] |1~

NIRMLS?

ISO/IEC 14772-1:1997

n

VRMLO7 specification
Nodes reference

RTIS Iy
Okt p%

N FAQ,

@“&N Uy ?«’y
47 S

’44\'4 . HD\&Q‘

%, <
g5 apS

Masaryk University
June 22, 2000

typeset by David Safranek using ConTpXt contact: dawe@mail.muni.cz

Introduction

This document provides a detailed definition of the syntax and semantics of each node in this part
of ISO/IEC 14772. The node declaration defines the names and types of the fields and events
for the node, as well as the default values for the fields.

The node declarations also include value ranges for the node’s fields and exposedFields (where
appropriate). Parentheses imply that the range bound is exclusive, while brackets imply that
the range value is inclusive. For example, a range of (—o0, 1] defines the lower bound as —co
exclusively and the upper bound as 1 inclusively.

For example, this table defines the Collision node declaration:

Collision {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool collide
field SFVec3f bboxCenter 000 # (—00,0)
field SFVec3f bboxSize -1 -1 -1 #(0,00)0r —1,-1,-1
field SFNode proxy NULL
eventOut SFTime collideTime
}

The fields and events contained within the node declarations are ordered as follows:

eventlns, in alphabetical order
exposedFields, in alphabetical order
fields, in alphabetical order
eventQOuts, in alphabetical order

o0 oo

M) <r]m

n

Anchor m ﬂ ﬂ m

n

Appearance
AudioClip

Anchor

Anchor {

eventIn
eventIn
exposedField
exposedField
exposedField
exposedField
field

field

}

MFNode
MFNode
MFNode
SFString
MFString
MFString
SFVec3f
SFVec3f

addChildren
removeChildren
children
description
parameter

url

bboxCenter
bboxSize

(1

(1

(1

000
-1-1-1

The Anchor grouping node causes a URL to be fetched over the network when the viewer activates
(e.g. clicks) some geometry contained within the Anchor’'s children. If the URL pointed to
is a legal VRML world, then that world replaces the world which the Anchor is a part of. If
non-VRML data type is fetched, it is up to the browser to determine how to handle that data;
typically, it will be passed to an appropriate general viewer.

Exactly how a user activates a child of the Anchor depends on the pointing device and is
determined by the VRML browser. Typically, clicking with the pointing device will result in the
new scene replacing the current scene. An Anchor with an empty ("") url does nothing when
its children are chosen. See ” Concepts — Sensors and Pointing Device Sensors” for a
description of how multiple Anchors and pointing device sensors are resolved on activation.

See the ” Concepts — Grouping and Children Nodes” section for a description of children,
addChildren, and removeChildren fields and eventlins.

M) <r]m
__goback
__ contents

n

The description field in the Anchor allows for a prompt to be displayed as an alternative
to the URL in the url field. Ideally, browsers will allow the user to choose the description, the
URL, or both to be displayed for a candidate Anchor.

The parameter exposed field may be used to supply any additional information to be inter-
preted by the VRML or HTML browser. Each string should consist of "keyword=value” pairs.
For example, some browsers allow the specification of a 'target’ for a link, to display a link in
another part of the HTML document; the parameter field is then:

Anchor {
parameter ["target=name of _frame"]

}

An Anchor may be used to bind the initial Viewpoint in a world by specifying a URL ending with
"#ViewpointName", where "ViewpointName" is the name of a viewpoint defined in the file.
For example:

Anchor {

url "http://www.school.edu/vrml/someScene.wrl#0verView }
children Shape { geometry Box {} }

}

specifies an anchor that loads the file "someScene.wrl”, and binds the initial user view to the
Viewpoint named " OverView" (when the Box is activated). If the named Viewpoint is not found
in the file, then ignore it and load the file with the default Viewpoint. If no world is specified,
then this means that the Viewpoint specified should be bound (set_bind TRUE). For example:
Anchor {

url "#Doorway"
children Shape { geometry Sphere {} }

)<

n

binds viewer to the viewpoint defined by the "Doorway” viewpoint in the current world when the
sphere is activated. In this case, if the Viewpoint is not found, then do nothing on activation.
See ” Concepts — URLs and URNSs"” for more details on the url field.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Anchor’s
children. This is a hint that may be used for optimization purposes. If the specified bounding
box is smaller than the actual bounding box of the children at any time, then the results
are undefined. A default bboxSize value, (—1,—1,—1), implies that the bounding box is not
specified and if needed must be calculated by the browser. See ” Concepts — Bounding Boxes”
for a description of bboxCenter and bboxSize fields.

M) <r]m

n

Appearance LR L

Appearance |

exposedField SFNode material NULL
exposedField SFNode texture NULL n
exposedField SFNode textureTransform NULL

}

The Appearance node specifies the visual properties of geometry by defining the material and
texture nodes. The value for each of the fields in this node can be NULL. However, if the field is
non-NULL, it must contain one node of the appropriate type.

The material field, if specified, must contain a Material node. If the material field is NULL
or unspecified, lighting is off (all lights are ignored during rendering of the object that references
this Appearance) and the unlit object color is (0,0,0) — see ” Concepts — Lighting Model”
for details of the VRML lighting model.

The texture field, if specified, must contain one of the various types of texture nodes
(ImageTexture, MovieTexture, or PixelTexture). If the texture node is NULL or unspeci-
fied, the object that references this Appearance is not textured.

The textureTransform field, if specified, must contain a TextureTransform node. If the
texture field is NULL or unspecified, or if the textureTransform is NULL or unspecified, the
textureTransform field has no effect.

AudioClip

AudioClip {
exposedField SFString description "
exposedField SFBool loop FALSE
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url (]
eventOut SFTime duration_changed
eventOut SFBool isActive

}

An AudioClip node specifies audio data that can be referenced by other nodes that require an
audio source.

The description field is a textual description of the audio source. A browser is not required
to display the description field but may choose to do so in addition to or in place of playing the
sound.

The url field specifies the URL from which the sound is loaded. Browsers shall support at least
the wavefile format in uncompressed PCM format [WAVE]. It is recommended that browsers also
support the MIDI file type 1 sound format [MIDI]. MIDI files are presumed to use the General
MIDI patch set. See the section on URLs and URNs in ” Concepts — URLs and URNs” for
details on the url field. Results are not defined when the URL references unsupported data types.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their
affects on the AudioClip node, are discussed in detail in the ” Concepts — Time Dependent
Nodes” section. The "cycle” of an AudioClip is the length of time in seconds for one playing of
the audio at the specified pitch.

M) <r]m

n

The pitch field specifies a multiplier for the rate at which sampled sound is played. Only
positive values are valid for pitch (a value of zero or less will produce undefined results). Changing
the pitch field affects both the pitch and playback speed of a sound. A set_pitch event to an
active AudioClip is ignored (and no pitch changed eventOut is generated). If pitch is set to
2.0, the sound should be played one octave higher than normal and played twice as fast. For a
sampled sound, the pitch field alters the sampling rate at which the sound is played. The proper
implementation of the pitch control for MIDI (or other note sequence sound clip) is to multiply
the tempo of the playback by the pitch value and adjust the MIDI Coarse Tune and Fine Tune
controls to achieve the proper pitch change. The pitch field must be > 0.0.

A duration changed event is sent whenever there is a new value for the "normal” duration
of the clip. Typically this will only occur when the current url in use changes and the sound data
has been loaded, indicating that the clip is playing a different sound source. The duration is the
length of time in seconds for one cycle of the audio for a pitch set to 1.0. Changing the pitch
field will not trigger a duration changed event. A duration value of —1 implies the sound data
has not yet loaded or the value is unavailable for some reason.

The isActive eventOut can be used by other nodes to determine if the clip is currently active.
If an AudioClip is active, then it should be playing the sound corresponding to the sound time
(i.e., in the sound’s local time system with sample 0 at time 0):

fmod(now — —startTime, duration/pitch)

M) <r]m

n

Background W<
Billboard

o

n

Background LR L

Background {

eventIn SFBool set_bind

exposedField MFFloat groundAngle [] n
exposedfield MFColor groundColor []
exposedField MFString backUrl (]
exposedField MFString bottomUrl (]
exposedField MFString frontUrl]
exposedField MFString leftUrl (]
exposedField MFString rightUrl (1
exposedField MFString topUrl (]
exposedField MFFloat skyAngle]
exposedField MFColor skyColor [o000]
eventQOut SFBool isBound

}

The Background node is used to specify a color backdrop that simulates ground and sky, as well
as a background texture, or panorama, that is placed behind all geometry in the scene and in
front of the ground and sky. Background nodes are specified in the local coordinate system and
are affected by the accumulated rotation of their parents (see below).

Background nodes are bindable nodes (see " Concepts - Bindable Children Nodes"). There
exists a Background stack, in which the top-most Background on the stack is the currently active
Background and thus applied to the view. To move a Background to the top of the stack, a
TRUE value is sent to the set bind eventln. Once active, the Background is then bound to the
browsers view. A FALSE value of set bind, removes the Background from the stack and unbinds
it from the browser viewer.

The ground and sky backdrop is conceptually a partial sphere (i.e. ground) enclosed inside of
a full sphere (i.e. sky) in the local coordinate system, with the viewer placed at the center of the
spheres. Both spheres have infinite radius (epsilon apart), and each is painted with concentric
circles of interpolated color perpendicular to the local Y-axis of the sphere. The Background node
is subject to the accumulated rotations of its parent transformations — scaling and translation
transformations are ignored. The sky sphere is always slightly farther away from the viewer than
the ground sphere — the ground appears in front of the sky in cases where they overlap.

The skyColor field specifies the color of the sky at the various angles on the sky sphere. The
first value of the skyColor field specifies the color of the sky at 0.0 degrees, the north pole (i.e.
straight up from the viewer). The skyAngle field specifies the angles from the north pole in
which concentric circles of color appear - the north pole of the sphere is implicitly defined to be
0.0 degrees, the natural horizon at 7/2 radians, and the south pole is 7 radians. skyAngle is
restricted to increasing values in the range 0.0 to m. There must be one more skyColor value
than there are skyAngle values — the first color value is the color at the north pole, which is not
specified in the skyAngle field. If the last skyAngle is less than 7, then the color band between
the last skyAngle and the south pole is clamped to the last skyColor. The sky color is linearly
interpolated between the specified skyColor values.

The groundColor field specifies the color of the ground at the various angles on the ground
sphere. The first value of the groundColor field specifies the color of the ground at 0.0 degrees,
the south pole (i.e. straight down). The groundAngle field specifies the angles from the south
pole that the concentric circles of color appear — the south pole of the sphere is implicitly defined
at 0.0 degrees. groundAngle is restricted to increasing values in the range 0.0 to . There must
be one more groundColor values than there are groundAngle values — the first color value is
for the south pole which is not specified in the groundAngle field. If the last groundAngle is
less than 7 (it usually is), then the region between the last groundAngle and the north pole is
invisible. The ground color is linearly interpolated between the specified groundColor values.

M) <r]m

n

The backUrl, bottomUrl, frontUrl, leftUrl, rightUrl, and topUrl fields specify a set
of images that define a background panorama, between the ground/sky backdrop and the world'’s
geometry. The panorama consists of six images, each of which is mapped onto the faces of an
infinitely large cube centered in the local coordinate system. The images are applied individually
to each face of the cube; the entire image goes on each face. On the front, back, right, and left
faces of the cube, when viewed from the inside with the Y-axis up, the texture is mapped onto
each face with the same orientation as the if image was displayed normally in 2D. On the top
face of the cube, when viewed from the inside looking up along the +Y axis with the +2 axis
as the view up direction, the texture is mapped onto the face with the same orientation as the
if image was displayed normally in 2D. On the bottom face of the box, when viewed from the
inside down the —Y axis with the —Z axis as the view up direction, the texture is mapped onto
the face with the same orientation as the if image was displayed normally in 2D.

Alpha values in the panorama images (i.e. two or four component images) specify that the
panorama is semi-transparent or transparent in regions, allowing the groundColor and skyColor
to be visible. One component images are displayed in greyscale; two component images are
displayed in greyscale with alpha transparency; three component images are displayed in full RGB
color; four component images are displayed in full RGB color with alpha transparency. Often, the
bottomUrl and topUrl images will not be specified, to allow sky and ground to show. The other
four images may depict surrounding mountains or other distant scenery. Browsers are required
to support the JPEG and PNG image file formats, and in addition, may support any other image
formats. Support for the GIF format (including transparent backgrounds) is recommended. See
the section " Concepts — URLs and URNSs" for details on the url fields.

Panorama images may be one component (greyscale), two component (greyscale plus alpha),
three component (full RGB color), or four-component (full RGB color plus alpha).

Ground colors, sky colors, and panoramic images do not translate with respect to the viewer,
though they do rotate with respect to the viewer. That is, the viewer can never get any closer to

M) <r]m

n

sitle view tap view

Figure 3.1

the background, but can turn to examine all sides of the panorama cube, and can look up and
down to see the concentric rings of ground and sky (if visible).

Background is not affected by Fog. Therefore, if a Background is active (i.e bound) while a
Fog is active, then the Background will be displayed with no fogging effects. It is the author's
responsibility to set the Background values to match the Fog (e.g. ground colors fade to fog
color with distance and panorama images tinted with fog color).

The first Background node found during reading of the world is automatically bound (receives
set_bind TRUE) and is used as the initial background when the world is loaded.

M) <>]m

n

Billboard

Billboard {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f axisOfRotation 0 1 0
exposedField MFNode children (]
field SFVec3f bboxCenter 000
field SFVec3f bboxSize -1 -1 -1

}

The Billboard node is a grouping node which modifies its coordinate system so that the billboard
node's local Z-axis turns to point at the viewer. The Billboard node has children which may be
other grouping or leaf nodes.

The axisOfRotation field specifies which axis to use to perform the rotation. This axis is
defined in the local coordinates of the Billboard node. The default (0,1,0) is useful for objects
such as images of trees and lamps positioned on a ground plane. But when an object is oriented
at an angle, for example, on the incline of a mountain, then the axisOfRotation may also need
to be oriented at a similar angle.

A special case of billboarding is screen-alignment — the object rotates to always stay aligned
with the viewer even when the viewer elevates, pitches and rolls. This special case is distinguished
by setting the axisOfRotation to (0,0,0).

To rotate the Billboard to face the viewer, determine the line between the Billboard's origin
and the viewer's position; call this the billboard-to-viewer line. The axisOfRotation and the
billboard-to-viewer line define a plane. The local Z-axis of the Billboard is then rotated into that
plane, pivoting around the axisOfRotation.

M) <r]m
__goback
__ contents

n

If the axisOfRotation and the billboard-to-viewer line are coincident (the same line), then the
plane cannot be established, and the rotation results of the Billboard are undefined. For example,
if the axisOfRotation is set to (0,1,0) (Y-axis) and the viewer flies over the Billboard and
peers directly down the Y'-axis the results are undefined.

Multiple instances of Billboards (DEF/USE) operate as expected — each instance rotates in its
unique coordinate system to face the viewer.

See the "Concepts — Grouping and Children Nodes” section for a description the
children, addChildren, and removeChildren fields and eventlns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Billboard’s
children. This is a hint that may be used for optimization purposes. If the specified bounding box
is smaller than the actual bounding box of the children at any time, then the results are undefined.
A default bboxSize value, (—1,—1,—1), implies that the bounding box is not specified and if
needed must be calculated by the browser. See " Concepts — Bounding Boxes" for a description
of bboxCenter and bboxSize fields. The bboxCenter and bboxSize fields specify a bounding
box that encloses the Billboard's children. This is a hint that may be used for optimization
purposes. If the specified bounding box is smaller than the actual bounding box of the children
at any time, then the results are undefined. A default bboxSize value, (—1,—1, —1), implies
that the bounding box is not specified and if needed must be calculated by the browser. See
" Concepts — Bounding Boxes” for a description of bboxCenter and bboxSize fields.

)<

n

M) <r]m
Box {

field SFVec3f size 2 2 2

} n

The Box node specifies a rectangular parallelepiped box in the local coordinate system centered
at (0,0,0) in the local coordinate system and aligned with the coordinate axes. By default, the
box measures 2 units in each dimension, from —1 to +1. The Box's size field specifies the
extents of the the box along the X, Y, and Z axes respectively and must be greater than 0.0.

Box

size[?]

. .
sze[D]H/ \\!

Figure 3.2

Textures are applied individually to each face of the box; the entire untransformed texture goes
on each face. On the front, back, right, and left faces of the box, when viewed from the outside
with the Y-axis up, the texture is mapped onto each face with the same orientation as the if
image was displayed in normally 2D. On the top face of the box, when viewed from the outside

along the +Y axis looking down with the —Z axis as the view up direction, the texture is mapped
onto the face with the same orientation as if the image were displayed normally in 2D. On the
bottom face of the box, when viewed from the outside along the —Y axis looking up with the +7
axis as the view up direction, the texture is mapped onto the face with the same orientation as
if the image were displayed normally in 2D. TextureTransform affects the texture coordinates
of the Box.

