. Model checking of PA against LTU) is undecidable.

Proof. Given a machin&l, we construct a PA systefy with the initial stateD;||D2||H
and set of rules containing

— for every instruction; : cx: =cx+1; goto Iy, the rules
li li ing;
Dk < Sc.Dk Ck = S.Cx S G
— for every instructionl; : i f cx>0 then cyx:=ck-1; goto I, el se goto ls, the

rules

I li d
Dy s Ey E. 5Dy Ciehe  Sieve

In . . .
— the ruleH < H corresponding to the instructidg: hal t .

Now, we define a formulg describing a correct step of the constructed PA sygigm
when simulating the machiré. The formulay is the following conjunction:



/\eachli:ck:zck+1; goto Iy ((li = (Ii Uinci)) A (inci = (inci Ulr))) A
/\eachli:if ck>0 then cy:=ck-1; goto Iy else goto Ig ((li = (Ii U(dequerq)))
A (deg = (degUly))
A (zerqa => (zerqUly)))

Finally, we seth =11 A (@ UIp). It is easy to see that the machiNehalts if and only
if the systemAy has a run satisfying. In other words, the machiré does not halt if
and only ifL(AN) E —d. a

Theorem 28. Model checking of PA against LTE,X) is undecidable.

Proof. Given a machin® =11:iq, l2:i2, ..., In—1:in-1, In: hal t, we construct a PA
systemAy with initial stateD;||D»||H and set of rules containing

— for every instruction; : cx: =cx+1; goto Iy, the rules

inc inc

Dk‘—>Ck.Dk Ck‘—)Cka

— for every instructionl; : i f cx>0 then cyx:=ck-1; goto I, el se goto ls, the
rules

zerq deg
Dk — Dy Ck—¢

— rules corresponding teal t and instruction labels

li .
HtﬂtH H<— H forevery 1<i<n

— and the rules allowing to reset the counters

del deb reset resep
Cl‘—)18 C,—¢ D1 <= D Dy — D2

As in the previous proof, we define a formuladescribing a correct step of the con-
structed PA systerfiy when simulating the machire. The formulay is the following
conjunction:

/\eachli:ck:=ck+1; goto Iy ((li = Xinci) A (inci = Xlr)) A

/\eachli:if ck>0 then cy:=cg-1; goto Iy else goto Is ((li jx(dequem))
A (deg = Xly)
A (zerq => Xls))

A (In = Xhalt)

Moreover, we define a formulp describing a correct step of resetting counters and
restarting the simulation.

p= (halt= X(deh Vresei)) A (deh = X(deh Vreset))
A (resef = X(deb Vresep)) A (deb = X(deb V resep))
A (reseb = Xl1)



The formulap = E(UJ AP) A oI:‘)halt says that at some point thelt action occurs, both
counters are reset, a correct simulation is started, ancheviee the simulation ends
(with halt action), this sequence of events is performed again. Meraote that) is
satisfied only if the actiohalt appears infinitely many times. Hence, there is a run of
Ay satisfyingd if and only if N halts. In other words, the machimdoes not halt if
and only ifL(An) = —¢. a

In the proofs of the previous two theorems, the PA systemstoacted there have

only infinite runs. This means that model checking of infimites remains undecidable

for PA and both LTLU) and LTL(F, X).
It can be easily shown that model checking of finite runs foraPl LTL(U) is
undecidable as well. To that end, it suffices to modify thestarttion in the proof of

Theorem 27 by adding a ruk < ¢ for everyX € {H,C1,D1,5,C2,D2,S}.

In contrast, model checking diite runsfor LTL(OI-S,X) is decidable, even for
WPRS. The proof is based on the observation that a nonemiitiy fim satisfies:;q)
if and only if the last action of the run satisfi¢s The same holds for the formu&p.
Hence, if we restrict only to nonempty finite runs, the mdn'ﬂioFo,E are equivalent.
The observation also implies th%tﬂq) is equivalent tm°F°¢, oFo((l)l A7) is equivalent to
(oFoq)l) A (oFod)z), oFoolgcl) is equivalent tdfnq), and tha%ch never holds. It is now easy to see

that every LTL(OFO,X) formula can describe only a bounded prefix of a finite run @sin
the modalityX) and the last action of the run. Thus, decidability of modeaking of

finite runs for LTI(OFO,VX) follows from decidability of theeachability Hennessy-Milner
propertyproblem [KRS05].

