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Abstract It is known that LTL formulae without the ‘next’ operator are invariant
under the so-called stutter equivalence of words. In this paper we extend this prin-
ciple to general LTL formulae with given nesting depths of both ‘next’ and ‘until’
operators. This allows us to prove the semantical strictness of three natural hier-
archies of LTL formulae, which are parametrized either by the nesting depth of
just one of the two operators, or by both of them. Further, we provide an effective
characterization of languages definable by LTL formulae with a bounded nesting
depth of the ‘next’ operator.

1 Introduction

Linear temporal logic (LTL) [12] is a popular formalism for specifying properties
of (concurrent) programs. The syntax of LTL is given by the following abstract
syntax equation:

ϕ ::= tt |p| ¬ϕ|ϕ1 ∧ ϕ2|Xϕ | ϕ1 U ϕ2

Here p ranges over a countable set � = {o, p, q, . . .} of letters. We also use Fϕ
to abbreviate ttU ϕ, and Gϕ to abbreviate ¬F¬ϕ.

We define the semantics of LTL in terms of languages over infinite words (all
of our results carry over to finite words immediately). An alphabet is a finite set
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� ⊆ �. An ω-word over � is an infinite sequence1 α = α(0)α(1)α(2) . . . of
letters from �. The set of all ω-words over � is denoted �ω. For every i ≥ 0
we denote by αi the i th suffix of α, i.e., the word α(i)α(i + 1) . . . (we use this
notation for finite words as well). Moreover, for all i ≥ 0 and j > 0, the symbol
α(i, j) denotes the subword of α of length j starting with α(i).

Let ϕ be an LTL formula. The validity of ϕ for a given α ∈ �ω is defined
inductively as follows:

α |� tt
α |� p iff p = α(0)
α |� ¬ϕ iff α �|� ϕ
α |� ϕ1 ∧ ϕ2 iff α |� ϕ1 ∧ α |� ϕ2
α |� Xϕ iff α1 |� ϕ
α |� ϕ1 U ϕ2 iff ∃i ∈ N0 : αi |� ϕ2 ∧ ∀ 0 ≤ j < i : α j |� ϕ1

Let us note that the results presented in this paper remain valid if the logic LTL
is built over atomic propositions rather than over letters.

For every alphabet � and every LTL formula ϕ we define the language L�
ϕ =

{α ∈ �ω | α |� ϕ}. If � is understood from the context, we write just Lϕ .
It is well-known that languages definable by LTL formulae form a proper sub-

class of ω-regular languages (see, e.g., [15]). More precisely, LTL languages are
exactly the languages definable in first-order logic with the signature {suc, <}∪�′,
where suc and < are binary predicates standing for successor and less than, re-
spectively, and �′ is a set of unary predicates corresponding to the set of letters �.
See [4,5] for more details regarding the relationship between LTL and first-order
logic.

Since LTL contains just two modal connectives, a natural question is how they
influence the expressive power of LTL. First, let us (inductively) define the nesting
depth of the X and the U modality in a given LTL formula ϕ, denoted X (ϕ) and
U (ϕ), respectively.

U (tt) = 0 X (tt) = 0
U (p) = 0 X (p) = 0
U (ϕ ∧ ψ) = max{U (ϕ), U (ψ)} X (ϕ ∧ ψ) = max{X (ϕ), X (ψ)}
U (¬ϕ) = U (ϕ) X (¬ϕ) = X (ϕ)
U (Xϕ) = U (ϕ) X (Xϕ) = X (ϕ) + 1
U (ϕ U ψ) = max{U (ϕ), U (ψ)} + 1 X (ϕ U ψ) = max{X (ϕ), X (ψ)}

Now we introduce three natural hierarchies of LTL formulae. For all m, n ∈ N0
we define

LTL(Um, Xn) = {ϕ ∈ LTL | U (ϕ) ≤ m ∧ X (ϕ) ≤ n}
LTL(Um, X) = ⋃∞

i=0 LTL(Um, Xi )

LTL(U, Xn) = ⋃∞
i=0 LTL(Ui , Xn)

Hence, the LTL(Um, Xn) hierarchy takes into account the nesting depths of both
modalities, while the LTL(Um, X) and LTL(U, Xn) hierarchies ‘count’ just the

1 We use o, p, q, . . . to range over �, u, v, . . . to range over �∗, and α, β, . . . to range over
�ω.
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nesting depth of U and X, respectively. The languages definable by formulae of
LTL(Um, Xn) are called LTL(Um, Xn) languages.

Our work is motivated by basic questions about the presented hierarchies; in
particular, the following problems seem to be among the most natural ones:

Question 1. Are those hierarchies semantically strict? That is, if we increase m
or n just by one, do we always obtain a strictly more expressive fragment of
LTL?

Question 2. If we take two classes A, B in the above hierarchies which are
syntactically incomparable (for example, we can consider LTL(U4, X3) and
LTL(U2, X5), or LTL(U3, X0) and LTL(U2, X)), are they also semantically
incomparable? That is, are there formulae ϕA ∈ A and ϕB ∈ B such that ϕA is
not expressible in B and ϕB is not expressible in A?

Question 3. In the case of LTL(Um, Xn) hierarchy, what is the semantical inter-
section of LTL(Um1, Xn1) and LTL(Um2, Xn2)? That is, what languages are
expressible in both fragments?

We provide (positive) answers to Question 1 and Question 2. Here, the results
about the LTL(Um, Xn) hierarchy seem to be particularly interesting. As for Ques-
tion 3, one is tempted to expect the following answer: The semantical intersection
of LTL(Um1, Xn1) and LTL(Um2, Xn2) are exactly the languages expressible in
LTL(Um, Xn), where m = min{m1, m2} and n = min{n1, n2}. Surprisingly, this
answer turns out to be incorrect. For all m ≥ 1, n ≥ 0 we give an example of
a language L which is definable both in LTL(Um+1, Xn) and LTL(Um, Xn+1),
but not in LTL(Um, Xn). This shows that the answer to Question 3 is not as easy
as one might expect. In fact, Question 3 is left open as an interesting challenge
directing our future work.

The results on Question 1 are closely related to the work of Etessami and
Wilke [3] (see also [17] for an overview of related results). They consider an until
hierarchy of LTL formulae which is similar to our LTL(Um, X) hierarchy. The
difference is that they treat the F operator ‘explicitly’, i.e., their U -depth counts
just the nesting of the U operator and ignores all occurrences of X and F (in our
approach, Fϕ is just an abbreviation for ttU ϕ, and hence ‘our’ U -depth of Fp is
one and not zero). They prove the strictness of their until hierarchy in the following
way: First, they design an appropriate Ehrenfeucht-Fraı̈ssé (EF) game for LTL (the
game is played on a pair of words) which in a sense characterizes those pairs of
words which can be distinguished by LTL formulae where the temporal operators
are nested only to a certain depth. Then, for every k they construct a formula Fairk
with until depth k and prove that this particular formula cannot be equivalently
expressed by any other formula with U -depth equal to k−1. Here the previous
results about the designed EF game are used. Since the formula Fairk contains
just one F operator and many nested X and U operators, this proof carries over
to our LTL(Um, X) hierarchy. In fact [3], presents a ‘stronger’ result in the sense
that one additional nesting level of U cannot be ‘compensated’ by arbitrarily-deep
nesting of X and F. On the other hand, the proof does not allow to conclude that,
e.g., LTL(U3, X0) contains a formula which is not expressible in LTL(U2, X)
(because Fairk contains the nested X modalities).