The Box geometry is considered to be solid and thus requires outside faces only. When viewed
from the inside the results are undefined.

M) <r]m

n

Collision
Color
ColorInterpolator
Cone
Coordinate
Coordinatelnterpolator
Cylinder
CylinderSensor

)<

n

M) <r]m
Collision {

Collision

eventIn MFNode addChildren

eventIn MFNode removeChildren n
exposedField MFNode children N

exposedField SFBool collide

field SFVec3f bboxCenter 000 # (—00,0)

field SFVec3f bboxSize -1 -1 -1 # (0,00)0r —1,—-1,—-1

field SFNode proxy NULL

eventOut SFTime collideTime

}

By default, all objects in the scene are collidable. Browser shall detect geometric collisions
between the user's avatar (see Navigationinfo) and the scene's geometry, and prevent the
avatar from ‘entering’ the geometry. The Collision node is grouping node that may turn off
collision detection for its descendants, specify alternative objects to use for collision detection,
and send events signaling that a collision has occurred between the user’s avatar and the Collision
group’s geometry or alternate. If there are no Collision nodes specified in a scene, browsers shall
detect collision with all objects during navigation.

See the "Concepts — Grouping and Children Nodes” section for a description the
children, addChildren, and removeChildren fields and eventlns.

The Collision node's collide field enables and disables collision detection. If collide is set
to FALSE, the children and all descendants of the Collision node will not be checked for collision,
even though they are drawn. This includes any descendant Collision nodes that have collide
set to TRUE — (i.e. setting collide to FALSE turns it off for every node below it).

Collision nodes with the collide field set to TRUE detect the nearest collision with their
descendant geometry (or proxies). Note that not all geometry is collidable — see each geometry
node’s sections for details. When the nearest collision is detected, the collided Collision node
sends the time of the collision through its collideTime eventOut. This behavior is recursive — if
a Collision node contains a child, descendant, or proxy (see below) that is a Collision node, and
both Collisions detect that a collision has occurred, then both send a collideTime event out at
the same time, and so on.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Collision's
children. This is a hint that may be used for optimization purposes. If the specified bounding box
is smaller than the actual bounding box of the children at any time, then the results are undefined.
A default bboxSize value, (—1,—1,—1), implies that the bounding box is not specified and if
needed must be calculated by the browser. See " Concepts — Bounding Boxes" for a description
of the bboxCenter and bboxSize fields.

The collision proxy, defined in the proxy field, is a legal child node, (see " Concepts — Group-
ing and Children Nodes"), that is used as a substitute for the Collision’s children during collision
detection. The proxy is used strictly for collision detection — it is not drawn.

If the value of the collide field is FALSE, then collision detection is not performed with the
children or proxy descendant nodes. If the root node of a scene is a Collision node with the
collide field set to FALSE, then collision detection is disabled for the entire scene, regardless of
whether descendent Collision nodes have set collide TRUE.

If the value of the collide field is TRUE and the proxy field is non-NULL, then the proxy
field defines the scene which collision detection is performed. If the proxy value is NULL, the
children of the collision node are collided against.

If proxy is specified, then any descendant children of the Collision node are ignored during
collision detection. If children is empty, collide is TRUE and proxy is specified, then collision
detection is done against the proxy but nothing is displayed (i.e. invisible collision objects).

M) <r]m
__ contents

contents

n

o

The collideTime eventOut generates an event specifying the time when the user’s avatar
(see Navigationinfo) intersects the collidable children or proxy of the Collision node. An ideal
implementation computes the exact time of intersection. Implementations may approximate the
ideal by sampling the positions of collidable objects and the user. Refer to the Navigationinfo
node for parameters that control the user's size.

Browsers are responsible for defining the navigation behavior when collisions occur. For exam-
ple, when the user comes sufficiently close to an object to trigger a collision, the browser may
have the user bounce off the object, come to a stop, or glide along the surface.

M) <r]m

n

Color

Color {
exposedField MFColor color []

}

This node defines a set of RGB colors to be used in the fields of another node.

Color nodes are only used to specify multiple colors for a single piece of geometry, such as a
different color for each face or vertex of an IndexedFaceSet. A Material node is used to specify
the overall material parameters of a lighted geometry. If both a Material and a Color node are
specified for a geometry, the colors should ideally replace the diffuse component of the material.

Textures take precedence over colors; specifying both a Texture and a Color node for a geometry
will result in the Color node being ignored. See "Concepts — Lighting Model” for details on
lighting equations.

M) <r]m

n

ColorInterpolator

ColorInterpolator {

eventIn SFFloat set_fraction
exposedField MFFloat key (]
exposedField MFColor keyValue (]
eventOut SFColor value_changed

}

This node interpolates among a set of MFColor key values, to produce an SFColor (RGB)
value_changed event. The number of colors in the keyValue field must be equal to the number
of keyframes in the key field. The keyValue field and value changed events are defined in
RGB color space. A linear interpolation, using the value of set fraction as input, is performed
in HSV space.

Refer to " Concepts - Interpolators”’ for a more detailed discussion of interpolators.

M) <r]m

n

Cone
Cone {
field SFFloat bottomRadius 1
field SFFloat height 2
field SFBool side TRUE
field SFBool bottom TRUE
}

The Cone node specifies a cone which is centered in the local coordinate system and whose
central axis is aligned with the local Y-axis. The bottonRadius field specifies the radius of the
cone’s base, and the height field specifies the height of the cone from the center of the base
to the apex. By default, the cone has a radius of 1.0 at the bottom and a height of 2.0, with
its apex at y = 1 and its bottom at y = —1. Both bottomRadius and height must be greater
than 0.0.

The side field specifies whether sides of the cone are created, and the bottom field specifies
whether the bottom cap of the cone is created. A value of TRUE specifies that this part of the
cone exists, while a value of FALSE specifies that this part does not exist (not rendered). Parts
with field values of FALSE are not collided with during collision detection.

When a texture is applied to the sides of the cone, the texture wraps counterclockwise (from
above) starting at the back of the cone. The texture has a vertical seam at the back in the Y Z-
plane, from the apex (0, height/2,0) to the point (0,0, —). For the bottom cap, a circle is cut
out of the unit texture square centered at (0, —height/2,0) with dimensions (2 % bottomRadius)
by (2 * bottomRadius). The bottom cap texture appears right side up when the top of the cone
is rotated towards the —7 axis. TextureTransform affects the texture coordinates of the Cone.

M) <r]m

n

The Cone geometry is considered to be solid and thus requires outside faces only. When viewed m n u m
from the inside the results are undefined.

+
by

n

height / 2

height L

+z

Figure 4.1

Coordinate {
exposedField MFVec3f point []
} n

This node defines a set of 3D coordinates to be used in the coord field of vertex-based geometry
nodes (such as IndexedFaceSet, IndexedLineSet, and PointSet).

Coordinate

Coordinatelnterpolator L K1]

contents

Coordinatelnterpolator {

eventIn SFFloat set_fraction

exposedField MFFloat key] n
exposedField MFVec3f keyValue (]

eventOut MFVec3f value_changed

}

This node linearly interpolates among a set of MFVec3f value. This would be appropriate for
interpolating Coordinate positions for a geometric morph.

The number of coordinates in the keyValue field must be an integer multiple of the number of
keyframes in the key field; that integer multiple defines how many coordinates will be contained
in the value_changed events.

Refer to " Concepts - Interpolators”’ for a more detailed discussion of interpolators.

Cylinder

Cylinder {
field SFBool bottom TRUE
field SFFloat height 2
field SFFloat radius 1
field SFBool side TRUE
field SFBool top TRUE

}

The Cylinder node specifies a capped cylinder centered at (0,0, 0) in the local coordinate system
and with a central axis oriented along the local Y-axis. By default, the cylinder is sized at —1 to
+1 in all three dimensions. The radius field specifies the cylinder's radius and the height field
specifies the cylinder’s height along the central axis. Both radius and height must be greater
than 0.0.

The cylinder has three parts: the side, the top (Y = +height) and the bottom (Y =
—height). Each part has an associated SFBool field that indicates whether the part exists (TRUE)
or does not exist (FALSE). If the parts do not exist, the they are not considered during collision
detection.

When a texture is applied to a cylinder, it is applied differently to the sides, top, and bottom.
On the sides, the texture wraps counterclockwise (from above) starting at the back of the cylinder.
The texture has a vertical seam at the back, intersecting the Y Z-plane. For the top and bottom
caps, a circle is cut out of the unit texture square centered at (0, +/ — height, 0) with dimensions
2 * radius by 2 * radius. The top texture appears right side up when the top of the cylinder is
tilted toward the +Z axis, and the bottom texture appears right side up when the top of the
cylinder is tilted toward the —Z axis. TextureTransform affects the texture coordinates of the
Cylinder.

M) <r]m

n

Figure 4.2

The Cylinder geometry is considered to be solid and thus requires outside faces only. When
viewed from the inside the results are undefined.

VRML97 Nodes reference Cylinder 29

CylinderSensor

CylinderSensor {

exposedField SFBool autoOffset TRUE
exposedField SFFloat diskAngle 0.262
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1
exposedField SFFloat minAngle 0
exposedField SFFloat offset 0
eventOut SFBool isActive
eventOut SFRotation rotation_changed
eventOut SFVec3f trackPoint_changed

}

The CylinderSensor maps pointing device (e.g. mouse or wand) motion into a rotation on an
invisible cylinder that is aligned with the Y axis of its local space.

The enabled exposed field enables and disables the CylinderSensor - if TRUE, the sensor reacts
appropriately to user events, if FALSE, the sensor does not track user input or send output
events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes disabled
and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE event the
sensor is enabled and ready for user activation.

The CylinderSensor generates events if the pointing device is activated while over any descen-
dant geometry nodes of its parent group and then moved while activated. Typically, the pointing
device is a 2D device such as a mouse. The pointing device is considered to be moving within a
plane at a fixed distance from the viewer and perpendicular to the line of sight; this establishes a
set of 3D coordinates for the pointer. If a 3D pointer is in use, then the sensor generates events

M) <r]m

n

only when the pointer is within the user’s field of view. In either case, the pointing device is con-
sidered to " pass over” geometry when that geometry is intersected by a line extending from the
viewer and passing through the pointer's 3D coordinates. If multiple sensors’ geometry intersect
this line (hereafter called the bearing), only the nearest will be eligible to generate events.

Upon activation of the pointing device (e.g. mouse button down) over the sensor's geometry,
an isActive TRUE event is sent. The angle between the bearing vector and the local Y axis of
the CylinderSensor determines whether the sides of the invisible cylinder or the caps (disks) are
used for manipulation. If the angle is less than the diskAngle, then the geometry is treated as
an infinitely large disk and dragging motion is mapped into a rotation around the local Y axis of
the sensor’s coordinate system. The feel of the rotation is as if you were rotating a dial or crank.
Using the right-hand rule, the X axis of the sensor’s local coordinate system, (defined by parents),
represents the zero rotation value around the sensor’s local Y axis. For each subsequent position
of the bearing, a rotation changed event is output which corresponds to the angle between
the local X axis and the vector defined by the intersection point and the nearest point on the
local Y axis, plus the offset value. trackPoint changed events reflect the unclamped drag
position on the surface of this disk. When the pointing device is deactivated and autoOffset is
TRUE, offset is set to the last rotation angle and an offset_changed event is generated. See
"Concepts - Drag Sensors” for more details on autoOffset and offset_changed.

If angle between the bearing vector and the local Y axis of the CylinderSensor is greater than or
equal to diskAngle, then the sensor behaves like a cylinder or rolling pin. The shortest distance
between the point of intersection (between the bearing and the sensor’s geometry) and the Y axis
of the parent group’s local coordinate system determines the radius of an invisible cylinder used
to map pointing device motion, and mark the zero rotation value. For each subsequent position
of the bearing, a rotation changed event is output which corresponds to a relative rotation
from the original intersection, plus the offset value. trackPoint changed events reflect the
unclamped drag position on the surface of this cylinder. When the pointing device is deactivated

M) <r]m

n

and autoOffset is TRUE, offset is set to the last rotation angle and an offset_changed event
is generated. See "Concepts — Drag Sensors” for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events from
the pointing device until it releases and generates an isActive FALSE event (other pointing
device sensors cannot generate events during this time). Motion of the pointing device while
isActive is TRUE is referred to as a "drag”. If a 2D pointing device is in use, isActive events
will typically reflect the state of the primary button associated with the device (i.e. isActive is
TRUE when the primary button is pressed, and FALSE when not released). If a 3D pointing device
(e.g. wand) is in use, isActive events will typically reflect whether the pointer is within or in
contact with the sensor's geometry.

While the pointing device is activated,trackPoint changed and rotation changed events
are output and are interpreted from pointing device motion based on the sensor’s local coordi-
nate system at the time of activation. trackPoint changed events represent the unclamped
intersection points on the surface of the invisible cylinder or disk. If the initial angle results
in cylinder rotation (as opposed to disk behavior) and if the pointing device is dragged off the
cylinder while activated, browsers may interpret this in several ways (e.g. clamp all values to
the cylinder, continue to rotate as the point is dragged away from the cylinder, etc.). Each
movement of the pointing device, while isActive is TRUE, generates trackPoint changed and
rotation_changed events.

minAngle and maxAngle may be set to clamp rotation changed events to a range of values
(measured in radians about the local Z and Y axis as appropriate). If minAngle is greater than
maxAngle, rotation_changed events are not clamped.

See " Concepts — Pointing Device Sensors and Drag Sensors” for more details.

)<

n

DirectionalLight m ﬂ ﬂ m

n

DirectionalLight

DirectionalLight {
exposedField SFFloat ambientintensity 0

exposedField SFColor color 111
exposedField SFVec3f direction 00 -1
exposedField SFFloat intensity 1
exposedField SFBool on TRUE

}

The DirectionalLight node defines a directional light source that illuminates along rays parallel to a
given 3-dimensional vector. See " Concepts — Lights” for a definition of the ambientIntensity,
color, intensity, and on fields.

The direction field specifies the direction vector within the local coordinate system that
the light illuminates in. Light is emitted along parallel rays from an infinite distance away. A
directional light source illuminates only the objects in its enclosing parent group. The light may
illuminate everything within this coordinate system, including all children and descendants of its
parent group. The accumulated transformations of the parent nodes affect the light.

See " Concepts — Lighting Model" for a precise description of VRML's lighting equations.

Some low-end renderers do not support the concept of per-object lighting. This means that
placing DirectionalLights inside local coordinate systems, which implies lighting only the objects
beneath the Transform with that light, is not supported in all systems. For the broadest compat-
ibility, lights should be placed at outermost scope.

M) <r]m

n

ElevationGrid m ﬂ ﬂ m

n

Extrusion

ElevationGrid W<]m

ElevationGrid {

eventIn MFFloat set_height
exposedField SFNode color NULL n
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field MFFloat height (1
field SFBool ccw TRUE
field SFBool colorPerVertex TRUE
field SFFloat creaseAngle 0
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field SFInt32 xDimension 0
field SFFloat xSpacing 0.0
field SFInt32 zDimension 0
field SFFloat zSpacing 0.0

}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the X7 plane
of the local coordinate system. The geometry is described by a scalar array of height values that
specify the height of a rectangular surface above each point of the grid.

The xDimension and zDimension fields indicate the number of dimensions of the grid height
array in the X and Z directions. Both xDimension and zDimension must be > 1. The vertex
locations for the rectangles are defined by the height field and the xSpacing and zSpacing
fields:

e The height field is an xDimension by zDimension array of scalar values representing the m n u m
height above the grid for each vertex the height values are stored in row major order.
e The xSpacing and zSpacing fields indicates the distance between vertices in the X and Z

directions respectively, and must be >= 0.

Thus, the vertex corresponding to the point, [i, j], on the grid is placed at:

Pli, j|.x = xSpacing * i

Pli, j].y = height[i + j * zDimension|

Pli, j].z = zSpacing * j

where xDimension and zDimension.

The set_height eventln allows the height MFFloat field to be changed to allow animated
ElevationGrids.

The default texture coordinates range from [0,0] at the first vertex to [1,1] at the last
vertex. The S texture coordinate will be aligned with X, and the T texture coordinate with Z.

The colorPerVertex field determines whether colors (if specified in the color field) should be
applied to each vertex or each quadrilateral of the ElevationGrid. If colorPerVertex is FALSE
and the color field is not NULL, then the color field must contain a Color node containing
at least (xDimension — 1) x (zDimension — 1) colors. If colorPerVertex is TRUE and the
color field is not NULL, then the color field must contain a Color node containing at least
xDimension * zDimension colors.

See the "Concepts — Geometry” for a description of the ccw, solid, and creaseAngle
fields.