7 Model Checking for LTL 9t

This section deals with the LTE! fragment also known as ‘the common fragment of
CTL and LTL [Mai00]. Using our results of Section 3 we shovatlthe model checking
problem for wPRS and this fragment is decidable. A definibéi.TL 9 employs a
binary modalityweak unti] denoted with/V, with the meaning Wy = G v ¢ U .

Definition 29. Let Act= {a,b,---} be a countably infinite set of atomic actions. The
syntax ofLTL %formulais defined as follows.

¢ i=p| 01Ad2 | (PAGL)V(=PAD2) | X1 |
(PAG)U(=pAD2) | (PAGL)W (=PAD2),
where p ranges over LTI
Note that LTL9!is not closed under application of negation. To prove thédzdx-

ity of model checking for wPRS an LT, we show that th@egationof every LTLIt
formula can be converted into an equivalent disjunctioa-6érmulae.

Theorem 30. A negation of every LTl formula can be translated into an equivalent
disjunction ofa-formulae.



Proof. Given an LTL%!formulag, we construct a finite sét4 of a-formulae such that
—¢ is equivalent to the disjunction of formulae M. The proof uses the following
equivalences.

Gitt = tt (1)
) Gstt vV X—¢ (2)

The formulaGs—tt occurring in the second equivalence is satisfied only by warfd
length 1. These words satisfy also every formula of the fed®, but no formula of
the formX—¢.

The proofis by induction on the structuredfThe formula has one of the following
forms:

ep Casep: Using (1), we get thatp = —pA Gstt. Hence, we definéd¢ = {a(-pA
Gstt,0)}.
oX CaseX¢i: Using (2), we get thatXp1 = Gs—tt V X—¢1. Hence, we seby =
{a(ttA Gs—tt,0)} U {a(ttA X5, B) | a(d, B) € Ay, }-
oA Casedy A¢o: Clearly, we sef\y = Ay, UAg,.
oV Case(pAd1)V (—pAd2): We obtainA-y from the set of conjunction8x(d1, B1) A
a(32,B2) | (81, B1) € A (prg,) anda (82, Bz) € A pap,) } USINg Lemma 2.
oU Case(pAd1)U(=pAd2): As=((pAd1)U(=pAd2)) = pW ((PA=1) V (=pA
=02)) = GpV pU((PA=1) V (=P A =92)) = (PAGsp) V pU(=((—=pV ¢1) A
(pV $2))), the construction can be done as follows. Applying the mesicon-
structions, we obtaid\ = A (_pve;)(pve,))- NOW, Ay can be defined afu(p A
Gsp,0)}U{a(pUd,B) | a(d,B) € A'}.
oW Case(pAd1)W(=pAdr): Similarly to the casgdpA 1)U (=pA §2), we get
~((PAD1)W (=PA2)) = pU(~((=PV 1) A (PV 92))). ThereforeA 4 can be
constructed aga(pUd, B) | a(8, B) € A ((~pvir)A(pvir)) }-
a

The previous theorem and Corollary 17 give us the following.

Corollary 31. The model checking problem for wPRS and t¢fis decidable.

8 Conclusion

The paper brings several new (un)decidability results omlehahecking of wPRS
classes and fragments of LTL with both future and past mbdsl{see Figure 2). In
particular, we have established the decidability bordethefproblem for basic LTL
fragments by showing that it is decidable for wPRS and (F1Gs, Ps, Hs), but it is

undecidable even for PA and LTU) or LTL(OFO,X). It is known that the problem is
decidable for all WPRS classes not subsuming PA (i.e. pughgoocesses, Petri nets,
and all their subclasses) and the whole LTL.

