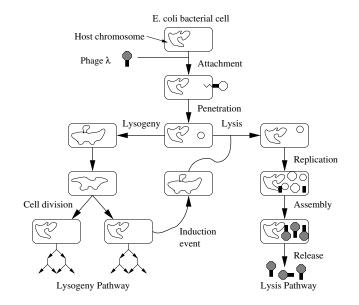
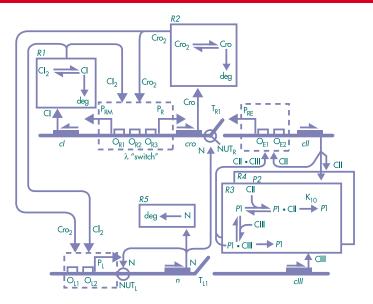
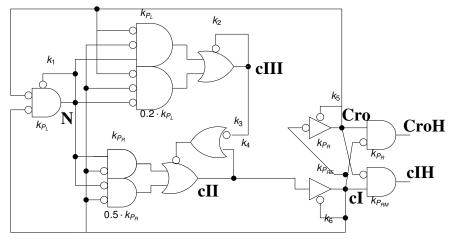
A Standard-Enabled Workflow for Synthetic Biology


Chris J. Myers

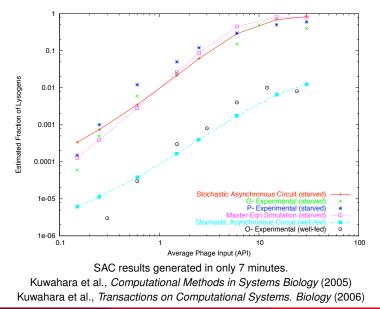
University of Utah


Computational Methods in Systems Biology September 14, 2018

Chris J. Myers (University of Utah)


Phage λ Developmental Pathways

Phage λ Decision Circuit


Stochastic Asynchronous Circuit Model for Phage λ

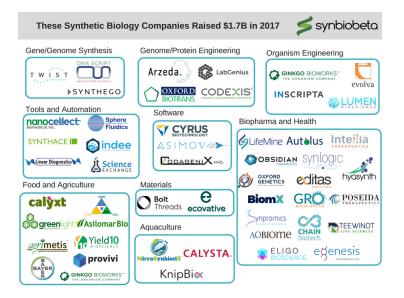
Kuwahara et al., *Computational Methods in Systems Biology* (2005) Kuwahara et al., *Transactions on Computational Systems. Biology* (2006)

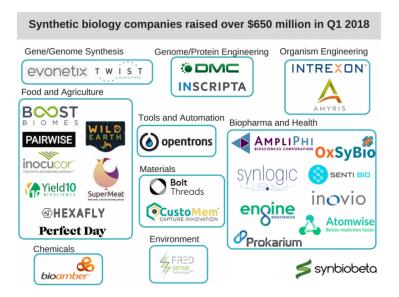
Chris J. Myers (University of Utah)

Stochastic Asynchronous Circuit Results

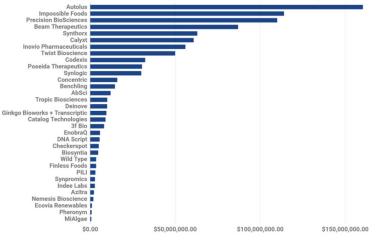
Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

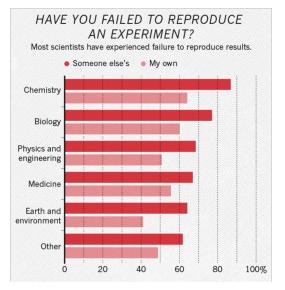

Systems Biology Versus Synthetic Biology



Drew Endy



These 33 Synthetic Biology Companies Raised More Than \$900 Million in 2016


These 33 Synthetic Biology Companies Raised \$925 Million in 2018 Q2

Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

CMSB 2018 / Sept. 14, 2018

Reproducibility Crisis



(V. Simonyan, Center for Biologics Evaluation and Research FDA, USA)

Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

Reproducibility Crisis

Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

Reproducibility Crisis

An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete ... set of instructions [and data] which generated the figures.

– David Donoho, 1998

Essential information for synthetic DNA sequences

To the Editor:

Following a discussion by the workgroup for Data Standards in Synthetic Biology, which met in June 2010 during the Second Workshop on Biodesign Automation in Anaheim, California, we wish to highlight a problem relating to the reproducibility of the synthetic biology literature. In particular, we have noted the very small number of articles reporting synthetic gene networks that disclose the complete sequence of all the constructs they describe

To our knowledge, there are only a few examples where full sequences have been

All rights reserved. © 2011 Nature America, Inc.

released. In 2005, a patent application1 disclosed the sequences of the toggle switches published four years earlier in a paper by Gardner et al.2. The same year, Basu et al.3 deposited their construct sequences for programmed pattern formation into GenBank3. Examples of synthetic DNA sequences derived from standardized parts that have been made available in GenBank include the

refactored genome of the bacteriophage

gaps between key components are almost never reported, presumably because they are not considered crucial to the report. Yet, synthetic biology relies on the premise that synthetic DNA can be engineered with base-level precision.