By default, the rectangles are defined with a counterclockwise ordering, so the Y component
of the normal is positive. Setting the ccw field to FALSE reverses the normal direction. Backface
culling is enabled when the ccw field and the solid field are both TRUE (the default).

n

a
b

Extrusion
Extrusion {
eventIn MFVec2f set_crossSection
eventIn MFRotation set_orientation
eventIn MFVec2f set_scale
eventIn MFVec3f set_spine
field SFBool beginCap TRUE
field SFBool ccw TRUE
field SFBool convex TRUE
field SFFloat creaseAngle 0
field MFVec2f crossSection [11,1 -1, -1 -1, -11, 11]
field SFBool endCap TRUE
field MFRotation orientation 0010
field MFVec2f scale 11
field SFBool solid TRUE
field MFVec3f spine [000, 0101
}

The Extrusion node specifies geometric shapes based on a two dimensional cross section extruded
along a three dimensional spine. The cross section can be scaled and rotated at each spine point
to produce a wide variety of shapes.

An Extrusion is defined by a 2D crossSection piecewise linear curve (described as a series of
connected vertices), a 3D spine piecewise linear curve (also described as a series of connected
vertices), a list of 2D scale parameters, and a list of 3D orientation parameters. Shapes are
constructed as follows: The cross-section curve, which starts as a curve in the X Z plane, is first
scaled about the origin by the first scale parameter (first value scales in X, second value scales
in Z). It is then rotated about the origin by the first orientation parameter, and translated by

M) <r]m

n

the vector given as the first vertex of the spine curve. It is then extruded through space along m n u m
the first segment of the spine curve. Next, it is scaled and rotated by the second scale and

orientation parameters and extruded by the second segment of the spine, and so on. The
number of scale and orientation values shall equal the number of spine points, or contain
one value that is applied to all points. The scale values must be > 0.

A transformed cross section is found for each joint (that is, at each vertex of the spine curve, n

where segments of the extrusion connect), and the joints and segments are connected to form
the surface. No check is made for self-penetration. Each transformed cross section is determined
as follows:

1. Start with the cross section as specified, in the X Z plane.

2. Scale it about (0,0,0) by the value for scale given for the current joint.

3. Apply a rotation so that when the cross section is placed at its proper location on the spine
it will be oriented properly. Essentially, this means that the cross section’s Y axis (up vector
coming out of the cross section) is rotated to align with an approximate tangent to the
spine curve. For all points other than the first or last: The tangent for spinei] is found by
normalizing the vector defined by (spine[i + 1] — spine[i — 1]).

If the spine curve is closed: The first and last points need to have the same tangent. This
tangent is found as above, but using the points spine[0] for spineli|, spine[l] for spine[i+1]
and spine[n — 2] for spine[i — 1|, where spine[n — 2| is the next to last point on the curve.
The last point in the curve, spine[n — 1], is the same as the first, spine0].

If the spine curve is not closed: The tangent used for the first point is just the direction
from spine[0] to spine[l], and the tangent used for the last is the direction from spine[n — 2]
to spine[n — 1].

In the simple case where the spine curve is flat in the XY plane, these rotations are all
just rotations about the Z axis. In the more general case where the spine curve is any 3D

curve, you need to find the destinations for all 3 of the local X, Y, and Z axes so you
can completely specify the rotation. The Z axis is found by taking the cross product of:
(spineli — 1] — —spinel[i]) and (spine[i + 1] — —spine[i]). If the three points are collinear
then this value is zero, so take the value from the previous point. Once you have the Z axis
(from the cross product) and the Y axis (from the approximate tangent), calculate the X
axis as the cross product of the Y and Z axes.

4. Given the plane computed in step 3, apply the orientation to the cross-section relative to
this new plane. Rotate it counter-clockwise about the axis and by the angle specified in the
orientation field at that joint.

5. Finally, the cross section is translated to the location of the spine point.

Surfaces of revolution: If the cross section is an approximation of a circle and the spine is straight,
then the Extrusion is equivalent to a surface of revolution, where the scale parameters define
the size of the cross section along the spine.

Cookie-cutter extrusions: If the scale is 1, 1 and the spine is straight, then the cross section
acts like a cookie cutter, with the thickness of the cookie equal to the length of the spine.

Bend/twist/taper objects: These shapes are the result of using all fields. The spine curve
bends the extruded shape defined by the cross section, the orientation parameters twist it around
the spine, and the scale parameters taper it (by scaling about the spine).

Extrusion has three parts: the sides, the beginCap (the surface at the initial end of the spine)
and the endCap (the surface at the final end of the spine). The caps have an associated SFBool
field that indicates whether it exists (TRUE) or doesn't exist (FALSE).

When the beginCap or endCap fields are specified as TRUE, planar cap surfaces will be gener-
ated regardless of whether the crossSection is a closed curve. (If crossSection isn't a closed
curve, the caps are generated as if it were — equivalent to adding a final point to crossSection
that's equal to the initial point. Note that an open surface can still have a cap, resulting (for a

M) <r]m

n

simple case) in a shape something like a soda can sliced in half vertically.) These surfaces are
generated even if spine is also a closed curve. If a field value is FALSE, the corresponding cap
is not generated.

Extrusion automatically generates its own normals. Orientation of the normals is determined
by the vertex ordering of the triangles generated by Extrusion. The vertex ordering is in turn
determined by the crossSection curve. If the crossSection is counterclockwise when viewed
from the +Y axis, then the polygons will have counterclockwise ordering when viewed from
'outside’ of the shape (and vice versa for clockwise ordered crossSection curves).

Texture coordinates are automatically generated by extrusions. Textures are mapped so that
the coordinates range in the U direction from 0 to 1 along the crossSection curve (with 0
corresponding to the first point in crossSection and 1 to the last) and in the V direction from
0 to 1 along the spine curve (again with O corresponding to the first listed spine point and 1
to the last). When crossSection is closed, the texture has a seam that follows the line traced
by the crossSection's start/end point as it travels along the spine. If the endCap and/or
beginCap exist, the crossSection curve is uniformly scaled and translated so that the largest
dimension of the cross-section (X or Z) produces texture coordinates that range from 0.0 to 1.0.
The beginCap and endCap textures’ S and 1" directions correspond to the X and Z directions
in which the crossSection coordinates are defined.

See "Concepts — Geometry Nodes” for a description of the ccw, solid, convex, and
creaseAngle fields.

M) <r]m

n

Fog W<

n

FontStyle

Fog W[
Fog |

exposedField SFColor color 111
exposedField SFString fogType "LINEAR" n
exposedField SFFloat visibilityRange 0
eventIn SFBool set_bind
eventOut SFBool isBound
}

The Fog node provides a way to simulate atmospheric effects by blending objects with the color
specified by the color field based on the objects’ distances from the viewer. The distances are
calculated in the coordinate space of the Fog node. The visibilityRange specifies the distance
(in the Fog node’s coordinate space) at which objects are totally obscured by the fog. Objects
located visibilityRange meters or more away from the viewer are drawn with a constant
color of color. Objects very close to the viewer are blended very little with the fog color. A
visibilityRange of 0.0 or less disables the Fog node. Note that visibilityRange is affected
by the scaling transformations of the Fog node’s parents — translations and rotations have no
affect on visibilityRange.

Fog nodes are " Concepts — Bindable Children Nodes and thus there exists a Fog stack, in
which the top-most Fog node on the stack is currently active. To push a Fog node onto the top
of the stack, a TRUE value is sent to the set_bind eventln. Once active, the Fog is then bound
to the browsers view. A FALSE value of set_bind, pops the Fog from the stack and unbinds it
from the browser viewer.

The fogType field controls how much of the fog color is blended with the object as a function
of distance. If fogType is "LINEAR" (the default), then the amount of blending is a linear

function of the distance, resulting in a depth cuing effect. If fogType is "EXPONENTIAL" then
an exponential increase in blending should be used, resulting in a more natural fog appearance.
For best visual results, the Background node (which is unaffected by the Fog node) should
be the same color as the fog node. The Fog node can also be used in conjunction with the
visibilityLimit field of Navigationlnfo node to provide a smooth fade out of objects as they
approach the far clipping plane.
See the section " Concepts — Lighting Model” for details on lighting calculations.

M) <r]m

n

FontStyle

FontStyle {
field SFString family "SERIF"
field SFBool horizontal TRUE
field MFString justify "BEGIN"
field SFString language e
field SFBool left ToRight TRUE
field SFFloat size 1.0
field SFFloat spacing 1.0
field SFString style "PLAIN"
field SFBool topToBottom TRUE

}

The FontStyle node defines the size, font family, and style of text's font, as well as the direction of
the text strings and any specific language rendering techniques that must be used for non-English
text. See Text node for application of FontStyle.

The size field specifies the height (in object space units) of glyphs rendered and determines
the spacing of adjacent lines of text. All subsequent strings advance in either X or Y by —(size*
spacing).

Font attributes are defined with the family and style fields. It is up to the browser to assign
specific fonts to the various attribute combinations.

The family field specifies a case-sensitive SFString value that may be "SERIF" (the default)
for a serif font such as Times Roman; "SANS" for a sans-serif font such as Helvetica; or " TYPE-
WRITER" for a fixed-pitch font such as Courier. A family value of empty quotes, ", is identical
to "SERIF".

M) <r]m

n

The style field specifies a case-sensitive SFString value that may be "PLAIN" (the default)
for default plain type; "BOLD" for boldface type; "ITALIC" for italic type; or "BOLDITALIC"
for bold and italic type. A style value of empty quotes, "", is identical to "PLAIN". Direction,
Justification and Spacing

The horizontal, leftToRight, and topToBottom fields indicate the direction of the text.
The horizontal field indicates whether the text advances horizontally in its major direction
(horizontal = TRUE, the default) or vertically in its major direction (horizontal = FALSE).
The 1leftToRight and topToBotton fields indicate direction of text advance in the major (char-
acters within a single string) and minor (successive strings) axes of layout. Which field is used for
the major direction and which is used for the minor direction is determined by the horizontal
field.

For horizontal text (horizontal = TRUE), characters on each line of text advance in the
positive X direction if leftToRight is TRUE or in the negative X direction if leftToRight is
FALSE. Characters are advanced according to their natural advance width. Then each line of
characters is advanced in the negative Y direction if topToBottom is TRUE or in the positive Y
direction if topToBottom is FALSE. Lines are advanced by the amount of size * spacing.

For vertical text (horizontal = FALSE), characters on each line of text advance in the
negative Y direction if topToBottom is TRUE or in the positive Y direction if topToBottom is
FALSE. Characters are advanced according to their natural advance height. Then each line of
characters is advanced in the positive X direction if 1eftToRight is TRUE or in the negative X
direction if leftToRight is FALSE. Lines are advanced by the amount of size * spacing.

The justify field determines alignment of the above text layout relative to the origin of the
object coordinate system. It is an MFString which can contain 2 values. The first value specifies
alignment along the major axis and the second value specifies alignment along the minor axis, as
determined by the horizontal field. A justify value of "" is equivalent to the default value. If

M) <>]m

n

the second string, minor alignment, is not specified then it defaults to the value "FIRST". Thus,
justify values of """, "BEGIN", and ["BEGIN" "FIRST"] are equivalent.

The major alignment is along the X axis when horizontal is TRUE and along the Y axis
when horizontal is FALSE. The minor alignment is along the Y axis when horizontal is
TRUE and along the X axis when horizontal FALSE. The possible values for each enumerant of
the justify field are "FIRST", "BEGIN", "MIDDLE", and "END". For major alignment, each
line of text is positioned individually according to the major alignment enumerant. For minor
alignment, the block of text representing all lines together is positioned according to the minor
alignment enumerant. The following table describes the behavior in terms of which portion of
the text is at the origin:

Major Alignment, horizontal = TRUE:

Enumerant leftToRight = TRUE leftToRight = FALSE

FIRST Left edge of each line Right edge of each line
BEGIN Left edge of each line Right edge of each line
MIDDLE Centered about X-axis Centered about X-axis
END Right edge of each line Left edge of each line

Major Alignment, horizontal = FALSE:

Enumerant topToBottom = TRUE topToBottom = FALSE
FIRST Top edge of each line Bottom edge of each line
BEGIN Top edge of each line Bottom edge of each line
MIDDLE Centered about Y-axis Center about Y'-axis
END Bottom edge of each line Top edge of each line

M) <r]m

n

Minor Alignment, horizontal = TRUE: D RaE

Enumerant topToBottom = TRUE topToBottom = FALSE
FIRST Baseline of first line Baseline of first line

BEGIN Top edge of first line Bottom edge of first line
MIDDLE Centered about Y-axis Centered about Y-axis n
END Bottom edge of last line Top edge of last line

Minor Alignment, horizontal = FALSE:

Enumerant leftToRight = TRUE leftToRight = FALSE

FIRST Left edge of first line Right edge of first line
BEGIN Left edge of first line Right edge of first line
MIDDLE Centered about X-axis Centered about X-axis
END Right edge of last line Left edge of last line

The default minor alignment is "FIRST". This is a special case of minor alignment when
horizontal is TRUE. Text starts at the baseline at the Y-axis. In all other cases, "FIRST"
is identical to "BEGIN". In the following tables, each color-coded cross-hair indicates where the
X and Y axes should be in relation to the text:

Key

4 minor = "FIRST” 4+ minor = "BEGIN"
fH minor = "MIDDLE” ¥ minor ="END”

Figure 7.1

major = "BEGIN” or "FIRST”| major = "MIDDLE” major = "END”
leftToRight leftToRight leftToRight
TRUE FALSE TRUE FALSE TRUE FALSE
+ n Tk

élaad
o e tet

dae%
bret emo

s
le. ext

ey
bret o8

8OTE texdﬁ]

Bt
et emos

FAISE

EEI_Raad

dEuaR_l_$

lé}qu

e

Rea%l_

£
gl =
i; E _;ﬁoday! !yado% tocjﬁ_v! !ygﬁlot toda}r* _}Lyadot
P‘Z ;ﬁodﬂ}r! !yado#é toa]g}'! Yyadot toda}r?K -)Eyﬂdot
B Hdome text | tret emofH somfgtext | tretffnos some texfH [{et emos

%ER

n

Mote: The "FIRST" minor &xis marker € is offset from the "BEGIN" minor &xis marker -
in cases that they are coincident for presentation pumposes anly.

Figure 7.2 horizontal = TRUE

The language field specifies the context of the language for the text string. Due to the
multilingual nature of the ISO 10646-1:1993, the language field is needed to provide a proper
language attribute of the text string. The format is based on the POSIX locale specification as
well as the RFC 1766: language[territory]. The values for the language tag is based on the I1SO
639, i.e. zh for Chinese, jp for Japanese, sc for Swedish. The territory tag is based on the ISO
3166 country code, i.e. TW is for Taiwan and CN for China for the "zh" Chinese language tag.
If the language field is set to empty "", then local language bindings are used.

Please refer to these sites for more details:
www.chemie.fu-berlin.de (ISO 639), www.chemie.fu-berlin.de (1ISO 3166)

major ="BEGIN" or "FIRST,| major ="MIDDOLE" major ="END" m n u m
leftToRight leftToRight leftToRight
TRUE FALSE TRUE FALSE TRUE FALSE
QFR IE.:| talre -:kt I;l F:'ﬁp a a a 8 n
E 0 o o 0 B o o o o
t t
a md dm a R M oM R m m
g d e a a e d 5 © ik -]éi 5 o e t t e
¥ ¥ H . Q Q
E t 1 bt é‘g t 2 3t §¢ Rt d d tR
& & & i’r 3;' & e & a a & &
= x x x X g8 x ¥ ¥ x a
c t t t t ng ! ! e d
= B | 0%
aa]
o L3
E ¢ ¢ t t gh ok | B
- x x X) X a x ¥ ¥y x a
& & g & e & a a e &
= £ 't div |y d Rtd |dtR
= S ¥ ¥ %] 3k -kg] 5|—¢_ o o
ey e a a e d R E , o &R e t t e
a md dm a m | p m m m
e 0 o o o e o o o o
E. t t E. a a a 8
$|‘ B+« &3 +$

Mote: In every case, the "FIRST' minor axis marker € is coincident with the "BEGIN" minor
axis marker-+ (and is offset for presentation purposes anly),

Figure 7.3 horizontal = FALSE

Group M) <r]m

n

Group

Group {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children (]
field SFVec3f bboxCenter 000
field SFVec3f bboxSize -1 -1 -1
}

A Group node is equivalent to a Transform node, without the transformation fields. See the
"Concepts — Grouping and Children Nodes" section for a description of the children,
addChildren, and removeChildren fields and eventlns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Group's chil-
dren. This is a hint that may be used for optimization purposes. If the specified bounding box
is smaller than the actual bounding box of the children at any time, then the results are unde-
fined. A default bboxSize value, (—1,—1,—1), implies that the bounding box is not specified
and if needed must be calculated by the browser. See "Concepts — Bounding Boxes" for a
description of the bboxCenter and bboxSize fields.