Now we try to provide some intuitive explanations of the dediility boundary lo-
cation. Going through the paper, one can verify that evenpida of LTL(F;, Gs, Ps, Hs)
can be translated into an initially equivalent disjunctimina-formulae. Hence, the



model checking problem for LT(E;, G, Ps, Hs) reduces to the problem whether a given
WPRS system has a run satisfying a giweformula. Everya-formulaa(d, B) (see
Definition 1) consists of two parts. The first part, corresfing to a(d,0), can be
translated into a-weak automatoifalso calledvery weak automator an automa-
ton without cycles except of self loops). The problem of qise of a run accepted
by such an automaton reduces to the reachability problerwRRS, which is decid-
able due to [RRS04a]. The second part is a conjunction of formulae of the s F,,
i.e. a fairness condition. Such a fairness condition cpoeds to an automaton that is
not 1-weak. Fortunately, there is a result of [Boz05] sayirag the problem whether a
PRS has an infinite run satisfying a given fairness condisatecidable. These obser-
vations support an intuition for decidability of the modakcking problem for wPRS
and LTL(F;, Gs, Ps, Hy).

Looking at the decidability border passing between (.E‘)_and LTL(OFO,X), one
may naturally ask whether th€ operator causes undecidability. Let us note thatthe
operator does not lead to undecidability in general. Formpta, a-formulae employs

next operators too. The proof showing undecidability of elathecking for LTI(OFO,X)
contains an LTL formula where thé operator is nested in the left argument ofl&n
operator. Similarly, in the case of the undecidability grfww LTL (U), the constructed
formula employdJ operator nested in the left argument of anottewperator. These
are quintessential LTL constructions leading to (nonjdelips in the corresponding
automata. That is why our decidability proof cannot worktfegse fragments.
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A Proof of Theorem 23

Theorem 23 Every LTL(F,Gs,Ps,Hs) formula ¢ can be translated into a globally
equivalent disjunction ofd®formulae.



Proof. As F;,G; and Ps,Hs are dual modalities, we can assume titatis an
LTL (Fs, Gs, Ps, Hs) formula containing negations in front of actions only. Wexstouct
a finite setA, of Ru-formulae such tha is globally equivalent to the disjunction of
formulae inAy. As in the case of Theorem 18, the proof is done by inductiothen
length of¢. Thus, if¢ ¢ LTL(), then we assume that, for each (A, G, Ps, Hs) for-
mula¢’ shorter tharp, we can construct the correspondingAgt Let p be a formula
of LTL (). The structure o fits into one of the following cases.

ep Casep: In this caseg is equivalent top A Gstt. HenceAy = {Ru(tt A Hstt, p A
Gstt,0)}.

oV CasedV ¢o: Due to induction hypothesis, we can assume that we havé\gets
andAy,. Clearly,Ay = Ay, UAy,.

oA Casedi A¢o: Due to Lemma 214 can be constructed from the ség andAy,.

oF; CaseF;¢1: Due to Lemma 21, the sé§ can be constructed from the &} .

oP; CaseP¢:: Due to Lemma 21, the sé§ can be constructed from the &}, .

oG, CaseG¢0; is divided into the following subcases according to thecttree ofd4

op CaseGsp: As Gsp is equivalent tott A Gsp, we setAy = {Rx(tt A Htt, tt A
Gsp,0)}.
oA CaseGs(p2Ad3): As Gs(P2 A d3) = (Gsh2) A (GsP3), the sethy can be con-
structed fromAg, ¢, andAg,¢, Using Lemma 21. Note théis,y, andAg,e, can
be constructed becau6gd, andGsd3 are shorter thaGs(d2 A d3).
oFs CaseGsF¢2: This case is again divided into the following subcases.
—p Case GsFsp: As p € LTL(), we directly setAy = {Rx(tt A Htt,tt A
Gstt, {p})}-
—V CaseGsFs(p3V da): AsGsFs(P3V da) = (GsFsda) v (GsFsda), we setdy =
AGst¢3 UAG5F5¢4'
—A CaseGsF(p3Ad4): This case is also divided into subcases depending on
the formulaahs andd .
xp CaseGsFs(p3A ps): As p3Apa € LTL(), this subcase has already been
covered by Casé;Fp.
xV CaseGsFs(p3A ($5V d6)): As GsFs(d3A ($5V d6)) = GsFs (D3 A s5) Vv
GsFs(d3 A P6), We sethy = Ac.r, (93nds) U AGF (0ande) -
xF; CaseGsFs(p3AFds): As GoFs(P3AFsds) = (GsFsd3) A (GsFsds), the
setAy can be constructed frolg, ¢, andAg,r¢s USiINg Lemma 21.
*P; CaseGsFs(d3 A Psds): As GFs(93 APshs) = (GsFsd3) A (GsFsPsds),
the setAy can be constructed fromg,r¢, and Agr,p,¢s USING
Lemma 21.
*Gg CaseGst(¢3/\ Gs¢5): As Gst(¢3 A Gs¢5) = (Gst¢3) A (Gstqu)S),
the setAy can be constructed fromg,re, and Ag.rc.05 USING
Lemma 21.
xHs CaseGsFs(d3AHshs): As GsFs(d3AHds) = (GsFsd3) A (GsFsHsds),
the setAy can be constructed fromg,r¢, and Ag.rH,ps USING
Lemma 21.
—F; CaseGsFF¢3: As GsFsFd3 = GsFsd3, we sethy = Ag,r¢s-