Missing sequence information in papers hurts reproducibility, limits reuse of past work and incorrectly assumes that we know fully which sequence segments are important. For example, many synthetic biologists are currently realizing that translation initiation rates are dependent on more than the Shine-Dalgarno sequence8. Sequences upstream of the

> start codon are crucial for translation rates, yet are underreported, Similarly, it has been demonstrated that intron length can affect the dynamics of genetic oscillators9. Many more such examples are likely to emerge.

Because full sequence disclosure is critical. we wonder why the common requirement by many journals to provide GenBank entries

for genomes and natural sequences has

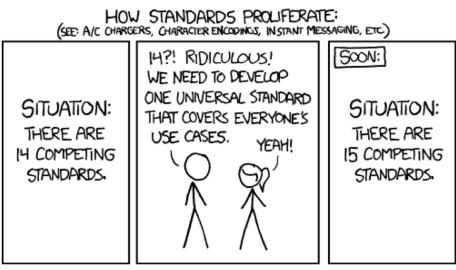
and welcome contributions from the greater community.

COMPETING FINANCIAL INTERESTS The authors declare no competing financial interests.

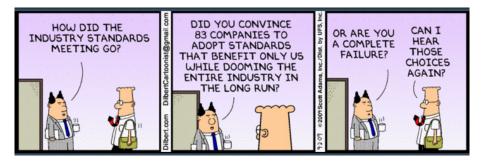
Jean Peccoud¹, J Christopher Anderson², Deepak Chandran³, Douglas Densmore⁴, Michal Galdzicki5, Matthew W Lux1, Cesar A Rodriguez6, Guy-Bart Stan7 & Herbert M Sauro³

¹Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA. 2Department of Bioengineering, QB3: California Institute for Ouantitative Biological Research, University of California, Berkeley, California, USA. ³Department of Bioengineering, University of Washington, Seattle, Washington, USA, ⁴Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA,⁵Biomedical and Health Informatics, University of Washington, Seattle, Washington, USA. 6BIOFAB, Emervville, California, USA, 7Department of Bioengineering and Centre for Synthetic Biology and Innovation, Imperial College London, London, UK. e-mail: peccoud@vt.edu

- 1. Gardner, T.S. & Collins, J.J. US patent 6,841,376 (2005).
- 2. Gardner, T.S., Cantor, C.R. & Collins, J.J. Nature 403. 339-342 (2000).
- 3. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss R. Nature 434, 1130-1134 (2005).


Standards to the Rescue

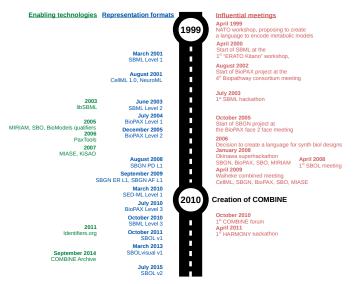
(source https://www.eaglegenomics.com/do-data-standards-really-matter/)


Chris J. Myers (University of Utah)

Word of Warning

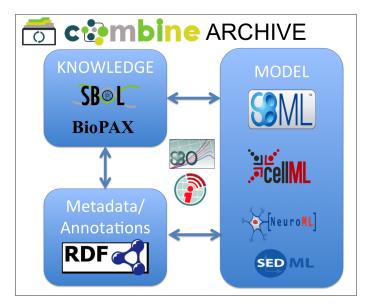
(source xkcd.com)

Proprietary Standards

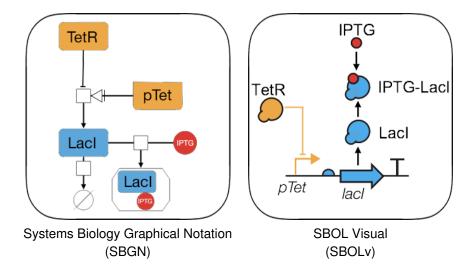


Coordination of Standard Development in Systems/Synthetic Biology

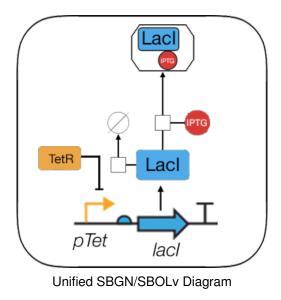
- COmputational Modeling in Blology NEtwork
- Tasks and Actions:
 - Organizes joint standards meetings: HARMONY & the COMBINE Forum
 - Provides training in application of standards (COMBINE tutorials)
 - Coordinates standards development
 - Develops common procedures and tools
 - Provides a recognized voice


COMBINE History

Myers et al., 2017 Winter Simulation Conference (2017).


Chris J. Myers (University of Utah)

COMBINE Overview



Chris J. Myers (University of Utah)

COMBINE Visualization Standards

COMBINE Visualization Standards

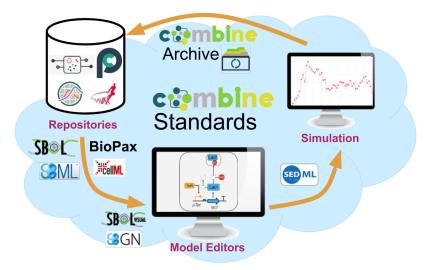
COMBINE Repositories

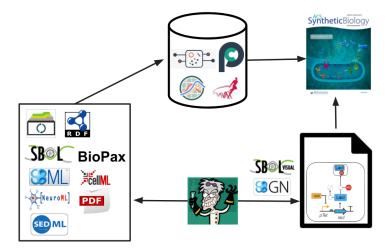
Pathway Commons, a web resource for biological pathway data.