M) <r]m

n

ImageTexture m n u m
IndexedFaceSet

IndexedLineSet
niine

n

Image Texture

ImageTexture {
exposedField MFString url]
field SFBool repeatS TRUE
field SFBool repeatT TRUE
}

The ImageTexture node

defines a texture map by specifying an image file and general parameters

for mapping to geometry. Texture maps are defined in a 2D coordinate system, (s, t), that ranges
from 0.0 to 1.0 in both directions. The bottom edge of the image corresponds to the S-axis of
the texture map, and left edge of the image corresponds to the T-axis of the texture map. The
lower-left pixel of the image corresponds to s = 0, ¢ = 0, and the top-right pixel of the image

corresponds to s =1, ¢t

L |

1.0 -

0.0
0.

=1.

o

Figure 9.1

M) <r]m

n

The texture is read from the URL specified by the url field. To turn off texturing, set the url
field to have no values ([]). Browsers are required to support the JPEG and PNG image file
formats, and in addition, may support any other image formats. Support for the GIF format
including transparent backgrounds is also recommended. See the section " Concepts of URLs
and URNSs" for details on the url field.

Texture images may be one component (greyscale), two component (greyscale plus transparen-
cy), three component (full RGB color), or four-component (full RGB color plus transparency). An
ideal VRML implementation will use the texture image to modify the diffuse color and transparen-
cy of an object's material (specified in a Material node), then perform any lighting calculations
using the rest of the object’s material properties with the modified diffuse color to produce the
final image. The texture image modifies the diffuse color and transparency depending on how
many components are in the image, as follows:

1. Diffuse color is multiplied by the greyscale values in the texture image.
Diffuse color is multiplied by the greyscale values in the texture image; material transparency
is multiplied by transparency values in texture image.

3. RGB colors in the texture image replace the material’s diffuse color.

4. RGB colors in the texture image replace the material's diffuse color; transparency values in
the texture image replace the material’s transparency.

See " Concepts — Lighting Model" for details on lighting equations and the interaction between
textures, materials, and geometries.

Browsers may approximate this ideal behavior to increase performance. One common optimiza-
tion is to calculate lighting only at each vertex and combining the texture image with the color
computed from lighting (performing the texturing after lighting). Another common optimization
is to perform no lighting calculations at all when texturing is enabled, displaying only the colors
of the texture image.

M) <r]m

n

The repeatS and repeatT fields specify how the texture wraps in the S and 7" directions. If
repeat$ is TRUE (the default), the texture map is repeated outside the 0-to-1 texture coordinate
range in the S direction so that it fills the shape. If repeatS is FALSE, the texture coordinates
are clamped in the S direction to lie within the 0-to-1 range. The repeatT field is analogous to

the repeats field.

M) <r]m

n

IndexedFaceSet

IndexedFaceSet {

eventIn MFInt32 set_colorindex

eventIn MFInt32 set_coordIndex

eventIn MFInt32 set_normallndex

eventIn MFInt32 set_texCoordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field SFBool ccw TRUE
field MFInt32 colorIndex 1
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordIndex 1
field SFFloat creaseAngle 0
field MFInt32 normallndex 1
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field MFInt32 texCoordIndex 1

}

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons) from
vertices listed in the coord field. The coord field must contain a Coordinate node. Indexed-
FaceSet uses the indices in its coordIndex field to specify the polygonal faces. An index of —1
indicates that the current face has ended and the next one begins. The last face may (but does
not have to be) followed by a —1. If the greatest index in the coordIndex field is NV, then the

M) <r]m

n

Coordinate node must contain N + 1 coordinates (indexed as 0-N). IndexedFaceSet is specified
in the local coordinate system and is affected by parent transformations.

For descriptions of the coord, normal, and texCoord fields, see the Coordinate, Normal,
and TextureCoordinate nodes.

See "Concepts — Lighting Model" for details on lighting equations and the interaction
between textures, materials, and geometries.

If the color field is not NULL then it must contain a Color node, whose colors are applied to
the vertices or faces of the IndexedFaceSet as follows:

e |If colorPerVertex is FALSE, colors are applied to each face, as follows:

e If the colorIndex field is not empty, then they are used to choose one color for each face
of the IndexedFaceSet. There must be at least as many indices in the colorIndex field
as there are faces in the IndexedFaceSet. If the greatest index in the colorIndex field is
N, then there must be N 4+ 1 colors in the Color node. The colorIndex field must not
contain any negative entries.

e If the colorIndex field is empty, then the colors are applied to each face of the Indexed-
FaceSet in order. There must be at least as many colors in the Color node as there are
faces.

e |If colorPerVertex is TRUE, colors are applied to each vertex, as follows:

e If the colorIndex field is not empty, then it is used to choose colors for each vertex
of the IndexedFaceSet in exactly the same manner that the coordIndex field is used to
choose coordinates for each vertex from the Coordinate node. The colorIndex field must
contain at least as many indices as the coordIndex field, and must contain end-of-face

M) <r]m

n

markers (—1) in exactly the same places as the coordIndex field. If the greatest index
in the colorIndex field is NV, then there must be N + 1 colors in the Color node.

e |If the colorIndex field is empty, then the coordIndex field is used to choose colors from
the Color node. If the greatest index in the coordIndex field is NV, then there must be
N + 1 colors in the Color node.

If the normal field is NULL, then the browser should automatically generate normals, using
creaseAngle to determine if and how normals are smoothed across shared vertices.

If the normal field is not NULL, then it must contain a Normal node, whose normals are applied
to the vertices or faces of the IndexedFaceSet in a manner exactly equivalent to that described
above for applying colors to vertices/faces.

If the texCoord field is not NULL, then it must contain a TextureCoordinate node. The
texture coordinates in that node are applied to the vertices of the IndexedFaceSet as follows:

e |If the texCoordIndex field is not empty, then it is used to choose texture coordinates for
each vertex of the IndexedFaceSet in exactly the same manner that the coordIndex field is
used to choose coordinates for each vertex from the Coordinate node. The texCoordIndex
field must contain at least as many indices as the coordIndex field, and must contain end-
of-face markers (-1) in exactly the same places as the coordIndex field. If the greatest
index in the texCoordIndex field is N, then there must be N4-1 texture coordinates in the
TextureCoordinate node.

e If the texCoordIndex field is empty, then the coordIndex array is used to choose texture
coordinates from the TextureCoordinate node. If the greatest index in the coordIndex field
is N, then there must be N+1 texture coordinates in the TextureCoordinate node.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the
bounding box of the shape. The longest dimension of the bounding box defines the S coordinates,

)<

n

and the next longest defines the 7" coordinates. If two or all three dimensions of the bounding m n u m
box are equal, then ties should be broken by choosing the X, Y, or Z dimension in that order

of preference. The value of the S coordinate ranges from 0 to 1, from one end of the bounding
box to the other. The T coordinate ranges between 0 and the ratio of the second greatest
dimension of the bounding box to the greatest dimension. See the figure below for an illustration
of default texture coordinates for a simple box shaped IndexedFaceSet with a bounding box with n
X dimension twice as large as the Z dimension which is twice as large as the Y dimension:

(x0+ Kzize, ¥, 20+ Zsize)
=10,t=10.5
3= (x—x0) f Ksize ¥ s ’)

t={z—=20)/ Zsize

(=0, ¥, 200
fs='00,1= 003

NS

Hsize » Zsize » YWaize

e

Figure 9.2

See the introductory "Concepts - Geometry” section for a description of the ccw, solid,
convex, and creaseAngle fields.

IndexedLineSet W<

contents

IndexedLineSet {

eventIn MFInt32 set_colorindex

eventIn MFInt32 set_coordIndex n
exposedField SFNode color NULL

exposedField SFNode coord NULL

field MFInt32 colorlndex []

field SFBool colorPerVertex TRUE

field MFInt32 coordIndex []

}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from 3D
points specified in the coord field. IndexedLineSet uses the indices in its coordIndex field to
specify the polylines by connecting together points from the coord field. An index of -1 indicates
that the current polyline has ended and the next one begins. The last polyline may (but does
not have to be) followed by a -1. IndexedLineSet is specified in the local coordinate system and
is affected by parent transformations.

The coord field specifies the 3D vertices of the line set and is specified by a Coordinate node.

Lines are not lit, not texture-mapped, or not collided with during collision detection.

If the color field is not NULL, it must contain a Color node, and the colors are applied to the
line(s) as follows:

e |If colorPerVertex is FALSE:
e |If the colorIndex field is not empty, then one color is used for each polyline of the
IndexedLineSet. There must be at least as many indices in the colorIndex field as there
are polylines in the IndexedLineSet. If the greatest index in the colorIndex field is N,

then there must be N+1 colors in the Color node. The colorIndex field must not m n u m
contain any negative entries.
e |If the colorIndex field is empty, then the colors are applied to each polyline of the
IndexedLineSet in order. There must be at least as many colors in the Color node as
there are polylines.
e |If colorPerVertex is TRUE: n
e |If the colorIndex field is not empty, then colors are applied to each vertex of the In-
dexedLineSet in exactly the same manner that the coordIndex field is used to supply
coordinates for each vertex from the Coordinate node. The colorIndex field must con-
tain at least as many indices as the coordIndex field and must contain end-of-polyline
markers (-1) in exactly the same places as the coordIndex field. If the greatest index in
the colorIndex field is N, then there must be N+1 colors in the Color node.
e |If the colorIndex field is empty, then the coordIndex field is used to choose colors from
the Color node. If the greatest index in the coordIndex field is N, then there must be
N+1 colors in the Color node.

If the color field is NULL and there is a Material defined for the Appearance affecting this
IndexedLineSet, then use the emissiveColor of the Material to draw the lines. See " Concepts
— Lighting Model, Lighting Off’ for details on lighting equations.

Inline
Inline {
exposedField MFString url (]
field SFVec3f bboxCenter 0 0 O
field SFVec3f bboxSize -1 -1 -1
}

The Inline node is a grouping node that reads its children data from a location in the World
Wide Web. Exactly when its children are read and displayed is not defined; reading the children
may be delayed until the Inline is actually visible to the viewer. The url field specifies the URL
containing the children. An Inline with an empty URL does nothing.

An Inline’s URLs shall refer to a valid VRML file that contains a list of children nodes at the
top level. See "Concepts — Grouping and Children Nodes". The results are undefined if the
URL refers to a file that is not VRML or if the file contains non-children nodes at the top level.
An Inline's URLs shall refer to a valid VRML file that contains a list of children nodes at the
top level. See "Concepts — Grouping and Children Nodes". The results are undefined if the
URL refers to a file that is not VRML or if the file contains non-children nodes at the top level.

If multiple URLs are specified, the browser may display a URL of a lower preference file while
it is obtaining, or if it is unable to obtain the higher preference file. See "Concepts — URLs
and URNs" for details on the url field and preference order.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Inlines’s chil-
dren. This is a hint that may be used for optimization purposes. If the specified bounding box
is smaller than the actual bounding box of the children at any time, then the results are unde-
fined. A default bboxSize value, (—1,—1, —1), implies that the bounding box is not specified
and if needed must be calculated by the browser. See "Concepts — Bounding Boxes’ for a
description of the bboxCenter and bboxSize fields.

M) <r]m
__goback
__ contents

n

LOD DRaE

n

LOD)<
LoD {

exposedField MFNode level (]
field SFVec3f «center 000 n
field MFFloat range]

}

The LOD node specifies various levels of detail or complexity for a given object, and provides
hints for browsers to automatically choose the appropriate version of the object based on the
distance from the user. The level field contains a list of nodes that represent the same object
or objects at varying levels of detail, from highest to the lowest level of detail, and the range
field specifies the ideal distances at which to switch between the levels. See the "Concepts —
Grouping and Children Nodes" section for a details on the types of nodes that are legal values
for level.

The center field is a translation offset in the local coordinate system that specifies the center
of the LOD object for distance calculations. In order to calculate which level to display, first the
distance is calculated from the viewpoint, transformed into the local coordinate space of the LOD
node, (including any scaling transformations), to the center point of the LOD. If the distance
is less than the first value in the range field, then the first level of the LOD is drawn. If between
the first and second values in the range field, the second level is drawn, and so on.

If there are N values in the range field, the LOD shall have N + 1 nodes in its level field.
Specifying too few levels will result in the last level being used repeatedly for the lowest levels of
detail; if more levels than ranges are specified, the extra levels will be ignored. The exception to
this rule is to leave the range field empty, which is a hint to the browser that it should choose a

level automatically to maintain a constant display rate. Each value in the range field should be
greater than the previous value; otherwise results are undefined.

Authors should set LOD ranges so that the transitions from one level of detail to the next are
smooth. Browsers may adjust which level of detail is displayed to maintain interactive frame rates,
to display an already-fetched level of detail while a higher level of detail (contained in an Inline
node) is fetched, or might disregard the author-specified ranges for any other implementation-
dependent reason. For best results, specify ranges only where necessary, and nest LOD nodes
with and without ranges. Browsers should try to honor the hints given by authors, and authors
should try to give browsers as much freedom as they can to choose levels of detail based on
performance.

LOD nodes are evaluated top-down in the scene graph. Only the descendants of the currently
selected level are rendered. Note that all nodes under an LOD node continue to receive and send
events (i.e. routes) regardless of which LOD level is active. For example, if an active TimeSensor
is contained within an inactive level of an LOD, the TimeSensor sends events regardless of the
LOD'’s state.

M) <r]m

n

Material m n u m

n

MovieTexture

Material

Material {
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

}

SFFloat
SFColor
SFColor
SFFloat
SFColor
SFFloat

ambientlIntensity 0
diffuseColor
emissiveColor
shininess
specularColor
transparency

.8 0.8

o O

.2
.8
0
.2
0

0

O O O O O

The Material node specifies surface material properties for associated geometry nodes and are
used by the VRML lighting equations during rendering. See " Concepts — Lighting Model” for
a detailed description of the VRML lighting model equations.

All of the fields in the Material node range from 0.0 to 1.0.

The fields in the Material node determine the way light reflects off an object to create color:

e The diffuseColor reflects all VRML light sources depending on the angle of the surface
with respect to the light source. The more directly the surface faces the light, the more diffuse

light reflects.

e The ambientIntensity field specifies how much ambient light from light sources this sur-
face should reflect. Ambient light is omni-directional and depends only on the number of
light sources, not their positions with respect to the surface. Ambient color is calculated as
ambientIntensity * diffuseColor.

e The specularColor and shininess determine the specular highlights—for example, the shiny
spots on an apple. When the angle from the light to the surface is close to the angle from
the surface to the viewer, the specularColor is added to the diffuse and ambient color

M) <r]m
__goback
__ contents

n

calculations. Lower shininess values produce soft glows, while higher values result in sharper,
smaller highlights.

e Emissive color models "glowing” objects. This can be useful for displaying radiosity-based
models (where the light energy of the room is computed explicitly), or for displaying scientific
data.

e Transparency is how "clear” the object is, with 1.0 being completely transparent, and 0.0
completely opaque.

This section belong in the Conformance annex.

For rendering systems that do not support the full OpenGL lighting model, the following simpler
lighting model is recommended:

A transparency value of 0 is completely opaque, a value of 1 is completely transparent. Browsers
need not support partial transparency, but should support at least fully transparent and fully
opaque surfaces, treating transparency values >= 0.5 as fully transparent.

Issues for Low-End Rendering Systems. Many low-end PC rendering systems are not able to
support the full range of the VRML material specification. For example, many systems do not
render individual red, green and blue reflected values as specified in the specularColor field.
The following table describes which Material fields are typically supported in popular low-end
systems and suggests actions for browser implementors to take when a field is not supported.

Field Supported? Suggested Action
ambientIntensity No Ignore
diffuseColor Yes Use
specularColor No Ignore

emissiveColor No If diffuse == 0.8 0.8 0.8, use emissive

M) <r]m

n

shininess Yes Use
transparency Yes if < 0.5 then opaque else transparent

The emissive color field is used when all other colors are black (0,0, 0). Rendering systems which
do not support specular color may nevertheless support a specular intensity. This should be
derived by taking the dot product of the specified RGB specular value with the vector [.32 .57
.11]. This adjusts the color value to compensate for the variable sensitivity of the eye to colors.

Likewise, if a system supports ambient intensity but not color, the same thing should be done
with the ambient color values to generate the ambient intensity. If a rendering system does not
support per-object ambient values, it should set the ambient value for the entire scene at the
average ambient value of all objects.

It is also expected that simpler rendering systems may be unable to support both diffuse and
emissive objects in the same world. Also, many renderers will not support ambientIntensity
with per-vertex colors specified with the Color node.

M) <r]m

n

Movie Texture

MovieTexture {

exposedField SFBool loop FALSE
exposedField SFFloat speed 1
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url |
field SFBool repeatS TRUE
field SFBool repeatT TRUE
eventOut SFFloat duration_changed
eventOut SFBool isActive

}

The MovieTexture node defines a time dependent texture map (contained in a movie file) and
parameters for controlling the movie and the texture mapping. A MovieTexture can also be used
as the source of sound data for a Sound node, but in this special case are not used for rendering.

Texture maps are defined in a 2D coordinate system, (s, t), that ranges from 0.0 to 1.0 in both
directions. The bottom edge of the image corresponds to the S-axis of the texture map, and
left edge of the image corresponds to the T-axis of the texture map. The lower-left pixel of the
image corresponds to s = 0, t = 0, and the top-right pixel of the image corresponds to s = 1,
t=1.