oPs

oV

—Ps CaseGsFsPs$3: A pointed word(u, i) satisfiesGsFsP.d3 iff i =|u]—1 oru
is an infinite word satisfying¢s. Note thatGs—tt is satisfied only by finite
words at their last position. Further, a wandsatisfies(Fstt) A (GsFstt) iff
u is infinite. Thus,GsFsPs¢3 = (Gs—tt) V ¢’ whered’ = (Fstt) A (GsFstt) A
(¢3V Psd3V Fsd3). Hence Ay = Ag, -1t UAy WhereAy is constructed from
Artt, Ac,Ftt, andAg, U Ap g, U Arp, USINg Lemma 21.

—Gs CaseGF,G:3: A pointed word(u,i) satisfiesGsFsGs¢s iff i = |u]—1
or u is an infinite word satisfyingsGs¢3. Thus,GsFsGsds = (Gs—itt) V ¢
whered’ = (Ftt) A (GsFstt) A (FsGsd3). Hence, Ay = Ag,-t U Ay where
Ay is constructed from«t, Ag,Ftt, andAr, .9, USiNg Lemma 21.

—Hs CaseGsFHsd3: A pointed word(u,i) satisfiesGsFsHso3 iff i = |u] —1
or u is an infinite word satisfyingsds. Thus, GsFsHs¢3 = (Gs—tt) Vv ¢/
whered’ = (Fstt) A (GsFstt) A (03 A Hsd3 A Gsd3). Hence Ay = Ag -t UAy
whereAy is constructed fronAg i, AcFtt, Apsr AHsps aNdAg,p, USING
Lemma 21.

Case G¢Ps¢2: A pointed word(u,i) satisfiesGsPs¢2 iff i = |u| —1 or (u,i)
satisfiesP¢,. Hence Ay = Ag,—tt U Ap, UApp,-

CaseGs(92 V ¢3): According to the structure af, and¢s, there are the fol-
lowing subcases.

—p CaseGs(p2V p3): As p2V ps € LTL (), this subcase has already been cov-
ered by Cas&,p.

—NA CaseGs(h2V (paAds)): As Gs(d2V (daAds)) = Gs(d2V ¢a) AGs(92V
¢s), the setAy can be constructed frolg, (y,v¢,) aNdAg,(p,ves) USING
Lemma 21.

—Fs CaseGs(d2 V Fsda): It holds thatGs(d2 V Fsdg) = (Gsbdo) V Fs(Fsda A
Gsd2) V GsFsda. Therefore, the sefy can be constructed akg, ¢, U
AF, (FedanGshr) U AGFbsr WHETEAE (Fg,nGe0,) 1S ObtaINed fromAgy, and
Ag,¢, Using Lemma 21.

—Hs Case Gg(§2 V Hsda): As Gs(d2 V Hsda) = (Gsh2) V Fs(Hshpa A
Gsb2) V GsHsda. Hence, Ay = Agyp, U AF (Hy0a7Gsd2) U AGsHsp,) WheTe
Ar, (Hs047Gsd,) CN be obtained fromy, e, andAg,¢, Using Lemma 21.

—Gs,Ps There are only the following six subcases (the others fit tnesof the
previous cases).