Our method for solving Questions 1 and 2 is different. Instead of design-
ing appropriate Ehrenfeucht-Fraı̈ssé games which could (possibly) characterize
the membership to LTL(Um, Xn), we formulate a general ‘stuttering theorem’
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for LTL(Um, Xn) languages. Roughly speaking, the theorem says that under cer-
tain ‘local-periodicity’ conditions (which depend on m and n) one can remove
a given subword u from a given word α without influencing the (in)validity of
LTL(Um, Xn) formulae (we say that u is (m, n)-redundant in α). This result can
be seen as a generalization of the well-known form of stutter invariance admit-
ted by LTL(U, X0) formulae (a detailed discussion is postponed to Sect. 2). Thus,
we obtain a simple (but surprisingly powerful) tool allowing to prove that a certain
formula ϕ is not definable in LTL(Um, Xn). The theorem is applied as follows: we
choose a suitable alphabet �, consider the language Lϕ , and find an appropriate
α ∈ Lϕ and its subword u such that

• u is (m, n)-redundant in α;
• α′ �|� ϕ where α′ is obtained from α by deleting the subword u.

If we manage to do that, we can conclude that ϕ is not expressible in
LTL(Um, Xn).

We use our stuttering theorem to answer Questions 1 and 2. Proofs are remark-
ably short though it took us some time to find appropriate formulae which witness
the presented claims. It is worth noting that some of the known results about LTL
(like, e.g., the formula ‘G2 p’ is not definable in LTL) admit a one-line proof if our
general stuttering theorem is applied. We also obtain an alternative characteriza-
tion of LTL languages which are exactly the ω-regular languages closed under the
generalized stutter equivalence of words (see Sect. 3). These results are still valid
when interpreting LTL over finite words.

The paper is organized as follows. In Sect. 2 we formulate and prove a general
stuttering theorem for LTL(Um, Xn) languages together with some related results.
Using this theorem, we answer Questions 1–3 in Sect. 4. In Sect. 3, we examine
the question whether the considered forms of stutter invariance fully characterize
the corresponding LTL fragments. Finally, in Sect. 5 we draw our conclusions and
identify directions of future research.

2 A general stuttering theorem

In this section we formulate and prove the promised general stuttering theorem for
LTL(Um, Xn) languages. General stuttering combines and extends two indepen-
dent principles of letter stuttering (n-stuttering) and subword stuttering, which are
applicable to the LTL(U, Xn) and LTL(Um, X0) fragments of LTL, respectively.
We start by explaining these two principles in Sect. 2.1 and Sect. 2.2. This ma-
terial has been included for two reasons. First, the two simplified principles are
interesting on their own. In Sect. 3.1 we present special results about letter stut-
tering which do not hold for general stuttering. Secondly, the remarks and proof
sketches given in Sect. 2.1 and Sect. 2.2 should help the reader in gaining some
intuition about the functionality and underlying principles of general stuttering.

2.1 Letter stuttering (n-stuttering)

Letter stuttering is a simple generalization of the well-known principle of stutter
invariance of LTL(U, X0) formulae [8] saying that LTL(U, X0) formulae cannot
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distinguish between one and more adjacent occurrences of the same letter in a
given word. Formally, a letter α(i) of an ω-word α is called redundant iff α(i) =
α(i + 1) and there is j > i such that α(i) �= α( j). The canonical form of α is the
ω-word obtained by deleting all redundant letters from α. Two ω-words α, β are
stutter equivalent iff they have the same canonical form.

Theorem 1 ([8]) Every LTL(U, X0) language is closed under stutter equiva-
lence.

Intuitively, it is not very surprising that this principle can be extended to
LTL(U, Xn) formulae (where n ∈ N0). The so-called n-stuttering is based on
a simple observation that LTL(U, Xn) formulae cannot distinguish between n+1
and more adjacent occurrences of the same letter in a given ω-word. Formally, a
letter α(i) is n-redundant iff α(i) = α(i + 1) = · · · = α(i + n + 1) and there is
some j > i such that α(i) �= α( j). The n-canonical form and n-stutter equiva-
lence are defined in the same way as above.

Theorem 2 (n-stuttering) Every LTL(U, Xn) language is closed under n-stutter
equivalence.

Proof The theorem can be proven directly by induction on n. Since it is a conse-
quence of Theorem 3, we do not give an explicit proof here.2 �

Theorem 2 can be used to show that a given property is not expressible in
LTL(U, Xn) (or even in LTL) in the following way.

Example 1 A standard example of an ω-regular language which is not definable
in LTL is ‘G2 p’ [18]. The language consists of all α ∈ �ω such that α(i) = p
for every even i ∈ N0. With the help of Theorem 2 we can easily prove that
G2 p is not an LTL(U, Xn) language for any n ∈ N0 (assuming |�| ≥ 2) and
hence it is not an LTL language. Suppose the converse, i.e., there are n ∈ N0 and
ϕ ∈ LTL(U, Xn) such that Lϕ = G2 p. Now consider the ω-words α = p2n+2qpω

and β = p2n+1qpω, where q ∈ �\{p}. Clearly α and β are n-stutter equivalent,
and α �∈ Lϕ while β ∈ Lϕ . Hence, Lϕ is not n-stutter closed which contradicts
Theorem 2.

2.2 Subword stuttering

Since letter stuttering takes into account just the X-depth of LTL formulae, a natu-
ral question is whether there is another form of stutter-like invariance determined
by the U-depth of a given LTL formula. We provide a (positive) answer to this
question by formulating the principle of subword stuttering, which is applicable
to LTL(Um, X0) formulae (where m ≥ 1). The term ‘subword stuttering’ reflects
the fact that we do not necessarily delete/pump just individual letters, but whole
subwords. The essence of the idea is formulated in the following claim:

Claim 1 Let ϕ ∈ LTL(Um, X0) where m ≥ 1. For all v, u ∈ �∗ and α ∈ �ω we
have that vum+1α |� ϕ iff vumα |� ϕ.

2 A direct proof of Theorem 2 is of course simpler than the proof of Theorem 3. It can be
found in [7].
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In other words, LTL(Um, X0) cannot distinguish between m and more adjacent
occurrences of the same subword u in a given word. Note that there are no as-
sumptions about the length of u.