Data Tools FMQ Contact

Apps

Search	PCViz		
Search the entire collection of pathways	Get details about genes and their interactions		
Names or gene IDs (e.g. 'glycolysis', 'TP53')	Q	Gene IDs (e.g. 'MDM2 TP53')	Q


http://www.pathwaycommons.org


http://biomodels.net

https://models.physiomeproject.org

Standard Enabled Systems/Synthetic Biology Workflow

Journal Workflow for Reproducibility

Invitation

- You are invited to join the COMBINE community.
- Contact the COMBINE Coordinators or standard editors to join the appropriate mailing lists.
- You are also invited to the upcoming COMBINE Forum:

Boston University October 8-12

Synthetic Biology Open Language (SBOL) Version 1 Released in 2011

nature biotechnology

Home | Current issue | News & comment | Research | Archive 🔽 Authors & referees 🛒 About the journal

home > archive > issue > computational biology > perspective > full text

NATURE BIOTECHNOLOGY | COMPUTATIONAL BIOLOGY | PERSPECTIVE

日本語要約

The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology

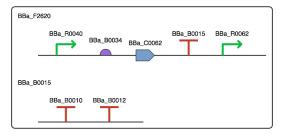
Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew Pocock, Jacqueline Y Quinn, Cesar A Rodriguez, Nicholas Roehner, Mandy L Wilson, Laura Adam, J Christopher Anderson, Bryan A Bartley, Jacob Beal, Deepak Chandran, Joanna Chen, Douglas Densmore, Drew Endy, Raik Grünberg, Jennifer Hallinan, Nathan J Hillson, Jeffrey D Johnson, Allan Kuchinsky, Matthew Lux, Goksel Misirli, Jean Peccoud, Hector A Plahar, Evren Sirin, Guy-Bart Stan, Alan Villalobos, Anil Wipat, John H Gennari, Chris J Myers & Herbert M Sauro

Show fewer authors

Affiliations | Contributions | Corresponding author

Nature Biotechnology 32, 545–550 (2014) | doi:10.1038/nbt.2891 Received 09 November 2013 | Accepted 20 December 2013 | Published online 06 June 2014

< 🖶


SBOL Visual Version 1 Released in 2013

COMMUNITY PAGE

SBOL Visual: A Graphical Language for Genetic Designs

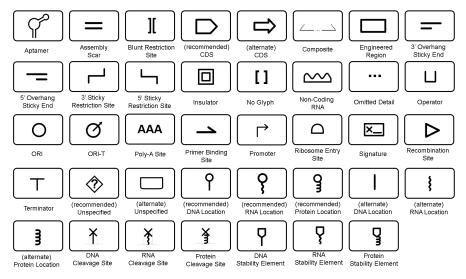
Jacqueline Y. Quinn¹⁶, Robert Sidney Cox III⁶², Aaron Adler³, Jacob Beal³, Swapnil Bhatia⁴, Yizhi Cal³, Joanna Chen^{6,7}, Kevin Clancy⁹, Michal Galdzicki⁹, Nathan J. Hillson^{6,7}, Nicolas Le Novère¹⁰, Akshay J. Maheshwari¹¹, James Alastair McLaughlin¹². Chris J. Myers¹⁹, Umesh P⁴⁴, Matthew Pocck^{12,13}; Cesar Rodriguez¹⁶, Larisa Soldatova¹⁷, Guy-Bart V. Stan¹⁸, Nell Swainston¹¹, Antil Wipat¹², Herbert M. Sauco³⁰

SBOL Version 2 Released in 2015

Research Article

pubs.acs.org/synthbio

Sharing Structure and Function in Biological Design with SBOL 2.0

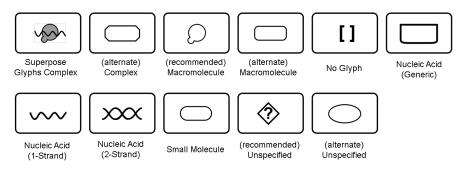

Nicholas Roehner,**[†] Jacob Beal,[‡] Kevin Clancy,[§] Bryan Bartley,[⊥] Goksel Misirli,^{||} Raik Grünberg,[¶] Ernst Oberortner,[#] Matthew Pocock,^{\bigtriangledown} Michael Bissell,[⊗] Curtis Madsen,^{||} Tramy Nguyen,[¶] Michael Zhang,[¶] Zhen Zhang,[¶] Zach Zundel,[♠] Douglas Densmore,[†] John H. Gennari,[¶] Anil Wipat,^{||} Herbert M. Sauro,[⊥] and Chris J. Myers

SEE ALSO:

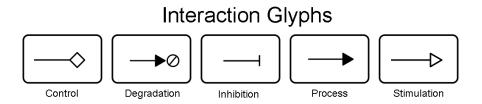
- Roehner et al., ACS Synthetic Biology (2014)
- Bartley et al., Journal of Integrative Bioinformatics (2015)
- Beal et al., Journal of Integrative Bioinformatics (2016)
- Cox et al., Journal of Integrative Bioinformatics (2017)