(i) Case Gs(VyregGsd'): It holds that Gs(VeegGsd') = (Gs—it) V
V¢,EG(XGS¢’). Therefore, the sedy can be constructed & -t U
UspecPxc,er Where eachAygy is obtained fromAg 4 using
Lemma 21.

(i) Case Gs(p2V VyrecGsd'): As Gs(p2 V Vyreg Gsd') = (Gspz) V
Virea(X(p2U (Gs9'))), the setAy can be constructed abg,p, U
Uq)’EGAX(sz(qu)’)) where eacmx(pzu((;sq,r)) is obtained fromAqu,,
using Lemma 21.

(iii) Case Gs(VgrepPsd”): It holds that Gs(Vegrep Psd”) = (Gs—tt) v
V¢,,EP(XPS¢”). Therefore, the sedy can be constructed &t U
UprepAxp,gr Where eachAyp 4 is obtained fromAp 4 using
Lemma 21.



(iv) Case Gs(p2 V VyrepPsd”): As Gs(p2 V VgrepPsd”) = (Gsp2) V
Verep(X(p2U (Ps0"))), the setAy can be constructed a&g,p, U
U¢”EPAX(p2U(Ps¢”)) where eacmx(pzu(psq,u)) is obtained frorrAp5¢//
using Lemma 21.

(v) Case Gs(VyrecGsd' V VorepPsd”):  As  Gs(VyrecGsd' V
v¢"EP Psd)H) = (Gs—([t) V vq)’EG(XGS(I),) V V¢Ilep(XP5¢H), the set
Ay can be constructed a#g, i U Ugrec Axeser U Ugrep Axpagr where
eachAyg,¢ is obtained fromAg ¢ and eachAyp ¢~ is obtained from
Ap,yr Using Lemma 21.

(vi) Case  Gs(p2 V VyrecGsd' V VyrepPsd”):  As  Gs(pz V
VorecGsd' V VyrepPsd”) = (Gsp2) V Vyrea(X(Pp2U (Gs§"))) Vv
Verep(X(p2U (Ps9"))), the set Ay can be constructed as
Acspy U UpeaAxpou(cen) U UprepAx(ppu(pgry)  Where  each
Ax(pU(Gstry) 1S obtained fromAgy and eachAx(p,u(per) IS

obtained fromAp 4~ using Lemma 21.
0Gs Case GsGsho: As Gs(Gsh2) = (Gstt) V (XGsh2), the setAy can be con-

structed asAg,—tt U Axg,0, Where Axg.9, is obtained fromAg,y, using
Lemma 21.

oHs Case GsH:$2: A pointed word (u,i) satisfiesGs(Hs¢2) iff i = |u|—1 or
(u, Ju| — 1) satisfiesHsd, or uis infinite and all its positions satisfly,. Hence,
Ao = Acs—tt U Ay (65t A(Hsb2)) Y Altsga)ndon(Gstz) WIETE Ar (G-t (Hit2)
and A(p,9,)A004 (o) aT€ Obtained fromAg,—it, Ange,r Ag,, andAg,g, Using

Lemma 21.
eH, CaseH.01: This case is divided into the following subcases accordirte struc-

ture of 1.

op CaseH;p: As Hqp is globally equivalent tdt A Hsp, we setAy = {Ru(tt A
Hsp, tt A Ggtt, 0)}.

oA CaseHs(¢p2 A ¢3): As Hs(d2 Ad3) = (Hsh2) A (Hsh3), the sethy can be con-
structed fromAn, ¢, andAn,¢, using Lemma 21.

oF; CaseHFs¢2: A pointed word(u, i) satisfiesHsFs¢2 iff i = 0 or (u,i) satisfies
F». Note thatHs—tt is satisfied by(u,i) only if i = 0. ThereforeAy = Ayt U
o2 U Aruto. . - o

oPs CaseH;Ps¢>: A pointed word(u,i) satisfiesHsPs¢» iff i = 0. ThereforeAy =
AHsﬂtt-

oV CaseHs(¢2V ¢3): According to the structure aff, ands, there are the fol-
lowing subcases.
—p CaseHs(p2V p3): As p2V p3 € LTL (), this subcase has already been cov-

ered by Caseélsp.

—N CaseHs(¢2V (9aAds)): AsHs(d2V (94 Ad5)) = Hs(d2V da) AHs(d2V
¢s), the setAy can be constructed fromy, g,ve,) and Ay, g ves) USING
Lemma 21.