Claim 1 can be easily proven by induction on m. We just sketch the crucial
part of the argument (a full proof is in fact contained in the proof of Theorem 3).
Let us suppose that ϕ = ψ U �, where ψ, � ∈ LTL(Um−1, X0). We want to
show that vum+1α |� ϕ iff vumα |� ϕ. We concentrate just on the induction
step (i.e., m ≥ 2) of the ‘⇒’ part (the other direction is similar). By induction
hypothesis, the following equivalences hold for all 0 ≤ 	 < |vu|:

(vu)	 um α |� ψ iff (vu)	 um−1 α |� ψ (1)

(vu)	 um α |� � iff (vu)	 um−1 α |� � (2)

Let vum+1α |� ψ U �. Then there is j ∈ N0 such that (vum+1α) j |� � and
(vum+1α)i |� ψ for all 0 ≤ i < j . If j < |vu|, we immediately obtain vumα |�
ψ U � by applying (1) and (2) above. If j ≥ |vu|, we can imagine that the word
vumα was obtained from vum+1α by deleting the first copy of u (from now on,
we denote the kth copy of u in vum+1α by u[k]). The situation can be pictured as
follows:

Realize that the (in)validity of ψ and � for any suffix of u[2] u[3] · · · u[m+1]α is
not influenced by deleting the u[1] subword (LTL is future-only in our settings).
That is, it suffices to show that for each suffix v′ of v we have that v′um+1α |� ψ
implies v′umα |� ψ . However, this follows from (1) above.

The principle of subword stuttering, as formulated in Claim 1, is quite simple
and intuitively clear. Now we refine this principle into a stronger form.

Claim 2 Let ϕ ∈ LTL(Um, X0) where m ≥ 0. For all v, y ∈ �∗, u ∈ �+, and
α ∈ �ω such that

• |y| = |u| · m − m + 1,
• y is a prefix of uω

we have that vuyα |� ϕ iff vyα |� ϕ.

The structure of vuyα can be illustrated as follows:

In other words, the u subword has to be repeated ‘basically’ m + 1 times as in
Claim 1, but now we can ignore the last m − 1 letters of u[1] · · · u[m + 1]. Note



The stuttering principle revisited 421

that there is no assumption about the length of u; if u is ‘short’ and m is ‘large’, it
can happen that the last m − 1 letters actually ‘subsume’ several trailing copies of
u.

Claim 2 can also be proven by induction on m. Again, we concentrate just on
the crucial step when ϕ = ψ U � and ψ, � ∈ LTL(Um−1, X0). We only show
the ‘⇒’ part (the other direction is similar). So, let vuyα |� ψ U �. Then there
is j ∈ N0 such that (vuyα) j |� � and (vuyα)i |� ψ for all 0 ≤ i < j . We
distinguish three possibilities (the first two of them are handled in the same way
as in Claim 1):

(i) j < |v|. To prove that vyα |� ψ U �, it suffices to show that for every suffix
v′ of v we have that
– v′uyα |� ψ implies v′yα |� ψ ,
– v′uyα |� � implies v′yα |� �.
However, this follows directly from induction hypothesis.

(ii) j ≥ |vu|. First, realize that the (in)validity of ψ and � for any suffix of yα
is not influenced by deleting the u subword. Hence, it suffices to show that
v′uyα |� ψ implies v′yα |� ψ for each suffix v′ of v. This follows from the
induction hypothesis in the same way as in (i).

(iii) |v| ≤ j < |vu|. This requires more care. A key observation is that the word
vuyα can be seen as v′u′y′α = vuyα, where |v′| = j , |u′| = |u|, and
|y′| = |y| + |v| − |v′|.

Due to the periodicity of y we have that vyα = v′y′α. Hence, it suffices to
show that y′α |� � and v′′y′α |� ψ for every nonempty suffix v′′ of v′. We
know that u′y′α |� � and v′′u′y′α |� ψ ; so, if y′ is ‘sufficiently long’, we
can use induction hypothesis to finish the proof. That is, we need to verify
that |y′| ≥ |u′| · (m−1) − (m−1) + 1, but this follows immediately from the
known (in)equalities |y′| = |y| + |v| − |v′|, |u′| = |u|, and |v| > |v′| − |u|.

2.3 General stuttering

In this section we combine the previously discussed principles of letter stuttering
and subword stuttering into a single ‘general stuttering theorem’ which is applica-
ble to LTL(Um, Xn) formulae.

Definition 1 Let � be an alphabet and m, n ∈ N0.

• A subword α(i, j) of a given α ∈ �ω is (m, n)-redundant if the word
α(i + j, m · j − m + 1 + n) is a prefix of α(i, j)ω.

• The relation �m, n ⊆ �ω × �ω is defined as follows: α �m, n β iff β can be
obtained from α by deleting some (possibly infinitely many) non-overlapping
(m, n)-redundant subwords. The (m, n)-stutter equivalence is the least equiv-
alence over �ω subsuming the relation �m, n .
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• A language L ⊆ �ω is (m, n)-stutter closed if it is closed under (m, n)-stutter
equivalence.

The structure of an ω-word α with an (m, n)-redundant subword α(i, j) can
be illustrated as follows:

Hence, the α(i, j) subword has to be repeated ‘basically’ m + 1 times but we can
ignore the last (m − 1) − n letters (if (m − 1) − n is negative, we must actually
prolong the repetition ‘beyond’ the m+1 copies of α(i, j)—see the figure above).
Note that there is no assumption about the size of m, n, and j .

Our goal is to prove that the (in)validity of LTL(Um, Xn) formulae is not influ-
enced by deleting/pumping (m, n)-redundant subwords. First, let us realize that
this result is a proper generalization of both Theorem 2 and Claim 2. If we com-
pare the ‘periodicity assumptions’ of Theorem 2, Claim 2, and Definition 1, we
can observe that

• a letter α(i) is n-redundant iff it is consecutively repeated at least n + 1 times.
That is, α(i) is n-redundant iff α(i + 1, n + 1) is a prefix of α(i, 1)ω. For every
m ∈ N0 we get that α(i) is n-redundant iff α(i, 1) is (m, n)-redundant as α(i +
1, n+1) = α(i+1, m ·1−m+1+n). In other words, the notion of n-redundancy
coincides with (m, n)-redundancy for subwords of length 1.

• the condition of Claim 2 matches exactly the definition of (m, 0)-redundancy.

Before formulating and proving the general stuttering theorem, we need to state
two auxiliary lemmas.

Lemma 1 Let � be an alphabet, m, n ∈ N0, and α ∈ �ω. If a subword α(i, j) is

(i) (m, n)-redundant then it is also (m′, n′)-redundant for all 0 ≤ m′ ≤ m and
0 ≤ n′ ≤ n.

(ii) (m, n + 1)-redundant then α(i + 1, j) is (m, n)-redundant.
(iii) (m + 1, n)-redundant then α(i + k, j) is (m, n)-redundant for every k satis-

fying 0 ≤ k < j .