The url field that defines the movie data must support MPEG1-Systems (audio and video) or
MPEG1-Video (video-only) movie file formats. See "Concepts — URLs and URNSs" for details
on the url field. It is recommended that implementations support greyscale or alpha transparency
rendering if the specific movie format being used supports these features.

M) <>]m

n

M) <r]m

n

Figure 11.1

See "Concepts — Lighting Model" for details on lighting equations and the interaction
between textures, materials, and geometries.

As soon as the movie is loaded, a duration changed eventOut is sent. This indicates the
duration of the movie, in seconds. This eventOut value can be read (for instance, by a Script)
to determine the duration of a movie. A value of —1 implies the movie has not yet loaded or the
value is unavailable for some reason.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their
affects on the MovieTexture node, are discussed in detail in the " Concepts — Time Dependent
Nodes” section. The "cycle’ of a MovieTexture is the length of time in seconds for one playing
of the movie at the specified speed.

If a MovieTexture is inactive when the movie is first loaded, then frame 0 is shown in the texture
if speed is non-negative, or the last frame of the movie if speed is negative. A MovieTexture
will always display frame 0 if speed = 0. For positive values of speed, the frame an active

MovieTexture will display at time now corresponds to the frame at movie time (i.e., in the
movie's local time system with frame 0 at time 0, at speed = 1):

fmod(now — startTime, duration/speed)

If speed is negative, then the frame to display is the frame at movie time:

duration + fmod(now — startTime, duration/speed).

When a MovieTexture becomes inactive, the frame corresponding to the time at which the
MovieTexture became inactive will remain as the texture.

The speed exposedField indicates how fast the movie should be played. A speed of 2 indicates
the movie plays twice as fast. Note that the duration changed output is not affected by the
speed exposedField. set_speed events are ignored while the movie is playing. A negative speed
implies that the movie will play backwards. However, content creators should note that this may
not work for streaming movies or very large movie files.

MovieTextures can be referenced by an Appearance node's texture field (as a movie texture)
and by a Sound node's source field (as an audio source only). A legal implementation of the
MovieTexture node is not required to play audio if speed is not equal to 1.

M) <r]m

n

NavigationInfo W<
Normal

o back
Normallnterpolator

n

Navigationinfo

Navigationinfo {

eventIn SFBool set_bind
exposedField MFFloat avatarSize [0.25, 1.6, 0.75]
exposedField SFBool headlight TRUE
exposedField SFFloat speed 1.0
exposedField MFString type "WALK"
exposedField SFFloat visibilityLimit 0.0
eventOut SFBool isBound
}

The NavigationInfo node contains information describing the physical characteristics of the viewer
and viewing model. NavigationInfo is a bindable node (see "Concepts — Bindable Children
Nodes”) and thus there exists a NavigationInfo stack in the browser in which the top-most
NavigationInfo on the stack is the currently active NavigationInfo. The current Navigationlnfo is
considered to be a child of the current Viewpoint — regardless of where it is initially located in the
file. Whenever the current Viewpoint changes, the current NavigationInfo must be re-parented
to it. Whenever the current NavigationInfo changes, the new NavigationInfo must be re-parented
to the current Viewpoint.

If a TRUE value is sent to the set _bind eventln of a NavigationInfo, it is pushed onto the
NavigationInfo stack and activated. When a NavigationInfo is bound, the browser uses the fields
of the NavigationInfo to set the navigation controls of its user interface and the NavigationInfo
is conceptually re-parented under the currently bound Viewpoint. All subsequent scaling changes
to the current Viewpoint's coordinate system automatically change aspects (see below) of the
NavigationInfo values used in the browser (e.g. scale changes to any parent transformation).
A FALSE value of set bind, pops the Navigationinfo from the stack, results in an isBound

M) <r]m

n

FALSE event, and pops to the next entry in the stack which must be re-parented to the current
Viewpoint. See "Concepts — Bindable Children Nodes" for more details on the the binding
stacks.

The type field specifies a navigation paradigm to use. Minimally, browsers shall support the
following navigation types: "WALK", "EXAMINE", "FLY", and "NONE". Walk navigation is
used for exploring a virtual world. It is recommended that the browser should support a notion
of gravity in walk mode. Fly navigation is similar to walk except that no notion of gravity should
be enforced. There should still be some notion of "up” however. Examine navigation is typically
used to view individual objects and often includes (but does not require) the ability to spin the
object and move it closer or further away. The "none” choice removes all navigation controls —
the user navigates using only controls provided in the scene, such as guided tours. Also allowed
are browser specific navigation types. These should include a unique suffix (e.g. _sgi.com) to
prevent conflicts. The type field is multi-valued so that authors can specify fallbacks in case a
browser does not understand a given type. If none of the types are recognized by the browser,
then the default "WALK" is used. These strings values are case sensitive ("walk” is not equal to
"WALK").

The speed is the rate at which the viewer travels through a scene in meters per second. Since
viewers may provide mechanisms to travel faster or slower, this should be the default or average
speed of the viewer. If the NavigationInfo type is EXAMINE, speed should affect panning and
dollying—it should have no effect on the rotation speed. The transformation hierarchy of the
currently bound Viewpoint (see above) scales the speed - translations and rotations have no
effect on speed. Speed must be >= 0.0 — where 0.0 specifies a stationary avatar.

The avatarSize field specifies the user’s physical dimensions in the world for the purpose of
collision detection and terrain following. It is a multi-value field to allow several dimensions to be
specified. The first value should be the allowable distance between the user’s position and any
collision geometry (as specified by Collision) before a collision is detected. The second should

M) <>]m

n

be the height above the terrain the viewer should be maintained. The third should be the height
of the tallest object over which the viewer can "step”. This allows staircases to be built with
dimensions that can be ascended by all browsers. Additional values are browser dependent and
all values may be ignored, but if a browser interprets these values the first 3 should be interpreted
as described above. The transformation hierarchy of the currently bound Viewpoint scales the
avatarSize — translations and rotations have no effect on avatarSize.

For purposes of terrain following the browser needs a notion of the down direction (down
vector), since gravity is applied in the direction of the down vector. This down vector should
be along the negative Y-axis in the local coordinate system of the currently bound Viewpoint
(i.e., the accumulation of the Viewpoint's parent transformations, not including the Viewpoint's
orientation field).

The visibilityLimit field sets the furthest distance the user is able to see. The browser
may clip all objects beyond this limit, fade them into the background or ignore this field. A value
of 0.0 (the default) indicates an infinite visibility limit. VisibilityLimit is restricted to be >=
0.0.

The speed, avatarSize and visibilityLimit values are all scaled by the transformation
being applied to currently bound Viewpoint. If there is no currently bound Viewpoint, they are
interpreted in the world coordinate system. This allows these values to be automatically adjusted
when binding to a Viewpoint that has a scaling transformation applied to it without requiring a
new NavigationInfo node to be bound as well. If the scale applied to the Viewpoint is non-uniform
the behavior is undefined.

The headlight field specifies whether a browser should turn a headlight on. A headlight is a
directional light that always points in the direction the user is looking. Setting this field to TRUE
allows the browser to provide a headlight, possibly with user interface controls to turn it on and
off. Scenes that enlist pre-computed lighting (e.g. radiosity solutions) can turn the headlight

M) <r]m

n

off. The headlight shall have intensity =1, color =1 1 1, ambientIntensity = 0.0, and
direction =0 0 -1.

It is recommended that the near clipping plane should be set to one-half of the collision radius
as specified in the avatarSize field. This recommendation may be ignored by the browser, but
setting the near plane to this value prevents excessive clipping of objects just above the collision
volume and provides a region inside the collision volume for content authors to include geometry
that should remain fixed relative to the viewer, such as icons or a heads-up display, but that
should not be occluded by geometry outside of the collision volume.

The first NavigationInfo node found during reading of the world is automatically bound (receives
a set_bind TRUE event) and supplies the initial navigation parameters.

M) <r]m

n

Normal

Normal {
exposedField MFVec3f vector []

}

This node defines a set of 3D surface normal vectors to be used in the vector field of some
geometry nodes (IndexedFaceSet, ElevationGrid). This node contains one multiple-valued
field that contains the normal vectors. Normals should be unit-length or results are undefined.
To save network bandwidth, it is expected that implementations will be able to automatically
generate appropriate normals if none are given. However, the results will vary from implementation

to implementation.

M) <>]m
__goback
__ contents

n

Normallnterpolator

Normalinterpolator {

eventIn SFFloat set_fraction
exposedField MFFloat key]
exposedField MFVec3f keyValue (]
eventOut MFVec3f value_changed

}

This node interpolates among a set of multi-valued Vec3f values, suitable for transforming normal
vectors. All output vectors will have been normalized by the interpolator.

The number of normals in the keyValue field must be an integer multiple of the number of
keyframes in the key field; that integer multiple defines how many normals will be contained in
the value_changed events.

Normal interpolation is to be performed on the surface of the unit sphere. That is, the output
values for a linear interpolation from a point P on the unit sphere to a point Q also on unit sphere
should lie along the shortest arc (on the unit sphere) connecting points P and Q. Also, equally
spaced input fractions will result in arcs of equal length. Cases where P and Q are diagonally
opposing allow an infinite number of arcs. The interpolation for this case can be along any one
of these arcs.

Refer to " Concepts - Interpolators’ for a more detailed discussion of interpolators.

M) <r]m

n

OrientationInterpolator m n u m

n

OrientationlInterpolator <]

Orientationinterpolator {

contents

eventIn SFFloat set_fraction

exposedField MFFloat key] n
exposedField MFRotation keyValue |

eventOut SFRotation value_changed

}

This node interpolates among a set of SFRotation values. The rotations are absolute in object
space and are, therefore, not cumulative. The keyValue field must contain exactly as many
rotations as there are keyframes in the key field, or an error will be generated and results will be
undefined.

An orientation represents the final position of an object after a rotation has been applied. An
OrientationInterpolator will interpolate between two orientations by computing the shortest path
on the unit sphere between the two orientations. The interpolation will be linear in arc length
along this path. The path between two diagonally opposed orientations will be any one of the
infinite possible paths with arc length PI.

If two consecutive keyValue values exist such that the arc length between them is greater than
Pl, then the interpolation will take place on the arc complement. For example, the interpolation
between the orientations:

0100->0105.0

is equivalent to the rotation between the two orientations:

0102x7—>0105.0

Refer to " Concepts - Interpolators”’ for a more detailed discussion of interpolators.

Pixel Texture
PlaneSensor
PointLight
PointSet
PositionInterpolator
ProximitySensor

)<

n

Pixel Texture <>

PixelTexture {

exposedField SFImage image 000
field SFBool repeatS TRUE n
field SFBool repeatT TRUE

}

The PixelTexture node defines a 2D image-based texture map as an explicit array of pixel values
and parameters controlling tiling repetition of the texture onto geometry.

Texture maps are defined in a 2D coordinate system, (s,t), that ranges from 0.0 to 1.0 in
both directions. The bottom edge of the pixel image corresponds to the S-axis of the texture
map, and left edge of the pixel image corresponds to the T-axis of the texture map. The lower-
left pixel of the pixel image corresponds to s = 0, ¢ = 0, and the top-right pixel of the image
correspondsto s =1, t = 1.

Images may be one component (greyscale), two component (greyscale plus alpha opacity), three
component (full RGB color), or four-component (full RGB color plus alpha opacity). An ideal
VRML implementation will use the texture image to modify the diffuse color and transparency
(= 1 — alphaopacity) of an object's material (specified in a Material node), then perform any
lighting calculations using the rest of the object’s material properties with the modified diffuse
color to produce the final image. The texture image modifies the diffuse color and transparency
depending on how many components are in the image, as follows:

1. Diffuse color is multiplied by the greyscale values in the texture image.
2. Diffuse color is multiplied by the greyscale values in the texture image; material transparency
is multiplied by transparency values in texture image.

Figure 14.1

3. RGB colors in the texture image replace the material’s diffuse color.
4. RGB colors in the texture image replace the material's diffuse color; transparency values in
the texture image replace the material’s transparency.

Browsers may approximate this ideal behavior to increase performance. One common optimization
is to calculate lighting only at each vertex and combining the texture image with the color
computed from lighting (performing the texturing after lighting). Another common optimization
is to perform no lighting calculations at all when texturing is enabled, displaying only the colors
of the texture image.

See " Concepts — Lighting Model" for details on the VRML lighting equations.

See the "Field Reference - SFImage” specification for details on how to specify an image.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If
repeat$ is TRUE (the default), the texture map is repeated outside the 0-to-1 texture coordinate
range in the S direction so that it fills the shape. If repeatS is FALSE, the texture coordinates

M) <r]m

n

are clamped in the S direction to lie within the 0-to-1 range. The repeatT field is analogous to m n u m

n

the repeats field.

PlaneSensor

PlaneSensor {

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition -1 -1
exposedField SFVec2f minPosition 00
exposedField SFVec3f offset 000
eventQOut SFBool isActive

eventOut SFVec3f trackPoint_changed
eventOut SFVec3f translation_changed

}

The PlaneSensor maps pointing device (e.g. mouse or wand) motion into translation in two
dimensions, in the XY plane of its local space. PlaneSensor uses the descendant geometry of its
parent node to determine if a hit occurs.

The enabled exposed field enables and disables the PlaneSensor - if TRUE, the sensor reacts
appropriately to user events, if FALSE, the sensor does not track user input or send output
events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes disabled
and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE event the
sensor is enabled and ready for user activation.

The PlaneSensor generates events if the pointing device is activated while over any descendant
geometry nodes of its parent group and then moved while activated. Typically, the pointing device
is a 2D device such as a mouse. The pointing device is considered to be moving within a plane at
a fixed distance from the viewer and perpendicular to the line of sight; this establishes a set of 3D
coordinates for the pointer. If a 3D pointer is in use, then the sensor generates events only when
the pointer is within the user’s field of view. In either case, the pointing device is considered to

M) <r]m

n

" pass over” geometry when that geometry is intersected by a line extending from the viewer and
passing through the pointer's 3D coordinates. If multiple sensors’ geometry intersect this line
(hereafter called the bearing), only the nearest will be eligible to generate events.

Upon activation of the pointing device (e.g. mouse button down) over the sensor's geometry,
an isActive TRUE event is sent. Dragging motion is mapped into a relative translation in the
XY plane of the sensor’s local coordinate system as it was defined at the time of activation.
For each subsequent position of the bearing, a translation changed event is output which
corresponds to a relative translation from the original intersection point projected onto the XY
plane, plus the offset value. The sign of the translation is defined by the XY plane of the
sensor's coordinate system. trackPoint changed events reflect the unclamped drag position
on the surface of this plane. When the pointing device is deactivated and autoOffset is TRUE,
offset is set to the last translation value and an offset_changed event is generated. See
"Concepts - Drag Sensors” for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events from
the pointing device until it releases and generates an isActive FALSE event (other pointing
device sensors cannot generate events during this time). Motion of the pointing device while
isActive is TRUE is referred to as a "drag”. If a 2D pointing device is in use, isActive events
will typically reflect the state of the primary button associated with the device (i.e. isActive is
TRUE when the primary button is pressed, and FALSE when not released). If a 3D pointing device
(e.g. wand) is in use, isActive events will typically reflect whether the pointer is within or in
contact with the sensor’s geometry.

minPosition and maxPosition may be set to clamp translation events to a range of
values as measured from the origin of the XY plane. If the X or Y component of minPosition
is greater than the corresponding component of maxPosition, translation changed events
are not clamped in that dimension. If the X or Y component of minPosition is equal to the
corresponding component of maxPosition, that component is constrained to the given value;

M) <r]m

n

this technique provides a way to implement a line sensor that maps dragging motion into a
translation in one dimension.

While the pointing device is activated,trackPoint changed and translation _changed
events are output. trackPoint changed events represent the unclamped intersection points
on the surface of the local XY plane. If the pointing device is dragged off of the XY plane while
activated (e.g. above horizon line), browsers may interpret this in several ways (e.g. clamp all
values to the horizon). Each movement of the pointing device, while isActive is TRUE, generates
trackPoint_changed and translation changed events.

See " Concepts — Pointing Device Sensors and Drag Sensors” for more details.

M) <r]m

n

PointLight

PointLight {

exposedField SFFloat ambientlntensity 0
exposedField SFVec3f attenuation 100
exposedField SFColor color 111
exposedField SFFloat intensity 1
exposedField SFVec3f location 000
exposedField SFBool on TRUE
exposedField SFFloat radius 100

}

The PointLight node specifies a point light source at 3D location in the local coordinate system.
A point source emits light equally in all directions; that is, it is omni-directional. PointLights are
specified in their local coordinate system and are affected by parent transformations.

See "Concepts — Light Sources” for a detailed description of the ambientIntensity,
color, and intensity fields.

A PointLight may illuminate geometry within radius (>= 0.0) meters of its location.
Both radius and location are affected by parent transformations (scale radius and transform
location).