SBOLv Version 2: Nucleic Acid Glyphs (2017)

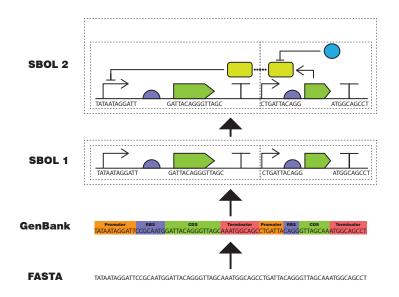
Nucleic Acid Glyphs



Chris J. Myers (University of Utah)

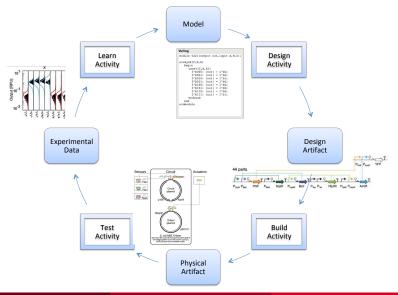

A Standard-Enabled Workflow

SBOLv Version 2: Molecular Species Glyphs (2017)


Molecular Species Glyphs

SBOLv Version 2: Interaction Glyphs (2017)

SBOL Evolution


Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

SBOL Version 2.2: Combinatorial Derivations

					✓ Overview			
pBAD pHlylik R85 AmtR Ter								
Combinatorial Design Variants: RBS								
Variant operator one C Derivation strategy None C Derivation display ID R85_CombinatorialDerivation								
Derivation name								
Derivation description								
Variant c								
Type Part Part Part Part Part	Display Id A1 B1 E1 R1 B3	Name A1 B1 E1 R1 B3	Version 1 1 1 1 1 1	Description				
Add Variant Remove Variant Add new Combinatorial Derivation Save								

SBOL Version 2.2: Design-Build-Test-Learn (Prov-O)

Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

SBOL Community

128 people from 16 countries

Representing 43 universities and 29 companies and government labs

Chris J. Myers (University of Utah)

Organizations Supporting SBOL

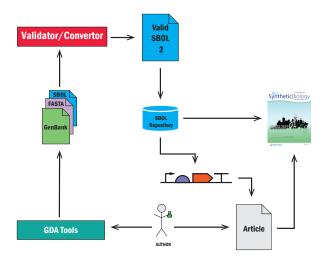
Current support for the development of SBOL provided by National Science Foundation Grants DBI-1356041 and DBI-1355909, and the Engineering and Physical Sciences Research Council under Grant Number EP/J02175X/1.

ACS Synthetic Biology Recommends Use of SBOL in 2016

pubs.acs.org/synthbio

Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs

Nathan J. Hillson,*^{,†,‡,§,||} Hector A. Plahar,^{†,‡,||} Jacob Beal,^{*,⊥} and Ranjini Prithviraj[#]


[†]Fuels Synthesis and Technology Divisions, DOE Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States [‡]Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States [§]DOE Joint Genome Institute, Walnut Creek, California 94598, United States ^{II}Synthetic Biology Engineering Research Center, Emeryville, California 94608, United States ^LRaytheon BBN Technologies, Cambridge, Massachusetts 02138, United States [#]ACS Synthetic Biology, American Chemical Society, Washington, D.C. 20036, United States

ABSTRACT: Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange.

Chris J. Myers (University of Utah)

ACS Synthetic Biology SBOL Workflow

Hillson et al., ACS Synthetic Biology (2016)

Zundel et al., ACS Synthetic Biology (2017)

Chris J. Myers (University of Utah)

libSBOLj Version 2 Released in Late 2015

Received 3 December 2015; accepted 27 February 2016. Date of publication 24 March 2016; date of current version 14 April 2016.

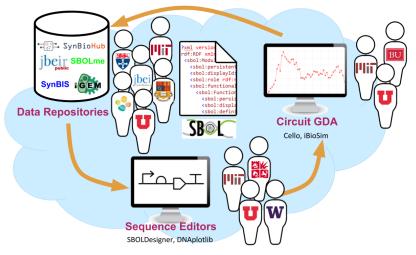
Digital Object Identifier 10.1109/LLS.2016.2546546

libSBOLj 2.0: A Java Library to Support SBOL 2.0

ZHEN ZHANG¹, TRAMY NGUYEN¹, NICHOLAS ROEHNER², GÖKSEL MISIRLI³, MATTHEW POCOCK⁴, ERNST OBERORTNER⁵, MEHER SAMINENI¹, ZACH ZUNDEL¹, JACOB BEAL⁶, KEVIN CLANCY⁷, ANIL WIPAT³, AND CHRIS J. MYERS¹

¹University of Utah, Salt Lake City, UT 84112 USA
 ²Boston University, Boston, MA 02215 USA
 ³Newcasate University, Newcastle upon Tyne NE1 7RU, U.K.
 ⁴Turing Ate My Hamster, Ltd., Newcastle upon Tyne NE27 0RT, U.K.
 ⁵DOE Join Genome Institute, Walnut Creek, CA 94598 USA
 ⁶Raytheon BIN Technologies, Cambridge, MA 02138 USA
 ⁷ThermoFisher Scientific Synthetic Biology Unit, Carlsbad, CA 92008 USA
 CORRESPONDING AUTHER: C. J. MYERS (Inverse @eccutah.edu).