Proof (i) follows immediately as j > 0 implies

m′ · j − m′ + 1 + n′ ≤ m · j − m + 1 + n

(i i) is also simple—due to the (m, n+1)-redundancy of α(i, j) we know that the
subword is repeated at least on the next m · j − m + 2 + n letters. Hence, the
subword α(i+1, j) is repeated at least on the next m · j − m + 1 + n letters and
thus it is (m, n)-redundant. A proof of (i i i) is similar; if α(i, j) is repeated on the
next (m+1) · j − m + n letters, then the subword α(i+k, j) (where 0 ≤ k < j) is
repeated on the next (m+1) · j − m + n − k = m · j − m + n + j − k letters, i.e.,
α(i+k, j) is (m, n + j −k −1)-redundant. The (m, n)-redundancy of α(i+k, j)
follows from (i) and k < j . �
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Lemma 2 For all m ≥ 1, n ≥ 0, and all α, β ∈ �ω such that α �m, n β there
exists a surjective function g : N0 → N0 such that

(i) for all 	, x ∈ N0, where 0 ≤ x < g(	), there exists 0 ≤ 	′ < 	 such that
g(	′) = x,

(ii) for each 	 ∈ N0 we have that α	 �m−1,n βg(	).

Proof Let m ≥ 1, n ≥ 0 and α, β ∈ �ω such that α �m, n β. Let D =
α(i0, j0), α(i1, j1), . . . be the (finite or infinite) sequence of non-overlapping
(m, n)-redundant subwords which were deleted from α to obtain β (we assume
that i0 < i1 < · · · ). We say that a given 	 ∈ N0 is covered by a subword α(iq , jq)
of D if iq ≤ 	 ≤ iq+ jq−1. For each such 	 we further define jump(	) = 	+ jq and
pos(	) = 	 − iq + 1. If 	 is not covered by any subword of D, we put pos(	) = 0
and jump(	) = 	. The set of all 	’s that are covered by the subwords of D is de-
noted cov(D). For each 	 �∈ cov(D), the symbol length(	) denotes the total length
of all subwords of D which cover some k ≤ 	.

The function g is defined as follows:

g(	) =
{

	 − length(	) if 	 �∈ cov(D),

g(jump(	)) otherwise.

The structure of g can be illustrated as follows:

In particular, note that uncovered letters of α are projected to the “same” letters
in β, and covered letters are in fact mapped to uncovered ones by performing one
or more jumps of possibly different length. Also note that g is not monotonic in
general.

First we show that g is well-defined, i.e., for each 	 ∈ cov(D) there is k ∈ N

such that jumpk(	) �∈ cov(D) (here jumpk denotes jump applied k-times). This is
an immediate consequence of the following observation:

For each 	 ∈ cov(D) there is k ∈ N such that pos(jumpk(	)) < pos(	).

Proof of the observation: First, let us realize that pos(	) ≥ pos(jump(	)) for every
	 ∈ cov(D). Now assume that the observation does not hold. Then there is 	 ∈
cov(D) such that pos(jumpk(	)) = pos(	) for every k ∈ N. Let α(iq , jq) be
the subword of D covering 	, and let Dq be the sequence obtained from D by
removing the first q elements. Since pos(jumpk(	)) = pos(	) for every k ∈ N,
all subwords of Dq are adjacent and the length of each of them is at least pos(	).
Hence, each 	′ ≥ 	 is covered by some subword of Dq , which contradicts the
assumption that β is infinite.

Proof of (i): First we show that for every 	 ∈ N0 we have that g(	 + 1) ≤
g(	)+1. Let us assume that there is some 	′ ∈ N0 such that g(	′ +1) > g(	′)+1,
and let k ∈ N0 be the least number such that 	 = jumpk(	′) is either uncovered
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or satisfies g(jump(	) + 1) ≤ g(jump(	)) + 1. Observe that such a k must exist,
and that 	 satisfies g(	+ 1) > g(	)+ 1 (otherwise we get a contradiction with the
minimality of k). Now we distinguish two possibilities:

• pos(	 + 1) ≤ 1. Let 	′′ be the least uncovered index greater or equal to 	 + 1.
It follows easily from the definition of g that g(	 + 1) = g(	′′). Hence, g(	) is
either equal to g(	 + 1) − 1 (if 	 �∈ cov(D)), or greater or equal to g(	 + 1) (if
	 ∈ cov(D)). Again, this contradicts the assumption that g(	 + 1) > g(	) + 1.

• pos(	+1) ≥ 2. Then 	, 	+1 are covered by the same subword of D. By
applying the definition of g we obtain g(	) = g(jump(	)) and g(	+1) =
g(jump(	+1)). Moreover, jump(	+1) = jump(	) + 1 because 	, 	+1 are cov-
ered by the same subword of D. If pos(jump(	)+1) is equal to 0 or 1, we derive
a contradiction using the arguments of previous cases. If pos(jump(	)+1) ≥ 2,
we have that jump(	) ∈ cov(D), hence g(jump(	)+1) ≤ g(jump(	))+1 due
to the assumption adopted above. Altogether, we derived a contradiction with
g(	+1) > g(	)+1.

Now we are ready to finish the proof of (i). Let us assume that (i) does not hold,
and let 	 ∈ N0 be the least number such that (i) is violated for 	 and some 0 ≤ x <
g(	). Clearly 	 > 0, because g(0) = 0. Further, g(	 − 1) ≥ g(	) − 1 due to the
claim just proved. This means that either g(	 − 1) = x , or 	 − 1 also violates (i).
In both cases we have a contradiction with our choice of 	.

Proof of (i i): We show that α	 �m−1,n βg(	) for each 	 ∈ N0. We proceed by
induction on pos(	).

Basis. pos(	) = 0. This means that 	 �∈ cov(D). Clearly α	 �m, n βg(	) because
βg(	) is obtained from α	 by deleting all those subwords α(iq , jq) of D such
that iq > 	. Hence, we also have α	 �m−1, n βg(	) by applying Lemma 1 (i).

Induction step. Let pos(	) > 0 and let k ∈ N be the least number such that
pos(jumpk(	)) < pos(	). To simplify our notation, we put 	′ = jumpk(	).
Clearly g(	) = g(	′) by definition of g. By induction hypothesis we have that
α	′ �m−1, n βg(	′). Hence, it suffices to show that α(	, 	′ − 	) is a sequence of
(m−1, n)-redundant subwords. Let us assume that 	 is covered by α(iq , jq).
Consider the sequence of subwords

α(iq , jq), · · · , α(iq+k−1, jq+k−1)

From the minimality of k we obtain that these subwords are adjacent and the
length of each of them is at least pos(	). Hence, α(	, 	′ − 	) can be seen as a
sequence of words

α(iq+pos(	)−1, jq), · · · , α(iq+k−1+pos(	)−1, jq+k−1)

Moreover, each of these words is (m−1, n)-redundant by Lemma 1 (i i i). �

Theorem 3 (General stuttering) Every LTL(Um, Xn) language is closed under
(m, n)-stutter equivalence.