A PointLight’s illumination falls off with distance as specified by three attenuation coefficients.
The attenuation factor is 1/(attenuation|0] + attenuation[1] * v + attenuation[2] * r2), where
r is the distance of the light to the surface being illuminated. The default is no attenuation.
An attenuation value of 0 0 O is identical to 1 0 0. Attenuation values must be >= 0.0.
Renderers that do not support a full attenuation model may approximate as necessary. See
"Concepts — Lighting Model” for a detailed description of VRML's lighting equations.

M) <r]m

n

PointSet

PointSet {
exposedField SFNode color NULL
exposedField SFNode coord NULL

}

The PointSet node specifies a set of 3D points in the local coordinate system with associated
colors at each point. The coord field specifies a Coordinate node (or instance of a Coordinate
node) — results are undefined if the coord field specifies any other type of node. PointSet uses
the coordinates in order. If the coord field is NULL, then the PointSet is empty.

PointSets are not lit, not texture-mapped, or collided with during collision detection.

If the color field is not NULL, it must specify a Color node that contains at least the number
of points contained in the coord node — results are undefined if the color field specifies any
other type of node. Colors shall be applied to each point in order. The results are undefined if the
number of values in the Color node is less than the number of values specified in the Coordinate
node

If the color field is NULL and there is a Material defined for the Appearance affecting this
PointSet, then use the emissiveColor of the Material to draw the points. See "Concepts —
Lighting Model, Lighting Off’ for details on lighting equations.

M) <r]m

n

Positionlnterpolator L1 K13]

Positioninterpolator {

contents

eventIn SFFloat set_fraction

exposedField MFFloat key] n
exposedField MFVec3f keyValue (]

eventOut SFVec3f value_changed

}

This node linearly interpolates among a set of SFVec3f values. This is appropriate for interpolating
a translation. The vectors are interpreted as absolute positions in object space. The keyValue
field must contain exactly as many values as in the key field.

Refer to " Concepts - Interpolators”’ for a more detailed discussion of interpolators.

ProximitySensor

ProximitySensor {

exposedField SFVec3f center 000
exposedField SFVec3f size 000
exposedField SFBool enabled TRUE
eventtOut SFBool isActive

eventOut SFVec3f position_changed

eventOut SFRotation orientation_changed
eventOut SFTime enterTime

eventOut SFTime exitTime

}

The ProximitySensor generate events when the user enters, exits, and moves within a region in
space (defined by a box). A proximity sensor can be enabled or disabled by sending it an enabled
event with a value of TRUE or FALSE — a disabled sensor does not send output events.

A ProximitySensor generates isActive TRUE/FALSE events as the viewer enters and exits the
rectangular box defined by its center and size fields. Browsers shall interpolate user positions
and timestamp the isActive events with the exact time the user first intersected the proximity
region. The center field defines the center point of the proximity region in object space, and
the size field specifies a vector which defines the width (), height (y), and depth (z) of the
box bounding the region. ProximitySensor nodes are affected by the hierarchical transformations
of its parents.

The enterTime event is generated whenever the isActive TRUE event is generated (user
enters the box), and exitTime events are generated whenever isActive FALSE event is generated
(user exits the box).

M) <r]m

n

The position _changed and orientation changed events send events whenever the position
and orientation of the viewer changes with respect to the ProximitySensor's coordinate system
— this includes enter and exit times. Note that the user movement may be as a result of a
variety of circumstances (e.g. browser navigation, proximity sensor’'s coordinate system changes,
bound Viewpoint's position or orientation changes, or the ProximitySensor’s coordinate system
changes).

Each ProximitySensor behaves independently of all other ProximitySensors — every enabled
ProximitySensor that is effected by the user's movement receives and sends events, possibly re-
sulting in multiple ProximitySensors receiving and sending events simultaneously. Unlike Touch-
Sensors, there is no notion of a ProximitySensor lower in the scene graph "grabbing” events.

Instanced (DEF/USE) ProximitySensors use the union of all the boxes to check for enter and
exit — an instanced ProximitySensor will detect enter and exit for all instances of the box and
send output events appropriately.

A ProximitySensor that surrounds the entire world will have an enterTime equal to the time
that the world was entered and can be used to start up animations or behaviors as soon as a
world is loaded. A ProximitySensor with a (0,0,0) size field cannot generate events - this is
equivalent to setting the enabled field to FALSE.

M) <r]m

n

Scalarlnterpolator
Script
Shape
Sound
Sphere

SphereSensor
SpotLight
Switch

)<

n

ScalarInterpolator W) <> fn
eventlIn SFFloat set_fraction

Scalarinterpolator {

exposedField MFFloat key (] n
exposedField MFFloat keyValue (]
eventOut SFFloat value_changed

}

This node linearly interpolates among a set of SFFloat values. This interpolator is appropriate for

any parameter defined using a single floating point value, e.g., width, radius, intensity, etc. The

keyValue field must contain exactly as many numbers as there are keyframes in the key field.
Refer to " Concepts - Interpolators”’ for a more detailed discussion of interpolators.

Script

Script {
exposedField MFString url (]
field SFBool directOutput FALSE
field SFBool mustEvaluate FALSE
And any number of:
eventIn eventTypeName eventName
field fieldTypeName fieldName initialValue
eventQOut eventTypeName eventName
}

The Script node is used to program behavior in a scene. Script nodes typically receive events
that signify a change or user action, contain a program module that performs some computation,
and effect change somewhere else in the scene by sending output events. Each Script node has
associated programming language code, referenced by the url field, that is executed to carry
out the Script node’s function. That code will be referred to as "the script” in the rest of this
description.

Browsers are not required to support any specific language. See the section in " Concepts
- Scripting” for detailed information on scripting languages. Browsers are required to adhere
to the language bindings of languages specified in annexes of the specification. See the section
"Concepts — URLs and URNSs" for details on the url field.

When the script is created, any language-dependent or user-defined initialization is performed.
The script is able to receive and process events that are sent to it. Each event that can be
received must be declared in the Script node using the same syntax as is used in a prototype
definition:

eventIn type name

M) <r]m

n

The type can be any of the standard VRML fields (see " Field Reference”), and name must be
an identifier that is unique for this Script node.

The Script node should be able to generate events in response to the incoming events. Each
event that can be generated must be declared in the Script node using the following syntax:

eventOut type name

Script nodes cannot have exposedFields. The implementation ramifications of exposedFields
is far too complex and thus not allowed.

If the Script node's mustEvaluate field is FALSE, the browser can delay sending input events
to the script until its outputs are needed by the browser. If the mustEvaluate field is TRUE,
the browser should send input events to the script as soon as possible, regardless of whether the
outputs are needed. The mustEvaluate field should be set to TRUE only if the Script has effects
that are not known to the browser (such as sending information across the network); otherwise,
poor performance may result.

Once the script has access to a VRML node (via an SFNode or MFNode value either in one of
the Script node'’s fields or passed in as an eventln), the script should be able to read the contents
of that node’s exposed field. If the Script node’s directOutput field is TRUE, the script may
also send events directly to any node to which it has access, and may dynamically establish or
break routes. If directOutput is FALSE (the default), then the script may only affect the rest
of the world via events sent through its eventOuts.

A script is able to communicate directly with the VRML browser to get the current time, the
current world URL, and so on. This is strictly defined by the API for the specific language being
used.

It is expected that all other functionality (such as networking capabilities, multi-threading
capabilities, and so on) will be provided by the scripting language.

M) <r]m

n

The location of the Script node in the scene graph has no affect on its operation. For example, m n u m

n

if a parent of a Script node is a Switch node with whichChoice set to —1 (i.e. ignore its
children), the Script continues to operate as specified (receives and sends events).

Shape

Shape {
exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}

The Shape node has two fields: appearance and geometry which are used to create rendered
objects in the world. The appearance field specifies an Appearance node that specifies the
visual attributes (e.g. material and texture) to be applied to the geometry . The geometry field
specifies a geometry node. The specified geometry node is rendered with the specified appearance
nodes applied.

See " Concepts — Lighting Model” for details of the VRML lighting model and the interaction
between Appearance and geometry nodes.

If the geometry field is NULL the object is not drawn.

M) <r]m

n

Sound

Sound {
exposedField SFVec3f direction 0 0 1
exposedField SFFloat intensity 1
exposedField SFVec3f location 0 0 O
exposedField SFFloat maxBack 10
exposedField SFFloat maxFront 10
exposedField SFFloat minBack 1
exposedField SFFloat minFront 1
exposedField SFFloat priority 0
exposedField SFNode source NULL
field SFBool spatialize TRUE

}

The Sound node describes the positioning and spatial presentation of a sound in a VRML scene.
The sound may be located at a point and emit sound in a spherical or ellipsoid pattern, in the
local coordinate system. The ellipsoid is pointed in a particular direction and may be shaped to
provide more or less directional focus from the location of the sound. The sound node may also
be used to describe an ambient sound which tapers off at a specified distance from the sound
node.

The Sound node also enables ambient background sound to be created by setting of the
maxFront and maxBack to the radius of the area for the ambient noise. If ambient noise is
required for the whole scene then these values should be set to at least cover the distance from
the location to the farthest point in scene from that point (including effects of transforms).

The source field specifies the sound source for the sound node. If there is no source specified
the Sound will emit no audio. The source field shall specify either an AudioClip or a Movie Texture

M) <r]m

n

node. Furthermore, the MovieTexture node must refer to a movie format that supports sound
(e.g. MPEG1-Systems).

The intensity field adjusts the volume of each sound source; The intensity is an SFFloat
that ranges from 0.0 to 1.0. An intensity of O is silence, and an intensity of 1 is the full
volume of the sound in the sample or the full volume of the MIDI clip.

The priority field gives the author some control over which sounds the browser will choose
to play when there are more sounds active than sound channels available. The priority varies
between 0.0 and 1.0, with 1.0 being the highest priority. For most applications priority 0.0 should
be used for a normal sound and 1.0 should be used only for special event or cue sounds (usually of
short duration) that the author wants the user to hear even if they are farther away and perhaps of
lower intensity than some other ongoing sounds. Browsers should make as many sound channels
available to the scene as is efficiently possible.

If the browser does not have enough sound channels to play all of the currently active sounds,
it is recommended that the browser sort the active sounds into an ordered list using the following
sort keys:

1. decreasing priority;
2. for sounds with priority > 0.5, increasing (now — startT'ime)
3. decreasing intensity at viewer location ((intensity/distance) * 2);

where now represents the current time, and startTime is the startTime field of the audio
source node specified in the source field.

It is important that sort key #2 be used for the high priority (event and cue) sounds so that
new cues will be heard even when the channels are " full” of currently active high priority sounds.
Sort key #2 should not be used for normal priority sounds so selection among them will be based
on sort key #3 — intensity and distance from the viewer.

M) <r]m

n

The browser should play as many sounds from the beginning of this sorted list as it has available
channels. On most systems the number of concurrent sound channels is distinct from the number
of concurrent MIDI streams. On these systems the browser may maintain separate ordered lists
for sampled sounds and MIDI streams.

A sound’s location in the scene graph determines its spatial location (the sound's location
is transformed by the current transformation) and whether or not it can be heard. A sound can
only be heard while it is part of the traversed scene; sound nodes that are descended from LOD,
Switch, or any grouping or prototype node that disables traversal (i.e. drawing) of its children
will not be audible unless they are traversed. If a sound is silenced for a time under a Switch or
LOD node, and later it becomes part of the traversal again, the sound picks up where it would
have been had it been playing continuously.

Around the location of the emitter, minFront and minBack determine the extent of the
full intensity region in front of and behind the sound. If the location of the sound is taken as
a focus of an ellipsoid, the minBack and minFront values, in combination with the direction
vector determine the two foci of an ellipsoid bounding the ambient region of the sound. Similarly,
maxFront and maxBack determine the limits of audibility in front of and behind the sound; they
describe a second, outer ellipsoid. If minFront equals minBack and maxFront equals maxBack,
the sound is omni-directional, the direction vector is ignored, and the min and max ellipsoids
become spheres centered around the sound node. The fields minFront, maxFront, minBack,
and maxBack are scaled by the parent transformations — these values must be >= 0.0.

The inner ellipsoid defines a space of full intensity for the sound. Within that space the sound
will play at the intensity specified in the sound node. The outer ellipsoid determines the maximum
extent of the sound. Outside that space, the sound cannot be heard at all. In between the two
ellipsoids, the intensity drops off proportionally with inverse square of the distance. With this
model, a Sound usually will have smooth changes in intensity over the entire extent is which it

M) <r]m

n

can be heard. However, if at any point the maximum is the same as or inside the minimum, the
sound is cut off immediately at the edge of the minimum ellipsoid.

The ideal implementation of the sound attenuation between the inner and outer ellipsoids is
an inverse power dropoff. A reasonable approximation to this ideal model is a linear dropoff in
decibel value. Since an inverse power dropoff never actually reaches zero, it is necessary to select
an appropriate cutoff value for the outer ellipsoid so that the outer ellipsoid contains the space
in which the sound is truly audible and excludes space where it would be negligible. Keeping
the outer ellipsoid as small as possible will help limit resources used by nearly inaudible sounds.
Experimentation suggests that a 20d B dropoff from the maximum intensity is a reasonable cutoff
value that makes the bounding volume (the outer ellipsoid) contain the truly audible range of
the sound. Since actual physical sound dropoff in an anechoic environment follows the inverse
square law, using this algorithm it is possible to mimic real-world sound attenuation by making
the maximum ellipsoid ten times larger than the minimum ellipsoid. This will yield inverse square
dropoff between them.

Browsers should support spatial localization of sound as well as their underlying sound libraries
will allow. The spatialize field is used to indicate to browsers that they should try to locate
this sound. If the spatialize field is TRUE, the sound should be treated as a monaural sound
coming from a single point. A simple spatialization mechanism just places the sound properly
in the pan of the stereo (or multichannel) sound output. Sounds are faded out over distance as
described above. Browsers may use more elaborate sound spatialization algorithms if they wish.

Authors can create ambient sounds by setting the spatialize field to FALSE. In that case,
stereo and multichannel sounds should be played using their normal separate channels. The
distance to the sound and the minimum and maximum ellipsoids (discussed above) should affect
the intensity in the normal way. Authors can create ambient sound over the entire scene by
setting the minFront and minBack to the maximum extents of the scene.

M) <>]m

n

Sphere

sphere { contents
field SFFloat radius 1 contents
! n
The Sphere node specifies a sphere centered at (0,0,0) in the local coordinate system. The
radius field specifies the radius of the sphere and must be >= 0.0.
A
o i texture seam

radius
P

s = theta / 2P
t=1 - phiml

Figure 15.1

When a texture is applied to a sphere, the texture covers the entire surface, wrapping counter-
clockwise from the back of the sphere. The texture has a seam at the back where the Y Z plane
intersects the sphere. TextureTransform affects the texture coordinates of the Sphere.

The Sphere geometry is considered to be solid and thus requires outside faces only. When m n u m

n

viewed from the inside the results are undefined.

SphereSensor g

SphereSensor {

exposedField SFBool autoOffset TRUE

exposedField SFBool enabled TRUE n
exposedField SFRotation offset 0100

eventOut SFBool isActive

eventQOut SFRotation rotation_changed

eventOut SFVec3f trackPoint_changed

}

The SphereSensor maps pointing device (e.g. mouse or wand) motion into spherical rotation
about the center of its local space. SphereSensor uses the descendant geometry of its parent
node to determine if a hit occurs. The feel of the rotation is as if you were rolling a ball.

The enabled exposed field enables and disables the SphereSensor - if TRUE, the sensor reacts
appropriately to user events, if FALSE, the sensor does not track user input or send output
events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes disabled
and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE event the
sensor is enabled and ready for user activation.

The SphereSensor generates events if the pointing device is activated while over any descendant
geometry nodes of its parent group and then moved while activated. Typically, the pointing device
is a 2D device such as a mouse. The pointing device is considered to be moving within a plane at
a fixed distance from the viewer and perpendicular to the line of sight; this establishes a set of 3D
coordinates for the pointer. If a 3D pointer is in use, then the sensor generates events only when
the pointer is within the user’s field of view. In either case, the pointing device is considered to
" pass over” geometry when that geometry is intersected by a line extending from the viewer and

passing through the pointer's 3D coordinates. If multiple sensors’ geometry intersect this line
(hereafter called the bearing), only the nearest will be eligible to generate events.