This work was supported in part by the National Science Foundation under Grant DBI-1356041 and Grant DBI-1355909 and in part by the Engineering and Physical Sciences Research Council under Grant EP/J02175X/1.

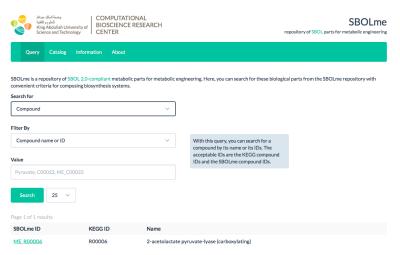

Other SBOL libraries available for C++, Python, and Javascript

Software Supporting SBOL

	Function				SBOL			
Name	R	S	V	G	М	1	2	v
Benchling		٠				•		
BOOST		•				•	•	
Cello				•			•	
DeviceEditor		•	•			•		•
DNAPlotLib			•			•		•
Eugene		•				•		•
Finch		•	•	•			•	•
GenoCAD		•	•					•
GeneGenie		•				•		
Graphviz			•					•
ICE	•		•			•	•	•
iBioSim		•	•	•	•	•	•	•
j5		•						
MoSeC		•			•	•		
Pigeon			•					•
Pinecone		•						•
Pool Designer		•				•	•	
Proto BioCompiler			•	•		•		•
SBOLDesigner		•	•			•	•	•
SBOLme	•						•	
ShortBol		•		•			•	
SynBioHub	•		•			•	•	•
Tellurium					•		•	
TeselaGen		•	•			•		•
TinkerCell			•	•	•	•		•
VisBOL			•				•	•
VirtualParts	•				•		•	

http://sbolstandard.org/software/tools/

Synthetic Biology Workflow Using SBOL


Myers et al., Biochemical Society Transactions (2017).

Data Repositories (ICE)

		Q Search		- SEARCH				Administrator 葦 🕩
		Create Entry	- III ACO TO					
Featured	64	D PLASMID	LCP_000117	pGOP35_pSB1C3-g13Op-minCMV-GFP-RBGpA The 2016 Bostorul /GEM team designed a set of mutually orthogonal		Complete	\$	Dec 2, 2016
Personal	0	PLASMID	LCP_000116	pGOP30_pSB1C3-g8Op-minCMV-GFP-RBGpA The 2016 BostoriJ IGEM team designed a set of mutually orthogonal	69	Complete	\$	Dec 2, 2016
< Shared		PLASMID	LCP_000115	pGOP25_pSB1C3-g3Op-minCMV-GFP-RBGpA The 2016 Bostor/J IGEM team designed a set of mutually orthogonal	69	Complete	\$	Dec 2, 2016
Pending Approval	1	D PLASMID	LCP_000079	pGOP110_pSB1C3-g13Op_mismatch_1bp_loc10-minCM The 2016 Bostor/J IGEM team designed a set of mutually orthogoral	69	Complete	\$	Nov 28, 2016
© Pending Approval	-	D PLASMID	LCP_000078	pGOP90_pSB1C3-g13Op_3multi_24bp-minCMV-GFP-RB The 2016 BostorkJ IGEM team designed a set of mutually orthogonal	69	Complete	\$	Nov 28, 2016
		D PLASMID	LCP_000077	pGOP85_pSB1C3_g13Op-2-multi-24bp_minCMV_GFP_R The 2016 BostonU IGEM team designed a set of multivativ orthogonal	69	Complete	\$	Nov 28, 2016
		D PLASMID	LCP_000076	pGOP23_p8B1C3_g1Op_min-CMV_GFP_RBG-A The 2016 BostonU IGEM team designed a set of mutually orthogonal	69	Complete	\$	Nov 28, 2016
		D PLASMID	LCP_000074	pGEX108_pSB1C3_hU6_g6_SP-Cas9-gRNA-scaffold-RB This part produces a guide RNA that pairs with an operator. This bast	69	Complete	\$	Nov 18, 2016
		D PLASMID	LCP_000073	pGEX103_pSB1C3_hU6_g1_SP-Cas9-gRNA-scaffold-RB This part produces a guide RNA that pairs with an operator. This basi	ð	Complete	\$	Nov 18, 2016
		STRAIN	LCP_000072	Assembly #1 Recombinase_Level 1 Level 1 for assembly #1.	ð	Complete	∆ \$	Nov 15, 2016
		STRAIN	LCP_000071	gfp_pich41276_gi McClo level 0 part.	8	Complete	∆ \$	Nov 15, 2016
		STRAIN	LCP_000070	tp801p-ag-bxbip-gt-tp901p-tc-eg Level 0 cart.	69	Complete	∆ \$	Nov 15, 2016
		STRAIN	LCP_000069	bfp-pich41268-de McCe invel 0 part.	ð	Complete	∆¢	Nov 15, 2016
		STRAIN	LCP_000068	bxbib-gt_cd McClo level 0 part.	ð	Complete	∆ \$	Nov 15, 2016
BOSTON	Чï		100.00007	and and an be				© JBEI ICE Registry 53.0 All rights reserved. Submit an Issue Help

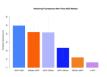
Ham et al., Nucleic Acid Research (2012)

Data Repositories (SBOLme)

Kuwahara et al., *ACS Synthetic Biology* (2017) Includes 28,437 chemical compounds, 6,883 enzyme classes, 9,909 metabolic reactions, and 3,173,238 proteins from 3,908 organisms.