—Ps CaseHs(d2 V Psda): It holds thatHg(d2 V Psda) = (Hsd2) V Ps(Psda A
Hsb2). Therefore, the sety can be constructed #81,¢, U Ap, (p,p,AHsb,)
whereAp, (p,p,nH.0,) IS Obtained fromAp e, andAy,e, using Lemma 21.

—Gg CaseHs(02V Gsha): As H(d2V Gsha) = (Hsh2) V Ps(Gsda A Hsh2), Ay
is constructed adw g, U Ap, (G,p4nHsb,) WNETEAR, (6. 94nH,0,) IS ODtained
from Ag,¢, andAy,y,) Using Lemma 21.



—F,Hs There are only the following six subcases (the others fit inesof the
previous cases).

(i) Case Hs(Vger Fsd'): It holds that Hy(Vgep Fs¢') = (Hsmtt) v
V¢,EF(YFS¢’). Therefore, the sedy can be constructed &, U
Ugsrer Avrgr Where eachAygy is obtained from Agy using
Lemma 21.

(i) Case Hs(pz2 V Vyrer Fs9'): As Hs(p2 V Vyrer Fsd') = (Hsp2) Vv
Vorer (Y(p2S(Fs'))), the setAy can be constructed adn,p, U
Usrer Av(pys (Fo¢r)) Where eacty (p,s (k.41 is obtained fromAg 4 us-
ing Lemma 21.

(i) CaseHs(Vgren Hsd"): It holds thatHs(Vgren Hsd") = (Hs—tt) v
Veren (YHs9"). Therefore, the sedy can be constructed &, U
Ugren Avhggr Where eachAyy g is obtained fromAy 4» using
Lemma 21.

(iv) CaseHs(pz2V Vyren Hsd"): As Hs(p2 V Vgren Hsd”) = (Hspz) V
Veren (Y(p2S (Hs"))), the setAqy can be constructed a&,p, U
U¢u€H Ay(pzs(qu)H)) where eacmy(pzs(,_,sq,u)) is obtained fronAqu,u
using Lemma 21.

(V) Case HS(Vq)’EF Fsd)/ \% V¢IIEH Hsd)/,): As HS(V¢’€F Fsd)/ V
V¢NEH qu)/,) = (Hs_ﬁ[t) \% V¢’EF(YFS¢,) \ V¢"€H (YHS(I)H), the
setAy can be constructed a8y it U Uyrer Avrgr U Ugpren Avtgp”
where eactyr, ¢ is obtained fromAg 4 and eactAyy 4 is obtained
from Ay er using Lemma 21.

(vi) Case Hs(p2 V VyerFsd' V VorenHsd"):  As  Hi(pz V
Vorer Fsd' V Vgren Hsd") = (Hsp2) V Viyrer (Y(P2S (Rsd'))) Vv
Voren (Y(p2S(Hs0"))), the set Ay can be constructed as
App, U U¢r.e|: Ay(st(qu)r)) U U¢”EH AY(pgS(Hsd)”)) Where (_each
A (0,5 (Fs') is obtained fromAg o and eacthy (p,s (1)) IS Obtained
from Ay er using Lemma 21.

oG CaseH Gs$2: A pointed word(u,i) satisfiesH(Gs¢2) iff i = 0 or (u,0) sat-
isfiesGsdo. Hence Ay = AHs_‘ttUAPS((HS—'tt)/\(GSd)g)) WhereAps((Hsﬁn)/\(qu,z)) is
obtained fromAy, -« andAg,e, using Lemma 21.

oHs CaseHsHsdo: As Hg(Hsdo) = (Hs—tt) V (YHsd2), the setAy can be con-
structed asAn,—¢ U AvHyp, Where Ay, iS obtained fromAye, using

Lemma 21.
]

Remark 32.In other words, we have just shown that (R, G, Ps, Hs) is a semantic
subset (with respect to the global equivalence) of evempétism that is

— able to expresp, Gsp, Hsp, andGsFsp, wherep € LTL (), and
— closed under disjunction, conjunction, and applicatiohX,0Y, pU —, andpS —,
wherep € LTL().