Upon activation of the pointing device (e.g. mouse button down) over the sensor’'s geometry
an isActive TRUE event is sent. The vector defined by the initial point of intersection on the
SphereSensor's geometry and the local origin determines the radius of the sphere used to map
subsequent pointing device motion while dragging. The virtual sphere defined by this radius and
the local origin at the time of activation are used to interpret subsequent pointing device motion
and is not affected by any changes to the sensor’s coordinate system while the sensor is active.
For each position of the bearing, a rotation changed event is output which corresponds to a
relative rotation from the original intersection, plus the offset value. The sign of the rotation
is defined by the local coordinate system of the sensor. trackPoint _changed events reflect the
unclamped drag position on the surface of this sphere. When the pointing device is deactivated
and autoOffset is TRUE, offset is set to the last rotation value and an offset_changed event
is generated. See "Concepts — Drag Sensors” for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events from
the pointing device until it releases and generates an isActive FALSE event (other pointing
device sensors cannot generate events during this time). Motion of the pointing device while
isActive is TRUE is referred to as a "drag”. If a 2D pointing device is in use, isActive events
will typically reflect the state of the primary button associated with the device (i.e. isActive
is TRUE when the primary button is pressed and FALSE when released). If a 3D pointing device
(e.g. wand) is in use, isActive events will typically reflect whether the pointer is within or in
contact with the sensor's geometry.

While the pointing device is activated,trackPoint_changed and rotation changed events
are output. trackPoint _changed events represent the unclamped intersection points on the
surface of the invisible sphere. If the pointing device is dragged off the sphere while activated,
browsers may interpret this in several ways (e.g. clamp all values to the sphere, continue to rotate

M) <r]m

n

as the point is dragged away from the sphere, etc.). Each movement of the pointing device, while m n u m
isActive is TRUE, generates trackPoint changed and rotation changed events.

See "Concepts — Pointing Device Sensors and Drag Sensors’ for more details. See
"Concepts — Pointing Device Sensors and Drag Sensors” for more details.

n

a
)

SpotLight

SpotLight {
exposedField SFFloat ambientintensity 0
exposedField SFVec3f attenuation 100
exposedField SFFloat beamWidth 1.570796
exposedField SFColor color 111
exposedField SFFloat cutOffAngle 0.785398
exposedField SFVec3f direction 00 -1
exposedField SFFloat intensity 1
exposedField SFVec3f location 000
exposedField SFBool on TRUE
exposedField SFFloat radius 100

}

The SpotLight node defines a light source that emits light from a specific point along a specific
direction vector and constrained within a solid angle. Spotlights may illuminate geometry nodes
that respond to light sources and intersect the solid angle. Spotlights are specified in their local
coordinate system and are affected by parent transformations.

See "Concepts — Light Sources” for a detailed description of ambientIntensity, color,
intensity, and VRML's lighting equations. See " Concepts - Lighting Model’ for a detailed
description of the VRML lighting equations.

The location field specifies a translation offset of the center point of the light source from
the light's local coordinate system origin. This point is the apex of the solid angle which bounds
light emission from the given light source. The direction field specifies the direction vector of
the light's central axis defined in its own local coordinate system. The on field specifies whether
the light source emits light—if TRUE, then the light source is emitting light and may illuminate

LAQ L

n

geometry in the scene, if FALSE it does not emit light and does not illuminate any geometry.
The radius field specifies the radial extent of the solid angle and the maximum distance from
location than may be illuminated by the light source — the light source does not emit light
outside this radius. The radius must be >= 0.0.

The cut0ffAngle field specifies the outer bound of the solid angle. The light source does not
emit light outside of this solid angle. The beamWidth field specifies an inner solid angle in which
the light source emits light at uniform full intensity. The light source’s emission intensity drops
off from the inner solid angle (beamWidth) to the outer solid angle (cutOffAngle). The drop
off function from the inner angle to the outer angle is a cosine raised to a power function:

intensity(angle) = intensity * (cosine(angle) x xexponent)

where exponent = 0.5 * log(0.5)/log(cos(beamWidth)), intensity is the SpotLight's field
value, intensity(angle) is the light intensity at an arbitrary angle from the direction vector, and
angle ranges from 0.0 at central axis to cutOffAngle.

If beamWidth > cutOffAngle, then beamWidth is assumed to be equal to cutOffAngle and
the light source emits full intensity within the entire solid angle defined by cutOffAngle. Both
beamWidth and cutOffAngle must be greater than 0.0 and less than or equal to 7/2. See figure
below for an illustration of the SpotLight’s field semantics (note: this example uses the default
attenuation).

The light’s illumination falls off with distance as specified by three attenuation coefficients.
The attenuation factor is 1/(attenuation[0] + attenuation[1] x r + attenuation[2] x 72), where
r is the distance of the light to the surface being illuminated. The default is no attenuation. An
attenuation value of 0 0 0 is identical to 1 0 0. Attenuation values must be >= 0.0.

M) <r]m

n

Switch <> fn
Switch {

exposedField MFNode choice (]
exposedField SFInt32 whichChoice -1 n
}

The Switch grouping node traverses zero or one of the nodes specified in the choice field.

See the "Concepts — Grouping and Children Nodes” section which describes " children
nodes” for a details on the types of nodes that are legal values for choice.

The whichChoice field specifies the index of the child to traverse, where the first child has
index 0. If whichChoice is less than zero or greater than the number of nodes in the choice
field then nothing is chosen.

Note that all nodes under a Switch continue to receive and send events (i.e.routes) regardless of
the value of whichChoice. For example, if an active TimeSensor is contained within an inactive
choice of an Switch, the TimeSensor sends events regardless of the Switch's state.

Text
TextureCoordinate
TextureTransform
TimeSensor
TouchSensor
Transform

M) <r]m

n

Text

Text {
exposedField MFString string]
exposedField SFNode fontStyle NULL
exposedField MFFloat length]
exposedField SFFloat maxExtent 0.0
}

The Text node specifies a two-sided, flat text string object positioned in the XY plane of the
local coordinate system based on values defined in the fontStyle field (see FontStyle node). Text
nodes may contain multiple text strings specified using the UTF-8 encoding as specified by the
ISO 10646-1:1993 standard (http://www.iso.ch/cate/d18741.html). Due to the drastic changes
in Korean Jamo language, the character set of the UTF-8 will be based on ISO 10646-1:1993
plus pDAM 1 - 5 (including the Korean changes). The text strings are stored in visual order.

The text strings are contained in the string field. The fontStyle field contains one
FontStyle node that specifies the font size, font family and style, direction of the text strings,
and any specific language rendering techniques that must be used for the text.

The maxExtent field limits and scales all of the text strings if the length of the maximum string
is longer than the maximum extent, as measured in the local coordinate space. If the text string
with the maximum length is shorter than the maxExtent, then there is no scaling. The maximum
extent is measured horizontally for horizontal text (FontStyle node: horizontal=TRUE) and
vertically for vertical text (FontStyle node: horizontal=FALSE). The maxExtent field must
be >= 0.0.

The length field contains an MFFloat value that specifies the length of each text string in
the local coordinate space. If the string is too short, it is stretched (either by scaling the text

M) <>]m
__goback
__ contents

n

or by adding space between the characters). If the string is too long, it is compressed (either by
scaling the text or by subtracting space between the characters). If a length value is missing—for
example, if there are four strings but only three length values—the missing values are considered
to be 0.

For both the maxExtent and length fields, specifying a value of 0 indicates to allow the string
to be any length.

Textures are applied to text as follows. The texture origin is at the origin of the first string,
as determined by the justification. The texture is scaled equally in both S and 7' dimensions,
with the font height representing 1 unit. S increases to the right, and T increases up. 1SO
10646-1:1993 Character Encodings

Characters in ISO 10646 are encoded in multiple octets. Code space is divided into four units,
as follows:

| Group-octet | Plane-octet | Row-octet | Cell-octet |

The 1ISO 10646-1:1993 allows two basic forms for characters:

1. UCS-2 (Universal Coded Character Set-2). Also known as the Basic Multilingual Plane
(BMP). Characters are encoded in the lower two octets (row and cell). Predictions are
that this will be the most commonly used form of 10646.

2. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four octets.

In addition, three transformation formats (UCS Transformation Format (UTF) are accepted:
UTF-7, UTF-8, and UTF-16. Each represents the nature of the transformation — 7-bit, 8-bit,
and 16-bit. The UTF-7 and UTF-16 can be referenced in the Unicode Standard 2.0 book.

The UTF-8 maintains transparency for all of the ASCIlI code values (0...127). It allows
ASCII text (0x0..0x7F) to appear without any changes and encodes all characters from 0x80..
Ox7FFFFFFF into a series of six or fewer bytes.

M) <r]m

n

o

If the most significant bit of the first character is 0, then the remaining seven bits are interpreted
as an ASCII character. Otherwise, the number of leading 1 bits will indicate the number of bytes
following. There is always a o bit between the count bits and any data.

First byte could be one of the following. The X indicates bits available to encode the character.

OXXXXXXX only one byte 0..0x7F (ASCII)

110XXXXX two bytes Maximum character value is Ox7FF
1110XXXX three bytes Maximum character value is OxFFFF
11110XXX four bytes Maximum character value is Ox1FFFFF
111110XX five bytes Maximum character value is Ox3FFFFFF
1111110X six bytes Maximum character value is Ox7TFFFFFFF

All following bytes have this format: 10XXXXXX

A two byte example. The symbol for a register trade mark is " circled R registered sign” or 174
in ISO/Latin-1 (8859/1). It is encoded as 0x00AE in UCS-2 of the ISO 10646. In UTF-8 it is has
the following two byte encoding 0xC2, OxAE. See " Concepts — Lighting Model” for details on
VRML lighting equations and how Appearance, Material and textures interact with lighting. See
"Concepts — Lighting Model” for details on VRML lighting equations and how Appearance,
Material and textures interact with lighting.

The Text node does not perform collision detection.

M) <r]m

n

o

TextureCoordinate

TextureCoordinate {
exposedField MFVec2f point []

}

The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based
geometry nodes (e.g. IndexedFaceSet and ElevationGrid) to map from textures to the vertices.
Textures are two dimensional color functions that given an S and T pair return a color value.
Texture maps parameter values range from 0.0 to 1.0 in S and T". However, TextureCoordinate
values, specified by the point field, can range from —oo to +00. Texture coordinates identify a
location (and thus a color value) in the texture map. The horizontal coordinate, S, is specified
first, followed by the vertical coordinate, 7.

If the texture map is repeated in a given direction (S or T'), then a texture coordinate C' is
mapped into a texture map that has N pixels in the given direction as follows:

Location = (C — floor(C)) * N

If the texture is not repeated:

Location = (C >1.071.0: (C<0.0?70.0:C))*N

See texture nodes for details on repeating textures (PixelTexture, ImageTexture,
MovieTexture).

LAQ L

n

TextureTransform

TextureTransform {

exposedField SFVec2f center 00

exposedField SFFloat rotation 0

exposedField SFVec2f scale 11

exposedField SFVec2f translation 0 0
}

The TextureTransform node defines a 2D transformation that is applied to texture coordinates
(see TextureCoordinate). This node affects the way textures are applied to the surface of
geometry. The transformation consists of (in order) a non-uniform scale about an arbitrary
center point, a rotation about the center point, and a translation. This allows for changes to the
size, orientation, and position of textures on shapes. Note that these changes appear reversed
when when viewed in the surface of geometry. For example, a scale value of 2 2 will scale the
texture coordinates and have the net effect of shrinking the texture size by a factor of 2 (texture
coordinates are twice as large and thus cause the texture to repeat). A translation of 0.5 0.0
translates the texture coordinates +.5 units along the S-axis and has the net effect of translating
the texture —0.5 along the S-axis on the geometry's surface. A rotation of 7/2 of the texture
coordinates results in a —/2 rotation of the texture on the geometry.

The center field specifies a translation offset in texture coordinate space about which the
rotation and scale fields are applied. The scale field specifies a scaling factor in S and T of
the texture coordinates about the center point — scale values must be >= 0.0. The rotation
field specifies a rotation in radians of the texture coordinates about the center point after the
scale has taken place. The translation field specifies a translation of the texture coordinates.

M) <r]m

n

Given a 2-dimensional texture coordinate T" and a TextureTransform node, T is transformed into
point 7" by a series of intermediate transformations. In matrix-transformation notation, where C'
(center), T (translation), R (rotation), and S (scale) are the equivalent transformation
matrices,

T'=TT xCx RxSx—-TC xT (where T is a column vector)

Note that TextureTransforms cannot combine or accumulate.

M) <r]m

n

TimeSensor

TimeSensor {
exposedField SFTime cyclelnterval 1

exposedField SFBool enabled TRUE
exposedField SFBool loop FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
eventOut SFTime cycleTime

eventOut SFFloat fraction_changed
eventOut SFBool isActive
eventOut SFTime time

}

TimeSensors generate events as time passes. TimeSensors can be used to drive continuous
simulations and animations, periodic activities (e.g., one per minute), and/or single occurrence
events such as an alarm clock. TimeSensor discrete eventOuts include: isActive, which becomes
TRUE when the TimeSensor begins running, and FALSE when it stops running, and cycleTime,
a time event at startTime and at the beginning of each new cycle (useful for synchronization
with other time-based objects). The remaining outputs generate continuous events and consist of
fraction changed, which is an SFFloat in the closed interval [0,1] representing the completed
fraction of the current cycle, and time, an SFTime event specifying the absolute time for a given
simulation tick.

If the enabled exposedField is TRUE, the TimeSensor is enabled and may be running. If a
set_enabled FALSE event is received while the TimeSensor is running, then the sensor should
evaluate and send all relevant outputs, send a FALSE value for isActive, and disable itself.
However, events on the exposedFields of the TimeSensor (such as set_startTime) are processed

M) <r]m

n

and their corresponding eventOuts (startTime changed) are sent regardless of the state of
enabled. The remaining discussion assumes enabled is TRUE.

The loop, startTime, and stopTime exposedFields, and the isActive eventOut and their
affects on the TimeSensor node, are discussed in detail in the " Concepts — Time Dependent
Nodes" section. The "cycle” of an TimeSensor lasts for cycleInterval seconds. The value
of cycleInterval must be greater than 0 (a value less than or equal to 0 produces undefined
results). Because the TimeSensor is more complex than the abstract TimeDep node and gener-
ates continuous eventOuts, some of the information in the " Time Dependent Nodes” section is
repeated here.

A cycleTime eventOut can be used for synchronization purposes, e.g., sound with animation.
The value of a cycleTime eventOut will be equal to the time at the beginning of the current
cycle. A cycleTime eventOut is generated at the beginning of every cycle, including the cycle
starting at startTime. The first cycleTime eventOut for a TimeSensor node can be used as an
alarm (single pulse at a specified time).

When a TimeSensor becomes active it will generate an isActive = TRUE event and begin
generating time, fraction changed, and cycleTime events, which may be routed to other
nodes to drive animation or simulated behaviors (see below for behavior at read time). The time
event outputs the absolute time for a given tick of the TimeSensor (time fields and events represent
the number of seconds since midnight GMT January 1, 1970). fraction changed events output
a floating point value in the closed interval [0, 1], where O corresponds to startTime and 1
corresponds to startTime + N x cycleInterval, where N = 1,2, ... That is, the time and
fraction changed eventOuts can be computed as:

time = now

f = fmod(now — startTime, cyclelnterval)

if (f == 0.0 && now > startTime) fraction_changed = 1.0

else

M) <r]m

n

fraction_changed = f/cyclelnterval

A TimeSensor can be set up to be active at read time by specifying loop TRUE (not the
default) and stopTime <= startTime (satisfied by the default values). The time events output
absolute times for each tick of the TimeSensor — times must start at startTime and end with
either startTime+cycleInterval, stopTime, or loop forever depending on the values of the
other fields. An active TimeSensor must stop at the first simulation tick when time now >=
stopTime > startTime.

No guarantees are made with respect to how often a TimeSensor will generate time events, but a
TimeSensor should generate events at least at every simulation tick. TimeSensors are guaranteed
to generate final time and fraction changed events. If loop is FALSE, the final time event
will be generated with a value of (startTime+cycleInterval) or stopTime (if stopTime >
startTime), whichever value is less. If 1oop is TRUE at the completion of every cycle, then the
final event will be generated as evaluated at stopTime (if stopTime > startTime) or never.

An active TimeSensor ignores set cycleInterval, and set startTime events. An active
TimeSensor also ignores set_stopTime events for set_stopTime < startTime. For example,
if a set_startTime event is received while a TimeSensor is active, then that set_startTime
event is ignored (the startTime field is not changed, and a startTime changed eventOut is
not generated). If an active TimeSensor receives aset_stopTime event that is less than now
and greater than or equal to startTime, it behaves as if the stopTime requested is now and
sends the final events based on now (note that stopTime is set as specified in the eventln).

M) <r]m

n

TouchSensor

TouchSensor {

exposedField SFBool enabled TRUE
eventOut SFVec3f hitNormal_changed
eventOut SFVec3f hitPoint_changed
eventOut SFVec2f hitTexCoord_changed
eventOut SFBool isActive
eventOut SFBool isOver
eventOut SFTime touchTime

}

A TouchSensor tracks the location and state of the pointing device and detects when the user
points at geometry contained by the TouchSensor's parent group. This sensor can be enabled or
disabled by sending it an enabled event with a value of TRUE or FALSE. If the TouchSensor is
disabled, it does not track user input or send output events.