Chris J. Myers (University of Utah)

iGEM Registry of Standard Biological Parts (BioBricks)


Featured Part

Cellulose Collection

Group: Team Imperial 2014, and others

The 2014 Imperial IGEM team created a bacterial colludes filter for their Aqualose project. They wanted to produce flexible, and pollution-specific filters to aid in water sanitation. They created a set of well-documented cellulose binding domains, paired with reporter genes (GFP) and metal binding domains.

Many other teams have also worked with cellulose, so check out the cellulose related parts collection.

Catalog

The iGEM Registry has over 20,000 documented parts. The Catalog organizes many of these parts by part type, chassis, function, and more. Browse for parts through the Registry Catalog or use the search menu.

2017 DNA Distribution

The iGEM 2017 DNA Distribution has started shipping! We've added some new material this year, so be sure to read through the 2017 Distribution Handbook for storage instructions and how to use your kit!

http://parts.igem.org

Chris J. Myers (University of Utah)

A Standard-Enabled Workflow

CMSB 2018 / Sept. 14, 2018

International Genetically Engineered Machine (iGEM) Competition

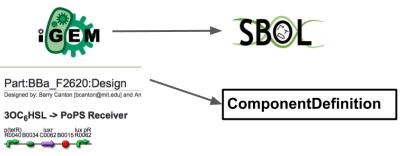
Started in 2004 with 5 teams and 31 participants. In 2017: 310 teams with nearly 5400 participants from 44 countries.

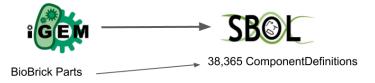
Chris J. Myers (University of Utah)

International Genetically Engineered Machine (iGEM) Competition

Started in 2004 with 5 teams and 31 participants. In 2017: 310 teams with nearly 5400 participants from 44 countries.

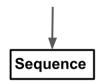
Chris J. Myers (University of Utah)

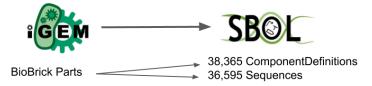

International Genetically Engineered Machine (iGEM) Competition

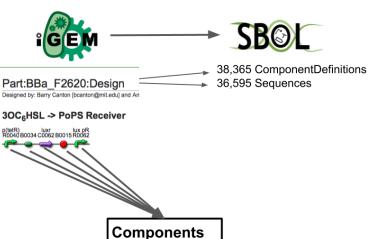


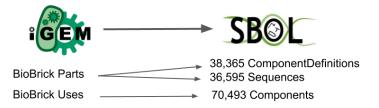
Started in 2004 with 5 teams and 31 participants. In 2017: 310 teams with nearly 5400 participants from 44 countries.

Chris J. Myers (University of Utah)

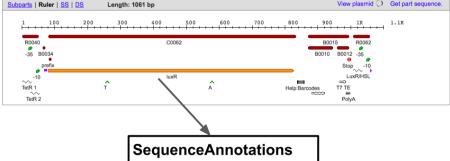


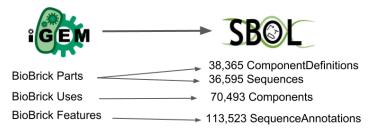


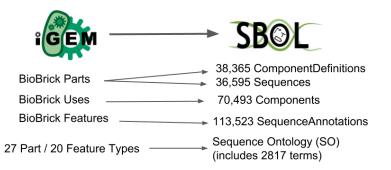


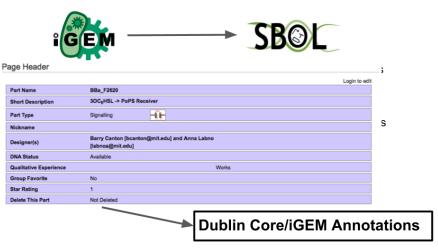


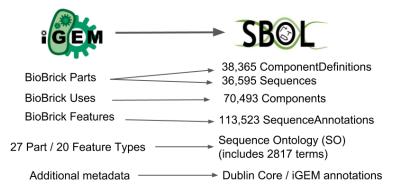
>BBa_F2620 Part-only sequence (1061 bp)

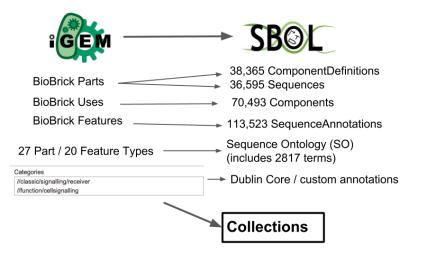


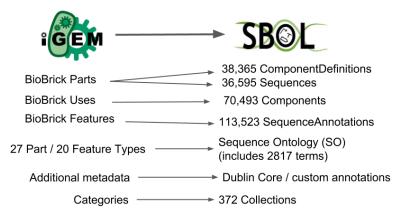











	iGEM Part/Feature Type	SequenceOntology (SO) Term
	Coding	CDS (SO:0000316)
E	Device	Engineered Region (SO:0000804)
E	Primer	Primer (SO:0000112)
E	Protein Domain	Polypeptide Domain (SO:0000417)
	RBS	Ribosome Entry Site (SO:0000139)
	Regulatory	Promoter (SO:0000167)
	Тад	Tag (SO:0000324)
	Terminator	Terminator (SO:0000141)
	etc.	etc.