Proof Let m, n ∈ N0 and ϕ ∈ LTL(Um, Xn). It suffices to prove that for all
α, β ∈ �ω such that α �m, n β we have that α |� ϕ ⇔ β |� ϕ. We proceed by a
simultaneous induction on m and n (we write (m′, n′) < (m, n) iff m′ ≤ m and
n′ < n, or m′ < m and n′ ≤ n).
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Basis. m = 0 and n = 0. Let α, β ∈ �ω be ω-words such that α �0, 0 β.
Let D denote the sequence of non-overlapping (0, 0)-redundant subwords
D = α(i0, j0), α(i1, j1), . . . which were deleted from α to obtain β (we
assume that i0 < i1 < . . . ). Since LTL(U0, X0) formulae are just ‘Boolean
combinations’ of letters and tt, it suffices to show that α(0) = β(0). If i0 > 0
then it is clearly the case. Now let i0 = 0, and let k ∈ N0 be the least num-
ber such that the subwords α(ik, jk) and α(ik+1, jk+1) are not adjacent (i.e.,
ik+1 > ik + jk). Hence, β(0) = α(ik + jk) and (0, 0)-redundancy of the
subwords in D implies that

α(0) = α(i0) = α(i1) = α(i2) = · · · = α(ik) = α(ik + jk) = β(0).

Induction step. Let m, n ∈ N0, and let us assume that the theorem holds for all
m′, n′ such that (m′, n′) < (m, n). Let α, β ∈ �ω be ω-words such that
α �m, n β, and let D = α(i0, j0), α(i1, j1), . . . (i0 < i1 < . . . ) be the
sequence of non-overlapping (m, n)-redundant subwords which were deleted
from α to obtain β. We distinguish four possibilities:

• ϕ ∈ LTL(Um′
, Xn′

) for some (m′, n′) < (m, n). Since every α(i, j) from D
is (m′, n′)-redundant by Lemma 1 (i), we just apply induction hypothesis.

• ϕ = Xψ . We need to prove that α1 |� ψ ⇔ β1 |� ψ . By induc-
tion hypothesis, ψ cannot distinguish between (m, n−1)-stutter equivalent
ω-words. Hence, it suffices to show that α1 �m, n−1 β1. If i0 > 0, then
α1(i0 − 1, j0), α1(i1 − 1, j1), α1(i2 − 1, j2), . . . are (m, n)-redundant and
due to Lemma 1 (i) they are also (m, n − 1)-redundant. Moreover, β1 can be
obtained from α1 by deleting these subwords.

If i0 = 0, then let k ∈ N0 be the least number such that the subwords α(ik, jk)
and α(ik+1, jk+1) are not adjacent. The ω-word β1 can be obtained from α1 by
deleting the subwords

α1(i0, j0), · · · , α1(ik, jk), α1(ik+1−1, jk+1), α1(ik+2−1, jk+2), · · ·
The subwords α1(i0, j0), α1(i1, j1), . . . , α1(ik, jk) are (m, n−1)-redundant
by Lemma 1 (i i), and the other subwords are (m, n−1)-redundant by apply-
ing Lemma 1 (i).

• ϕ = ψ U �. By induction hypothesis, ψ, � cannot distinguish between
(m−1, n)-stutter equivalent ω-words. Let g be the function of Lemma 2 con-
structed for the considered m, n, α, β (i.e., α	 �m−1, n βg(	) for every 	 ∈ N0).
Now we show that if α |� ψ U � then also β |� ψ U �. If α |� ψ U �, there
is c ≥ 0 such that αc |� � and for every d < c we have that αd |� ψ . By
induction hypothesis we get βg(c) |� �. Further, for every d ′ < g(c) there is
d < c such that g(d) = d ′. By Lemma 2, for every d ′ < g(c) there is d < c
such that αd �m−1, n βg(d) = βd ′ and hence βd ′ |� ψ . Altogether, we obtain
that β |� ψ U �.

Similarly, we also show that if β |� ψ U � then α |� ψ U �. If β |� ψ U �,
there is c ≥ 0 such that βc |� � and for every d < c we have that βd |� ψ .
Let c′ be the least number satisfying g(c′) = c (there is such a c′ because g
is surjective). Then αc′ |� � by induction hypothesis. From the definition of g
we get that for every d ′ < c′ it holds that g(d ′) < g(c′) = c (otherwise we
would obtain a contradiction with our choice of c′). Thus, αd ′ |� ψ and hence
α |� ψ U �.
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• ϕ is a ‘Boolean combination’ of formulae of the previous cases. Formally, this
case is handled by an ‘embedded’ induction on the structure of ϕ. The basic step
(when ϕ is not of the form ¬ψ or ψ ∧ �) is covered by the previous cases. The
induction step (ϕ = ¬ψ or ϕ = ψ ∧� where we assume that our theorem holds
for ψ, �) follows immediately. �

3 Stuttering as a sufficient condition

In Sect. 2 we have shown that formulae of certain LTL fragments are invariant
under certain forms of stutter equivalence of ω-words. These results (Theorem 2,
Claim 1, Claim 2, and Theorem 3) were formulated as “pumping lemmas”, i.e.,
necessary conditions which must be satisfied by languages of the respective LTL
fragments. In this section we show that certain forms of stutter invariance together
with some additional assumptions in fact characterize certain LTL fragments.

3.1 Letter stuttering

It has been proved by Peled and Wilke [9] that every LTL language closed under
stuttering is definable in LTL(U, X0). This proof can be straightforwardly gener-
alized to n-stuttering. Hence, every n-stutter closed LTL property is definable in
LTL(U, Xn). For the sake of completeness, we present this proof explicitly. (Later
we formulate further observations which refer to technical details of this proof.)

Theorem 4 Let L ⊆ �ω. The following conditions are equivalent:

(a) L is definable in LTL(U, Xn).
(b) L is an n-stutter closed LTL language.

Proof The (a) ⇒ (b) direction follows from Theorem 2. We prove the other
direction. Let ϕ be an LTL formula such that Lϕ is n-stutter closed. We translate
ϕ into an equivalent formula τn(ϕ) ∈ LTL(U, Xn).

Let � be the set of letters occurring in ϕ, and let θ = ∨
p∈� p. For all p ∈ �

and i > 0 we define formulae σpi , σpi ¬p, σ¬�i , and σ¬�i � as follows:

σp1 = p σpi+1 = p ∧ Xσpi

σp0¬p = ¬p σpi ¬p = p ∧ Xσpi−1¬p

σ¬�1 = ¬θ σ¬�i+1 = ¬θ ∧ Xσ¬�i

σ¬�0� = θ σ¬�i+1� = ¬θ ∧ Xσ¬�i �

Observe that X (σpi+1) = X (σpi ¬p) = X (σ¬�i+1) = X (σ¬�i �) = i .
The translation τn(ϕ) is defined inductively on the structure of ϕ.