The TouchSensor generates events as the pointing device " passes over’ any geometry nodes
that are descendants of the TouchSensor's parent group. Typically, the pointing device is a 2D
device such as a mouse. In this case, the pointing device is considered to be moving within a
plane a fixed distance from the viewer and perpendicular to the line of sight; this establishes a
set of 3D coordinates for the pointer. If a 3D pointer is in use, then the TouchSensor generates
events only when the pointer is within the user’s field of view. In either case, the pointing device
is considered to " pass over” geometry when that geometry is intersected by a line extending from
the viewer and passing through the pointer's 3D coordinates. If multiple surfaces intersect this
line (hereafter called the bearing), only the nearest will be eligible to generate events.

The is0Over eventOut reflects the state of the pointing device with regard to whether it is over
the TouchSensor’'s geometry or not. When the pointing device changes state from a position

M) <r]m

n

such that its bearing does not intersect any of the TouchSensor's geometry to one in which it
does intersect geometry, an isOver TRUE event is generated. When the pointing device moves
from a position such that its bearing intersects geometry to one in which it no longer intersects
the geometry, or some other geometry is obstructing the TouchSensor's geometry, an isOver
FALSE event is generated. These events are generated only when the pointing device has moved
and changed ‘over state; events are not generated if the geometry itself is animating and moving
underneath the pointing device.

As the user moves the bearing over the TouchSensor's geometry, the point of intersection
(if any) between the bearing and the geometry is determined. Each movement of the point-
ing device, while isOver is TRUE, generates hitPoint changed, hitNormal changed, and
hitTexCoord changed events. hitPoint_changed events contain the 3D point on the surface
of the underlying geometry, given in the TouchSensor’s coordinate system. hitNormal changed
events contain the surface normal vector at the hitPoint. hitTexCoord changed events contain
the texture coordinates of that surface at the hitPoint, which can be used to support the 3D
equivalent of an image map.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor to
generate isActive events (e.g. press the primary mouse button). When the TouchSensor
generates an isActive TRUE event, it grabs all further motion events from the pointing device
until it releases and generates an isActive FALSE event (other pointing device sensors will
not generate events during this time). Motion of the pointing device while isActive is TRUE is
referred to as a "drag”. If a 2D pointing device is in use, isActive events will typically reflect the
state of the primary button associated with the device (i.e. isActive is TRUE when the primary
button is pressed, and FALSE when not released). If a 3D pointing device is in use, isActive
events will typically reflect whether the pointer is within or in contact with the TouchSensor's
geometry.

The eventOut field touchTime is generated when all three of the following conditions are true:

M) <r]m

n

e the pointing device was over the geometry when it was initially activated (isActive is m n u m
TRUE),

e the pointing device is currently over the geometry (isOver is TRUE),
and, the pointing device is deactivated (isActive FALSE event is also generated).

See " Concepts — Pointing Device Sensors”’ for more details.

n

Transform

Transform {

eventIn MFNode addChildren

eventIn MFNode removeChildren
exposedField SFVec3f center 000
exposedField MFNode children (]

exposedField SFRotation rotation 001
exposedField SFVec3f scale 111
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 000
field SFVec3f bboxCenter 00
field SFVec3f bboxSize -1 -1 -1

}

A Transform is a grouping node that defines a coordinate system for its children that is relative
to the coordinate systems of its parents. See also "Concepts — Coordinate Systems and
Transformations.”

See the "Concepts — Grouping and Children Nodes” section for a description of the
children, addChildren, and removeChildren fields and eventlns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Transform'’s
children. This is a hint that may be used for optimization purposes. If the specified bounding box
is smaller than the actual bounding box of the children at any time, then the results are undefined.
A default bboxSize value, (—1,—1,—1), implies that the bounding box is not specified and if
needed must be calculated by the browser. See " Concepts — Bounding Boxes” for a description
of the bboxCenter and bboxSize fields.

M) <r]m

n

The translation, rotation, scale, scaleOrientation and center fields define a geo-
metric 3D transformation consisting of (in order) a (possibly) non-uniform scale about an arbitrary
point, a rotation about an arbitrary point and axis, and a translation. The center field speci-
fies a translation offset from the local coordinate system's origin, (0,0,0). The rotation field
specifies a rotation of the coordinate system. The scale field specifies a non-uniform scale of
the coordinate system — scale values must be >= 0.0. The scaleOrientation specifies a
rotation of the coordinate system before the scale (to specify scales in arbitrary orientations).
The scaleOrientation applies only to the scale operation. The translation field specifies a
translation to the coordinate system.

Given a 3-dimensional point P and Transform node, P is transformed into point P’ in its
parent’s coordinate system by a series of intermediate transformations. In matrix-transformation
notation, where C' (center), SR (scaleOrientation), T’ (translation), R (rotation), and
S (scale) are the equivalent transformation matrices,

P'=TxCxRxSRxSx — SRx — TCxP (where P) is a column vector)

The Transform node:

Transform {

center C

rotation R

scale S

scaleOrientation SR

translation T

children [...]
}

is equivalent to the nested sequence of:
Transform { translation T
Transform { translation C
Transform { rotation R

M) <r]m

n

Transform { rotation SR m n u m

Transform { scale S

Transform { rotation —SR

Transform { tramslation —C

}
} q]

Viewpoint m n u m

n

Viewpoint

Viewpoint {
eventIn SFBool set_bind
exposedField SFFloat fieldOfView 0.785398
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0 0 1 0
exposedField SFVec3f position 0010
field SFString description ""
eventOut SFTime bindTime
eventOut SFBool isBound

}

The Viewpoint node defines a specific location in a local coordinate system from which the user
might view the scene. Viewpoints are " Concepts — Bindable Children Nodes" and thus there
exists a Viewpoint stack in the browser in which the top-most Viewpoint on the stack is the
currently active Viewpoint. If a TRUE value is sent to the set bind eventln of a Viewpoint, it
is moved to the top of the Viewpoint stack and thus activated. When a Viewpoint is at the
top of the stack, the user's view is conceptually re-parented as a child of the Viewpoint. All
subsequent changes to the Viewpoint's coordinate system change the user’s view (e.g. changes
to any parent transformation nodes or to the Viewpoint's position or orientation fields). Sending
a set_bind FALSE event removes the Viewpoint from the stack and results in isBound FALSE
and bindTime events. If the popped Viewpoint is at the top of the viewpoint stack the user's
view is re-parented to the next entry in the stack. See "concepts.htmlIBindableLeafNodes” for
more details on the the binding stacks. When a Viewpoint is moved to the top of the stack, the
existing top of stack Viewpoint sends an isBound FALSE event and is pushed onto the stack.
The Viewpoint node defines a specific location in a local coordinate system from which the user

M) <r]m

n

might view the scene. Viewpoints are " Concepts - Bindable Children Nodes" and thus there
exists a Viewpoint stack in the browser in which the top-most Viewpoint on the stack is the
currently active Viewpoint. If a TRUE value is sent to the set_bind eventln of a Viewpoint, it is
moved to the top of the Viewpoint stack and thus activated. When a Viewpoint is at the top of
the stack, the user’s view is conceptually re-parented as a child of the Viewpoint. All subsequent
changes to the Viewpoint's coordinate system change the user’s view (e.g. changes to any parent
transformation nodes or to the Viewpoint's position or orientation fields). Sending a set bind
FALSE event removes the Viewpoint from the stack and results in isBound FALSE and bindTime
events. If the popped Viewpoint is at the top of the viewpoint stack the user’s view is re-parented
to the next entry in the stack. See " Concepts — Bindable Nodes” for more details on the the
binding stacks. When a Viewpoint is moved to the top of the stack, the existing top of stack
Viewpoint sends an isBound FALSE event and is pushed onto the stack.

Viewpoints have the additional requirement from other binding nodes in that they store the
relative transformation from the user view to the current Viewpoint when they are moved to the
top of stack. This is needed by the jump field, described below.

An author can automatically move the user's view through the world by binding the user to
a Viewpoint and then animating either the Viewpoint or the transformations above it. Browsers
shall allow the user view to be navigated relative to the coordinate system defined by the Viewpoint
(and the transformations above it), even if the Viewpoint or its parent transformations are being
animated.

The bindTime eventOut sends the time at which the Viewpoint is bound or unbound. This
can happen during loading, when aset _bind event is sent to the Viewpoint, or when the browser
binds to the Viewpoint via its user interface (see below).

The position and orientation fields of the Viewpoint node specify relative locations in the
local coordinate system. Position is relative to the coordinate system'’s origin (0,0,0), while
orientation specifies a rotation relative to the default orientation; the default orientation has

M) <r]m

n

the user looking down the —Z axis with +X to the right and +Y straight up. Viewpoints are
affected by the transformation hierarchy.

Navigation types (see Navigationlnfo) that require a definition of a down vector (e.g. terrain
following) shall use the negative Y-axis of the coordinate system of the currently bound Viewpoint.
Likewise navigation types (see NavigationInfo) that require a definition of an up vector shall
use the positive Y-axis of the coordinate system of the currently bound Viewpoint. Note that
the orientation field of the Viewpoint does not affect the definition of the down or up vectors.
This allows the author to separate the viewing direction from the gravity direction.

The jump field specifies whether the user’s view ‘jumps’ (or animates) to the position and
orientation of a bound Viewpoint. Regardless of the value of jump at bind time, the relative
viewing transformation between the user's view and the current Viewpoint shall be stored with
the current Viewpoint for later use when un-jumping. The following is a re-write of the general
bind stack rules described in "Concepts — Bindable Child Nodes, Bind Stack Behavior”
with additional rules regarding Viewpoints (in bold):

1. During read:
e the first encountered Viewpoint is bound by pushing it to the top of the Viewpoint stack,
e nodes contained within Inlines are not candidates for the first encountered Viewpoint,
e the first node within a prototype is a valid candidate for the first encountered View-
point;
e the first encountered Viewpoint sends an isBound TRUE event.
2. When a set_bind TRUE eventln is received by a Viewpoint:
e if it is not on the top of the stack:
e the relative transformation from the current top of stack Viewpoint to the user's view
is stored with the current top of stack Viewpoint,
e the current top of stack node sends an isBound eventOut FALSE,

M) <r]m

n

6.

e the new node is moved to the top of the stack and becomes the currently bound
Viewpoint,
the new Viewpoint (top of stack) sends an isBound TRUE eventOut,
if jump is TRUE for the new Viewpoint, then the user’s view is ‘jumped’ (or animated)
to match the values in the position and orientation fields of the new Viewpoint;

e else if the node is already at the top of the stack, then this event has no affect.
When a set _bind FALSE eventln is received by a Viewpoint:

e it is removed from the stack,

e if it is on the top of the stack:

e it sends an isBound eventOut FALSE,

e the next node in the stack becomes the currently bound Viewpoint (i.e. pop) and
issues an isBound TRUE eventOut,

e if its jump is TRUE the user’s view is ‘jumped’ (or animated) to the position and
orientation of the next Viewpoint in the stack with the stored relative transforma-
tion for with this next Viewpoint applied,

If a set_bind FALSE eventln is received by a node not in the stack, the event is ignored and
isBound events are not sent.

When a node replaces another node at the top of the stack, the isBound TRUE and FALSE
eventOuts from the two nodes are sent simultaneously (i.e. identical timestamps).

If a bound node is deleted then it behaves as if it received a set bind FALSE event (see #3).

Note that the jump field may change after a Viewpoint is bound - the rules described above
still apply. If jump was TRUE when the Viewpoint is bound, but changed to FALSE before the
set_bind FALSE is sent, then the Viewpoint does not un-jump during unbind. If jump was
FALSE when the Viewpoint is bound, but changed to TRUE before the set bind FALSE is sent,
then the Viewpoint does perform the un-jump during unbind.

)<

n

The fieldOfView field specifies a preferred field of view from this viewpoint, in radians.
A small field of view roughly corresponds to a telephoto lens; a large field of view roughly
corresponds to a wide-angle lens. The field of view should be greater than zero and smaller
than PI; the default value corresponds to a 45 degree field of view. The value of field0fView
represents the maximum viewing angle in any direction axis of the view. For example, a browser
with a rectangular viewing projection shall use an angle of field0fView for the larger direction
(depending on aspect ratio) and fieldOfView timesaspect ratio in the smaller direction. If
the aspect ratio is 2x1 (i.e. horizontal twice the vertical) and the fieldOfView is 1.0, then the
horizontal viewing angle would be 1.0 and the vertical viewing angle would be 0.5. field0fView
is a hint to the browser and may be ignored.

The description field identifies Viewpoints that are recommended to be publicly accessible
through the browser’s user interface (e.g. Viewpoints menu). The string in the description
field should be displayed if this functionality is implemented. If description is empty, then the
Viewpoint should not appear in any public user interface. It is recommended that the browser
bind and move to a Viewpoint when its description is selected, either animating to the new
position or jumping directly there. Once the new position is reached both the isBound and
bindTime eventOuts are sent.

The URL syntax ".../scene.wrl#ViewpointName” specifies the user’s initial view when entering
"scene.wrl” to be the first Viewpoint in file "scene.wrl” that appears as "DEF ViewpointName
Viewpoint { ... }" — this overrides the first Viewpoint in the file as the initial user view and
receives a set bind TRUE message. If the Viewpoint "ViewpointName" is not found, then
assume that no Viewpoint was specified and use the first Viewpoint in the file. The URL syntax
"#ViewpointName” specifies a view within the existing file. If this is loaded, then receives a
set_bind TRUE message.

If a Viewpoint is bound (set_bind) and is the child of an LOD, Switch, or any node or prototype
that disables its children, then the result is undefined. If a Viewpoint is bound that results in

)<

n

collision with geometry, then the browser performs its self-defined navigation adjustments as if m n u m

n

the user navigated to this point (see Collision).

VisibilitySensor W<

n

VisibilitySensor >

exposedField SFVec3f center 000

exposedField SFBool enabled TRUE

VisibilitySensor {

exposedField SFVec3f size 000 n
eventOut SFTime enterTime
eventOut SFTime exitTime
eventOut SFBool isActive
}

The VisibilitySensor detects visibility changes of a rectangular box as the user navigates the world.
VisibilitySensor is typically used to detect when the user can see a specific object or region in the
scene, and to activate or deactivate some behavior or animation in order to attract the user or
improve performance.

The enabled field enables and disables the VisibilitySensor. If enabled is set to FALSE,
the VisibilitySensor does not send output events. If enabled is TRUE, then the VisibilitySensor
detects changes to the visibility status of the box specified and sends events through the isActive
eventOut. A TRUE event is output to isActive when any portion of the box impacts the rendered
view, and a FALSE event is sent when the box has no effect on the view. Browsers shall guarantee
that if isActive is FALSE that the box has absolutely no effect on the rendered view — browsers
may error liberally when isActive is TRUE (e.g. maybe it does affect the rendering).

The exposed fields center and size specify the object space location of the box center and
the extents of the box (i.e. width, height, and depth). The VisibilitySensor's box is effected by
hierarchical transformations of its parents.

The enterTime event is generated whenever the isActive TRUE event is generated, and
exitTime events are generated whenever isActive FALSE events are generated.

Each VisibilitySensor behaves independently of all other VisibilitySensors — every enabled Visi-
bilitySensor that is affected by the user's movement receives and sends events, possibly resulting
in multiple VisibilitySensors receiving and sending events simultaneously. Unlike TouchSensors,
there is no notion of a Visibility Sensor lower in the scene graph "grabbing” events. Instanced
(DEF/USE) VisibilitySensors use the union of all the boxes defined by their instances to check for
enter and exit — an instanced VisibilitySensor will detect enter, motion, and exit for all instances
of the box and send output events appropriately.

M) <r]m

n

WorldInfo W <rm

n

WorldInfo W]

field MPFString info []

field SFString title "

n
}

WorldiInfo {

The WorldInfo node contains information about the world. This node has no effect on the visual
appearance or behavior of the world — it is strictly for documentation purposes. The title field
is intended to store the name or title of the world so that browsers can present this to the user —
for instance, in their window border. Any other information about the world can be stored in the
info field — for instance, the scene author, copyright information, and public domain information.

Appearance
Appearance
FontStyle
ImageTexture
Material
MovieTexture

Pixel Texture

TextureTransform

Bindable Nodes
Background
Fog
NavigationInfo
Viewpoint

Common Nodes

AudioClip
DirectionalLight
PointLight
Script

Shape

Sound
SpotLight

WorldInfo

Geometric Properties
Color
Coordinate
Normal
TextureCoordinate
Geometry
Box
Cone
Cylinder
ElevationGrid
Extrusion
IndexedFaceSet
IndexedLineSet
PointSet
Sphere
Text
Grouping nodes
Anchor
Billboard
Collision

Group

Transform

Interpolators

ColorInterpolator
Coordinatelnterpolator
Normallnterpolator
OrientationInterpolator
PositionInterpolator

ScalarInterpolator

Sensors

CylinderSensor
PlaneSensor
ProximitySensor
SphereSensor
TimeSensor
TouchSensor
VisibilitySensor

Special Groups

Inline
LOD
Switch