Additional Features of SBOL

- Tractable hierarchical representation of part-subpart relations.
- Systematic detection of inconsistencies in parts with SBOL tooling.
 - Found 521 instances of mis-aligned annotations.
 - Found 2285 instances of composite BioBricks with inconsistent sequences with respect to their basic BioBricks.
- Builds on standard ontologies, such as the Sequence Ontology.
- Enables powerful search queries using Semantic Web technology.
- Can convey versioning and rich provenance information via PROV-O.
- Enables users of the registry to take advantage of the emerging ecosystem of SBOL-enabled software tools.

Data Repositories (SynBioHub)

James McLaughlin Anil Wipat



Zach Zundel Chris Myers

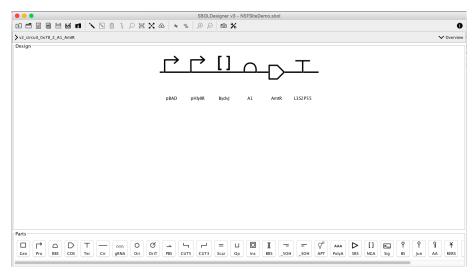
Version 1.0 released June 14, 2017

McLaughlin et al., ACS Synthetic Biology (2018).

Reference Instance (https://synbiohub.org)

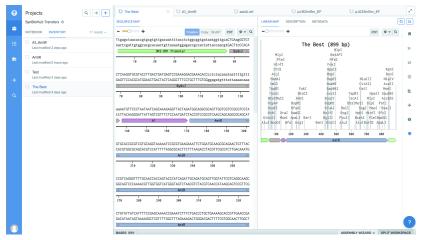
McLaughlin et al., ACS Synthetic Biology (2018).

NSF Expeditions Living Computing Project (https://synbiohub.programmingbiology.org)


.≝~∕	Submit	O About	* Shared with Me	Submissions	o: Admin	🛅 Profile	Sign Out
		Adv	anced Search I Create	Collection I SPARQL		_	
	PhoenixReduced version 1 PhoenixReduced				V F	hoen	Ro
	Celio Parts version 1 These are the Cello parts					CELL	
	LCP Collection version 1 Designs created as part o	f the NSF Expe	ditions Living Computin	g Project.		IPUTING PROJE	CT
	AlphaSample version 1 Sample parts used in Pho	enix			V F	hoen	^k o
	Cello_VPRGeneration version 1 A collection containing 52 that was generated from V simulation result is plotted	Cello circuits	arted into the SBML data	model for verification of	of the design. T	10	

McLaughlin et al., ACS Synthetic Biology (2018).

SBOLExplorer (https://synbiohub.utah.edu)

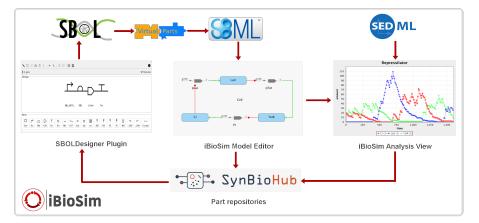

UNI ^{THE} OF U	VERSITY 🔒 Submit JTAH*	6 About	Shared with Me	E Submissions	o: Admin	Profile	😝 Sign Out
Q Search							
		Q RB	s	Search			
		Advi	anced Search I Create (Showing 1 - 50 of 4 1 2 3 4 5 N	982 result(s)			
	BBa_B0034 version 1 RBS (Elowitz 1999) – defines	RBS efficien	cy			74	210
	BBa_B0064_rbs version 1					761	218
	BBa_B0030 version 1 RBS.1 (strong) – modified fre	om R. Weiss				74	and a second sec
	BBa_B0032 version 1 RBS.3 (medium) – derivative	of BBa_0030				R	210

Sequence Editors (SBOLDesigner)

Zhang et al., ACS Synthetic Biology (2017)

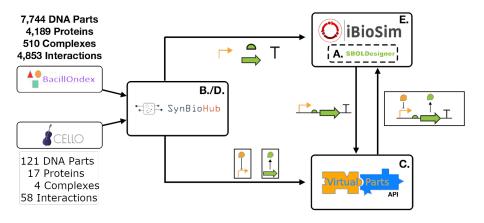
Sequence Editors (Benchling)

Other sequence editors that support SBOL:

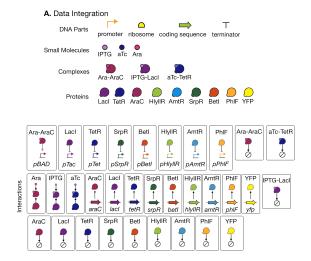

DeviceEditor, J5, VectorEditor (JBEI), DNAPlotLib (MIT/UW/Bristol), Eugene (Boston), GenoCAD (VBI), BOOST (JGI), etc.