• τn(p) = p
• τn(¬ψ) = ¬τn(ψ)
• τn(ψ ∧ �) = τn(ψ) ∧ τn(�)
• τn(ψ U �) = τn(ψ) U τn(�)
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• τn(Xψ) = �(ψ) ∨ �(ψ) where

�(ψ) =


G¬θ ∨
∨

p∈�

Gp



 ∧ τn(ψ)

and

�(ψ) =
∨

1≤i≤n+1



 ξ(ψ, ¬�, i) ∨
∨

p∈�

ξ(ψ, p, i)



 .

The subformulae ξ(ψ, ¬�, i) and ξ(ψ, p, i) of �(ψ) are constructed as
follows:

ξ(ψ, p, i) =
{

σpi ¬p ∧ p U (σpi−1¬p ∧ τn(ψ)) if i ≤ n

σpn+1 ∧ p U (σpn¬p ∧ τn(ψ)) if i = n+1

ξ(ψ, ¬�, i) =
{

σ¬�i � ∧ ¬θ U (σ¬�i−1� ∧ τn(ψ)) if i ≤ n

σ¬�n+1 ∧ ¬θ U (σ¬�n� ∧ τn(ψ)) if i = n+1

One can readily confirm that the X-depth of τn(ϕ) is n. We need to prove that if
L�

ϕ is n-stutter closed, then ϕ is equivalent to τn(ϕ). Since ϕ and τn(ϕ) cannot
distinguish between letters which do not belong to �, we can assume that � ⊆
� ∪ {o}, where o �∈ � represents all letters not occurring in ϕ.

As both Lϕ and Lτn(ϕ) are n-stutter closed (in the case of Lτn(ϕ) we apply
Theorem 2), it actually suffices to prove that ϕ and τn(ϕ) cannot be distinguished
by any n-stutter free ω-word α ∈ �ω (an ω-word α is n-stutter free if α has no
n-redundant letters). That is, for every n-stutter free α ∈ �ω we show that α |� ϕ
iff α |� τn(ϕ). We proceed by induction on the structure of ϕ. All subcases except
for ϕ = Xψ are trivial. Here we distinguish two possibilities:

• α = pω for some p ∈ �. Then α1 = α and thus we get α |� Xψ iff α1 |� ψ
iff α1 |� τn(ψ) (by induction hypothesis) iff α |� τn(ψ). Hence, this subcase is
‘covered’ by the formula �(ψ) saying that α is of the form pω and that τn(ψ)
holds (the particular case when α = oω corresponds to G¬θ ).

• α = pi qβ where p, q ∈ �, p �= q , 1 ≤ i ≤ n + 1, and β ∈ �ω.
Let us first consider the case when p = o. Then pi qβ |� Xψ iff pi−1qβ |� ψ
iff pi−1qβ |� τn(ψ) (we use induction hypothesis). If i ≤ n, then the last
condition is equivalent to

pi qβ |� σ¬�i � ∧ ¬θ U (σ¬�i−1� ∧ τn(ψ))

If i = n+1, then the condition is equivalent to

pn+1qβ |� σ¬�n+1 ∧ ¬θ U (σ¬�n� ∧ τn(ψ))

In both cases, the resulting formula corresponds to ξ(ψ, ¬�, i).
The case when p ∈ � is handled similarly; we have that pi qβ |� Xψ iff
pi−1qβ |� ψ iff pi−1qβ |� τn(ψ) (by induction hypothesis). If i ≤ n then the
last condition is equivalent to

pi qβ |� σpi ¬p ∧ p U (σpi−1¬p ∧ τn(ψ))
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If i = n+1 then the condition is equivalent to

pn+1qβ |� σpn+1 ∧ p U (σpn¬p ∧ τn(ψ))

In both cases, the resulting formula corresponds to ξ(ψ, p, i).
To sum up, the case when α = pi qβ is ‘covered’ by the formula �(ψ). �

In general, the size of τn(ϕ) is exponential in X (ϕ). However, the size of the cir-
cuit3 representing τn(ϕ) is only O((n+1)·|ϕ|2). To see this, realize the following:

(1) The total size of all circuits representing the formulae σpn¬p, σpn+1 (for all
p ∈ �) and σ¬�n�, σ¬�n+1 is O((n + 1) · |ϕ|). Moreover, all circuits repre-
senting the formulae σpi ¬p and σ¬�i � (for all 0 ≤ i ≤ n) are contained in the
circuits representing σpn¬p or σ¬�n�, respectively.

(2) Assuming that the circuits of (1) and the circuit representing τn(ψ) are at our
disposal, we only need to add a constant number of new nodes to represent
the formulae ξ(ψ, ¬�, i) and ξ(ψ, p, i) for given p ∈ � and 1 ≤ i ≤ n+1.
This means that we need to add O((n +1) · |ϕ|) new nodes when constructing
the circuit for τn(Xψ).

(3) Since ϕ contains O(|ϕ|) subformulae of the form Xψ , the circuit representing
ϕ has O((n + 1) · |ϕ|2) nodes in total.

Theorem 5 Let ϕ be an LTL formula and n ∈ N0. The problem whether there is a
formula ψ ∈ LTL(U, Xn) equivalent to ϕ is PSPACE-complete (assuming unary
encoding of n).

Proof It suffices to show that the problem whether a given LTL formula ϕ defines
an n-stutter closed language is PSPACE-complete. The proof for n = 0 has been
presented in [10].

Similarly as in [10], the PSPACE-lower bound is obtained by reducing the va-
lidity problem for LTL formulae, which is known to be PSPACE-complete [13].
For every LTL formula � we define a formula

π(�) = p ∧ Xp ∧ XXp ∧ · · · ∧
n

︷ ︸︸ ︷
XX . . . X(p ∧ Xq ∧ XX¬�).

The language Lπ(�) = pn+1q L¬� is n-stutter closed iff L¬� is empty. That is,
Lπ(�) is n-stutter closed iff � is valid.

The matching PSPACE-upper bound is obtained by applying a similar argu-
ment as in [2]—due to the (proof of) Theorem 4 we have that Lϕ is n-stutter closed
iff ϕ is equivalent to τn(ϕ). First, we construct the circuit representing τn(ϕ) (its
size is O((n + 1) · |ϕ|2) as shown above). Then we check the validity of the for-
mula ϕ ⇔ τn(ϕ) (represented as a circuit), which can be also done in polynomial
space [13]. �

Finally, let us note that the condition (b) of Theorem 4 cannot be weakened
to “L is an n-stutter closed ω-regular language”, because there are ω-regular lan-
guages which are n-stutter closed for all n ∈ N0, yet not definable in LTL. A
concrete example of such a language is L = {(p+q+)2i rω | i ∈ N} which is
clearly n-stutter closed for every n ∈ N0, but not (m, n)-stutter closed for any
m, n ∈ N0 (and hence not definable in LTL).

3 A circuit (or DAG) representing a given LTL formula ϕ is obtained from the syntax tree of
ϕ by identifying all nodes which correspond to the same subformula.
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3.2 General stuttering

In Sect. 3.1 we have shown that LTL(U, Xn) languages are exactly n-stutter closed
LTL languages. A natural question is whether LTL(Um, Xn) languages are fully
characterized by the closure property induced by (m, n)-stuttering. In this sec-
tion we show that this is not the case. Nevertheless, regular (m, n)-stutter closed
languages are inevitably noncounting, and hence expressible in LTL. This means
that if L is ω-regular and (m, n)-stutter closed, then L ∈ LTL(Um′

, Xn′
) for some

m′, n′. In this section we also show that there is no functional relationship between
(m′, n′) and (m, n).

Definition 2 A language L ⊆ �ω is noncounting if there is k ∈ N0 such that for
all n ≥ k and x, y, z, u ∈ �∗ we have the following:

• xun yzω ∈ L ⇔ xun+1 yzω ∈ L ,
• x(yunz)ω ∈ L ⇔ x(yun+1z)ω ∈ L .

Theorem 6 Let L ⊆ �ω. The following conditions are equivalent:

(a) L is definable in LTL,
(b) L is ω-regular and noncounting,
(c) L is ω-regular and (m, n)-stutter closed for some m, n ∈ N0.

Proof The equivalence of (a) and (b) is a consequence of several results; Kamp [5]
proved that languages (of infinite words) definable in LTL are exactly the lan-
guages expressible in first-order logic. Using the results presented in [14] and [1],
Perrin [11] showed that a language is definable in first-order logic iff it is ω-regular
and noncounting.

The implication (a) ⇒ (c) is given by Theorem 3. The implication (c) ⇒ (b)
follows from a straightforward observation that a language violating noncounting
property is not (m, n)-stutter closed for any m, n ∈ N0. �

A natural question is whether the condition (c) of Theorem 6 can be weakened
to “L is (m, n)-stutter closed for some m, n ∈ N0”. The answer is given in our
next theorem.

Theorem 7 For all m ≥ 2 and n ≥ 1 there is an (m, n)-stutter closed language
L ⊆ {o, p, q, r}ω which is not definable in LTL.

Proof Due to Lemma 1 (i), we just need to consider the case when m = 2 and
n = 1. We say that a word w ∈ �∗ is square-free if it does not contain a subword
of the form uu, where |u| ≥ 1. It is known that there are infinitely many square-
free words4 w0, w1, . . . over the alphabet {o, p, q} [16]. Now observe that for
each of these wi there is no other word v ∈ {o, p, q}∗ such that wi rω �(2, 1) vrω

or vrω �(2, 1) wi rω. This means that L = {wi rω | i ∈ N0} is (2, 1)-stutter closed.
Obviously, L is not ω-regular by using standard arguments (pumping lemma for
ω-regular languages). Thus, L is not definable in LTL. �

4 The sequence w0, w1, . . . is defined inductively by w0 = o and wi+1 = f (wi ), where f
is a word homomorphism given by f (o) = opqop, f (p) = oqopqp, f (q) = oqpqoqp. The
proof in [16] reveals that if w is square-free, then so is f (w).
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Due to Theorem 6, we know that if L is ω-regular and (m, n)-stutter closed,
then L is definable in LTL, i.e., there are m′, n′ ∈ N such that L is definable in
LTL(Um′

, Xn′
). However, it is not clear what is the relationship between m, n and

m′, n′. One might be tempted to think that m′, n′ can be expressed (or at least
bounded) by some simple functions in m, n, for example m′ = m and n′ = n.
Our next theorem says that there is no such relationship.

Theorem 8 Let m ≥ 2 and n ≥ 1. For all m′, n′ ∈ N0 there is an (m, n)-stutter
closed LTL language L ⊆ {o, p, q, r}ω which is not definable in LTL(Um′

, Xn′
).

Proof First, realize that for all m′, n′ ∈ N0 there are only finitely many pairwise
non-equivalent LTL(Um′

, Xn′
) formulae over the alphabet {o, p, q, r}. Hence, it

suffices to show that for all m ≥ 2 and n ≥ 1 there are infinitely many (m, n)-
stutter closed LTL languages over the alphabet {o, p, q, r}. Due to Lemma 1 (i),
we just need to consider the case when m = 2 and n = 1. Let L be the language
constructed in the proof of Theorem 7. Now realize that each of the infinitely many
finite subsets of L is a (2, 1)-stutter closed LTL language. �

Finally, let us note that possible generalizations of Theorem 7 and Theorem 8
cannot cross certain limits—they do not hold for all m, n ∈ N0 and every alpha-
bet �. For example, every (1, 0)-stutter closed language over the alphabet {p, q}
is definable in LTL(U2, X0). To see this, realize that the quotient of {p, q}ω un-
der (1, 0)-stutter equivalence has exactly eight equivalence classes represented by
words (pq)ω, (qp)ω, pω, qω, pqω, qpω, pqpω, and qpqω. Hence, there are ex-
actly 28 = 256 languages over {p, q} which are (1, 0)-stutter closed. Since each
equivalence class of the quotient is a language definable in LTL(U2, X0), we can
conclude that each of these 256 languages is definable in LTL(U2, X0).

4 Answers to Questions 1, 2, and 3

Now we are ready to provide answers to Questions 1, 2, and 3 which were stated
in Sect. 1 (though Question 3 will be left open in fact). We start with a simple
observation.

Lemma 3 For each n ≥ 1 there is a formula ϕ ∈ LTL(U0, Xn) which cannot be
expressed in LTL(U, Xn−1).

Proof Let � = {p, q} and n ≥ 1. Consider the formula

ϕ =
n

︷ ︸︸ ︷
XX · · · X p.

We show that Lϕ is not closed under (n−1)-stutter equivalence (which suffices due
to Theorem 2). This is easy; realize that pn+1qω ∈ Lϕ and the first occurrence of
p in this word is (n−1)-redundant. Since pnqω �∈ Lϕ , we are done. �

A ‘dual’ fact is proven below (this is already non-trivial).

Lemma 4 For each m ≥ 1 there is a formula ϕ ∈ LTL(Um, X0) which cannot be
expressed in LTL(Um−1, X).
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Proof Let m ≥ 1 and let � = {q, p1, . . . , pm}. We define a formula ϕ ∈
LTL(Um, X0) as follows:

ϕ = F(p1 ∧ F(p2 ∧ · · · ∧ F(pm−1 ∧ Fpm) . . . ))

Let us fix an arbitrary n ∈ N0, and define a word α ∈ �ω by

α = (qn+1 pm pm−1 . . . p1)
m qω

Clearly α |� ϕ and the subword α(0, n+1+m) is (m−1, n)-redundant. As the
word β obtained from α by removing α(0, n+1+m) does not model ϕ, the lan-
guage Lϕ is not (m−1, n)-stutter closed. As this holds for every n ∈ N0, the
formula ϕ is not expressible in LTL(Um−1, X). �

The last technical lemma which is needed to formulate answers to Questions 1
and 2 follows.