Circuit GDA Tools (Cello)

Cello	Verilog Options Results About					You are logged in as myers Logout		
Veri	ilog choose 🛟	Inputs						
1	<pre>2 always@(in1,in2) 3 begin 4 case({in1,in2}) 5 2'b00: {out1} = 1'b0;</pre>	choose	\$	clear				
3		index	name	low RPU	high RPU	DNA sequence		
5		1	рТас	0.0034	2.8	AACGATCGTTGGCTGTGTTGACAA		
67		2	pTet	0.0013	4.4	TACTCCACCGTTGGCTTTTTTCCC		
8 9 10 11		Output	Outputs					
12	enunoutre	choose	choose ¢ clear					
		index	name					
		1	YFP	CTGAAGC	TGTCACCGGA	TGTGCTTTCCGGTCTGATGAGTCCGT		
	design name							
	Run							

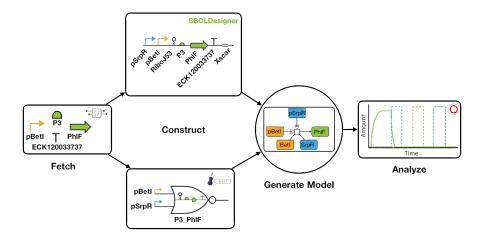

Nielsen et al., Science (2016)

Circuit GDA Tools (iBioSim)

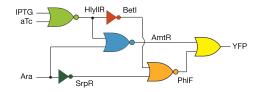

Myers et al., *Bioinformatics* (2009) Madsen et al., *IEEE Design & Test* (2012) Watanabe et al., *ACS Synthetic Biology* (2018)

Model Generation Workflow

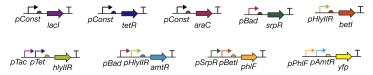
Mısırlı et al., ACS Synthetic Biology (2018).


Data Integration: Cello Part Library

Mısırlı et al., ACS Synthetic Biology (2018).

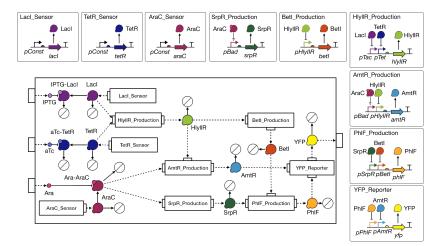

Chris J. Myers (University of Utah)

Genetic Circuit Construction


Misirli et al., ACS Synthetic Biology (2018).

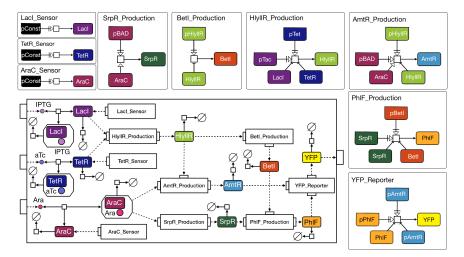
Genetic Circuit Construction: Rule 30 Example

B. Rule 30


C. Genetic Circuit Construction

Mısırlı et al., ACS Synthetic Biology (2018).

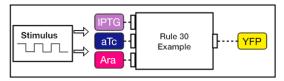
Chris J. Myers (University of Utah)


Enriched SBOL Representation: Rule 30 Example

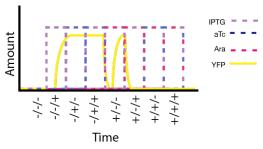
Misirli et al., ACS Synthetic Biology (2018).

Chris J. Myers (University of Utah)

Dynamic SBML Model: Rule 30 Example



Misirli et al., ACS Synthetic Biology (2018).


Chris J. Myers (University of Utah)

Simulation: Rule 30 Example

A. Testing Environment

B. Simulation

Misirli et al., ACS Synthetic Biology (2018).

Chris J. Myers (University of Utah)

More Information

- Standards are an important enabler for data sharing and reproducibility.
- Ultimate goal should be a complete standard-enabled workflow.
- Much more information is available from: http://www.sbolstandard.org/.
- Check out the SBOL Standard Youtube channel.
- SBOL is also on Facebook, Twitter, and Vimeo.

Acknowledgements (University of Washington)

Dr. Bryan Bartley (Now with BBN/Raytheon)

Kiri Choi

Dr. Herbert Sauro

Acknowledgements (Newcastle University)

James McLaughlin

Dr. Goksel Misirli (Now with Keele University)

Dr Angel Goni-Moreno

Prof. Anil Wipat

Acknowledgements (Boston University)

Dr. Timothy Jones

Dr. Curtis Madsen

Prashant Vaidyanathan

Dr. Nicholas Roehner (Now with BBN/Raytheon)

Prof. Douglas Densmore

Acknowledgements (Other Institutions)

Dr. Jacob Beal (BBN/Raytheon)

Dr. Thomas Gorochowski (University of Bristol)

Dr Hiroyuki Kuwahara (KAUST)

Dr. Ernst Oberortner (Joint Genome Institute)

Acknowledgements (University of Utah)

Pedro Fontanarrosa

Tramy Nguyen

Meher Samineni

Leandro Watanabe

Michael Zhang

Zach Zundel

Supported by National Science Foundation Grants CCF-1218095, DBI-1356041, CCF-1748200, and CCF-1522074 (sub-award from BU), and DARPA FA8750-17-C-0229 (sub-award from MIT).