Lemma 5 For all m, n ∈ N0 there is a formula ϕ ∈ LTL(Um, Xn) which is
expressible neither in LTL(Um−1, Xn) (assuming m ≥ 1), nor in LTL(Um, Xn−1)
(assuming n ≥ 1).

Proof If m = 0 or n = 0, we can apply Lemma 3 or Lemma 4, respectively. Now
let m, n ≥ 1, and let � = {p1, . . . , pk, q} where k = max{m, n+1}. We define
formulae ψ and ϕ as follows:

ψ =
{

pm ∧ Xn pm−n if m > n

pm ∧ Xn pm+1 if m ≤ n

ϕ =
{

Fψ if m = 1

F(p1 ∧ F(p2 ∧ F(p3 ∧ · · · ∧ F(pm−1 ∧ Fψ) . . . ))) if m > 1

where Xl abbreviates

l
︷ ︸︸ ︷
XX . . . X. The formula ϕ belongs to LTL(Um, Xn). Let us

consider the ω-word α defined by

α =






(pm pm−1 . . . p1)
m pm pm−1 . . . pm−n+1qω if m > n

(pn+1 pn . . . p1)
m+1qω if m = n

(pn+1 pn . . . p1)
m+1 pn+1 pn . . . pm+2qω if m < n

It is easy to check that α ∈ Lϕ and that the subword α(0, k) (where k =
max{m, n+1}) is (m, n−1)-redundant as well as (m−1, n)-redundant. As the
word β obtained from α by removing α(0, k) does not satisfy ϕ, the language Lϕ

is neither (m, n−1)-stutter closed, nor (m−1, n)-stutter closed. �

The knowledge presented in the three lemmata above allows to conclude the fol-
lowing:

Corollary 1 (Answer to Question 1) The LTL(Um, Xn), LTL(Um, X), and
LTL(U, Xn) hierarchies are strict.
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Corollary 2 (Answer to Question 2) Let A and B be classes of LTL(Um, Xn),
LTL(Um, X), or LTL(U, Xn) hierarchy (not necessarily of the same one) such
that A is syntactically not included in B. Then there is a formula ϕ ∈ A which
cannot be expressed in B.

Although we cannot provide a full answer to Question 3, we can at least reject the
aforementioned ‘natural’ hypotheses (see Sect. 1).

Lemma 6 (About Question 3) For all m, n ∈ N0 there is a language defin-
able in LTL(Um+2, Xn) as well as in LTL(Um+1, Xn+1) which is not definable in
LTL(Um+1, Xn).

Proof We start with the case when m = n = 0. Let � ⊇ {p, q}, and let
ψ1 = F(q ∧ (q U ¬q)) and ψ2 = F(q ∧ X¬q). Note that ψ1 ∈ LTL(U2, X0) and
ψ2 ∈ LTL(U1, X1). Moreover, ψ1 and ψ2 are equivalent as they define the same
language L = �∗q(�\{q})�ω. This language is not definable in LTL(U1, X0) as
it is not (1, 0)-stutter closed; for example, the ω-word α = pqpqω ∈ L contains
a (1, 0)-redundant subword α(0, 2) but α2 = pqω �∈ L .

The above example can be generalized to arbitrary m, n (using the designed
formulae ψ1, ψ2). For given m, n we define formulae ϕ1 ∈ LTL(Um+2, Xn)
and ϕ2 ∈ LTL(Um+1, Xn+1), both defining the same language L over � =
{q, p, p1, . . . , pm+1}, and we give an example of an ω-word α ∈ L with an
(m +1, n)-redundant subword such that α without this subword is not from L . We
distinguish three cases.

• m = n > 0. For i ∈ {1, 2} we define

ϕi =
m-times

︷ ︸︸ ︷
XF(p ∧ XF(p ∧ XF(p ∧ · · · ∧ XF(p ∧ψi ) . . . )))

The ω-word α = (pq)m+2qω ∈ L , α(0, 2) is (m + 1, n)-redundant, and α2 =
(pq)m+1qω �∈ L .

• m > n. For i ∈ {1, 2} we define

ϕi =
n-times

︷ ︸︸ ︷
XF(q ∧ XF(q ∧ · · · ∧ XF(q ∧ϕ′

i ) . . . ))

where

ϕ′
i =

(m−n)-times
︷ ︸︸ ︷
F(p1 ∧ F(p2 ∧ · · · ∧ F(pm−n∧ ψi ) . . . ))

The ω-word α = (qpm−n pm−n−1 . . . p1)
m+1qω ∈ L , α(0, m − n + 1) is (m +

1, n)-redundant, and αm−n+1 �∈ L .
• m < n. For i ∈ {1, 2} we define

ϕi =
m-times

︷ ︸︸ ︷
F(p1 ∧ F(p2 ∧ · · · ∧ F(pm∧

n
︷ ︸︸ ︷
XX . . . X ψi ) . . . ))

The ω-word α = (qn−m pm+1 pm . . . p1)
m+2qω ∈ L , α(0, n + 1) is (m + 1, n)-

redundant, and αn+1 �∈ L . �
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In fact, the previous lemma says that if we take two classes LTL(Um1, Xn1) and
LTL(Um2, Xn2) which are syntactically incomparable and where m1, m2 ≥ 1,
then their semantical intersection (i.e., the intersection of the corresponding
classes of languages) is strictly greater than the class of languages definable in
LTL(Um, Xn) where m = min{m1, m2} and n = min{n1, n2}. Another conse-
quence of Lemma 6 is that there is generally no “best” way how to minimize the
nesting depths of X and U modalities in a given LTL formula.

5 Conclusions

The main technical contributions of this paper are the theorems about n-stuttering
and general stuttering presented in Sect. 2. With their help we were able to con-
struct (short) proofs of other results. In particular, we gave an alternative char-
acterization of LTL(U, Xn) languages (which are exactly n-stutter closed lan-
guages), proved the strictness of the three hierarchies of LTL formulae introduced
in Sect. 1, and we also showed several related facts about the relationship among
the classes in the three hierarchies. All of the presented results carry over to LTL
interpreted over finite words.

Some problems are left open. For example, the exact characterization of the
semantical intersection of LTL(Um1, Xn1) and LTL(Um2, Xn2) classes (in the case
when they are syntactically incomparable) surely deserves further attention. An-
other interesting question is whether Theorem 3 can serve as a basis for new state-
space reduction methods in the model-checking area.
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7. Kučera, A., Strejček, J.: An effective characterization of properties definable by LTL for-
mulae with a bounded nesting depth of the next-time operator. Technical Report FIMU-RS-
2004-4, Faculty of Informatics, Masaryk University Brno (2004)

8. Lamport, L.: What good is temporal logic? In: Mason, R.E.A. (ed.) Proceedings of the IFIP
Congress on Information Processing, pp. 657–667. Amsterdam, North-Holland (1983)
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