
CESNET technical report number 3/2004

Verification Results in Liberouter Project 1

Jan Holeček, Tomáš Kratochvíla, Vojtěch Řehák,
David Šafránek, and Pavel Šimeček

September 16, 2004

1 Abstract

This technical report presents current results of the formal verification of VHDL

design of Liberouter and Scampi hardware accelerator card for packet routing,
originating from the Liberouter project. We use the symbolic model checker
Cadence SMV [SMV] to prove desired properties of separate units of the design.
We have verified many properties of the number of units. Moreover, we have
also gained precious experiences concerning the fight with the state explosion
problem.

2 Introduction

The aim of the Liberouter project [LibWWW] is to design and develop the hard-
ware accelerated router. The most important part of this project is development
of the Combo6 and Scampi hardware accelerator card [Nov04] allowing to route
the most of traffic of Gigabit Ethernet in the hardware.

More introduction into the problematics of the verification in this project can be
found in [VerifVHDLCombo6].

After finishing the technical report [VerifVHDLCombo6] we have found signifi-
cant failures in our verification. Unfortunately, our previous definition of LATRS
register entity was not correct and also further registers (e. g. DFFRS and
DFFERS) were translated in the wrong way (by vl2smv utility).

For this reason we have created new models of these registers. We have also
created new models of the registers in the cases with more than one clock signal,
where it is necessary to have more detailed descriptions (see [FormalVHDL]).

After corrections of our translation process we have focused our effort to the
real model checking of separate units of the design. We have gained precious

1This work is supported by the FP5 project No. IST-2001-32603, the CESNET project 02/2003,
and the GACR grant No. 201/03/0509.

experience. Now we are able to formulate very interesting formulas and pre-
conditions in LTL, furthermore we can manually model (on the very high level
of abstraction) the behavior of certain parts of the design. And this way we are
able to simulate the behavior of the units which create inputs (environment) of
the verified component (see the verification of Statistic Unit).

In this report we would like to present results and experiences with the model
checking of VHDL source in the Liberouter project in the form of description
of verification of single units. Techniques used in verification slightly vary
according to the particular verified unit.

3 Current state of translation process from VHDL
to Cadence SMV

In the technical report [VerifVHDLCombo6] we have introduced our approach to
the translation of VHDL to Verilog and then to the Cadence SMV. After releasing
the report we have found significant errors in the definition of LATRS entity and
we have also found out that further entities representing registers were wrong.
The main reason of these mistakes is based on the fact that vl2smv is not able
to correctly translate always blocks in a Verilog source code.

The first step which have to be done to verify source codes is downloading them
from CVS2. You can download them directly via web interface of our CVS or you
can use anonymous account and CVS client to download the entire CVS.

The process of translation is almost the same as in [VerifVHDLCombo6]. The
difference is in definitions and counts of replaced entities. The process of
translation and substitutions for entities was strongly automatized. We have
created scripts called vhd2v (written in Bash scripting language) and v2smv.pl

(written in Perl), which can be found in our CVS3. vhd2v calls the synthesizer
on the design given in the command line with some optional parameters:

vhd2v [-vhd] DESIGN TO OPTIMIZE [MOD ..] SRC

where DESIGN is the name of the synthesized design, TO OPTIMIZE is the name
of the part of the design to optimize (value - stands for the optimization of the
entire design), MOD is the VHDL module used for synthesis and SRC is the VHDL

module with top-level design.

v2smv.pl calls vl2smv and do few other transformations (e.g. substitutions for
the modules). This is the syntax of its usage:

2http://www.liberouter.org/cgi-bin2/cvsweb.cgi
3http://www.liberouter.org/cgi-bin2/cvsweb.cgi/liberouter/ver/scripts/

CESNET technical report number 3/2004 2

v2smv.pl [-async/-sync] SRC

where SRC is the Verilog source (preferably the one produced by vhd2v) and
parameters have the following meaning:

� -async means that for default substitutions we want to use definitions of
modules determined for designs with multiple clocks placed in
$LIBEROUTER PATH/ver/smv codes/ASYNC

� -sync means that for default substitutions we want to use definitions of
modules determined for designs with single clock placed in
$LIBEROUTER PATH/ver/smv codes/SYNC

LIBEROUTER PATH is the environmental variable (it should represent the root
of local copy of CVS).

3.1 Required Software

This is the list of software required for translation, verification, presentation of
our results:

� LeonardoSpectrum/Precision for VHDL synthesis.
(http://www.mentor.com/4)

� Cadence SMV for model checking.
(http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/5)

� saxon for XSLT transformations of Verification reports.
(http://saxon.sourceforge.net/6)

Of course, these applications require some additional libraries and applications
installed. For example Cadence SMV needs Tk Interface eXtension TIX and
saxon, written in Java, requires Java Runtime Environment (available from web
page of Sun).

3.2 Scampi project translation

This section is about the synthesis of Scampi project and its translation to Verilog

and Cadence SMV.

Working directory for Scampi project is

4http://www.mentor.com/
5http://www-cad.eecs.berkeley.edu/ kenmcmil/smv/
6http://saxon.sourceforge.net/

CESNET technical report number 3/2004 3

$LIBEROUTER PATH/vhdl design/combo6/projects/scampi ph1

In this working directory the content of the file Modules.tcl determines which
modules will be included in the translation. Translation of top level.vhd to
top level.v and then to top level.smv is performed using gmake top level.smv or
just make top level.smv.

This translation is provided by v2smv.pl script and uses the following files:

$LIBEROUTER PATH/vhdl design/combo6/projects/scampi ph1/Makefile
$LIBEROUTER PATH/vhdl design/base/Makefile.fpga.inc (included)

And Leonardo spectrum depends on the following files:

$LIBEROUTER PATH/vhdl design/combo6/projects/scampi ph1/. . .
. . . Leonardo.ver.tcl
$LIBEROUTER PATH/vhdl design/combo6/projects/scampi ph1/Modules.tcl
$LIBEROUTER PATH/vhdl design/base/Leonardo.inc.tcl (included)

The translation to Cadence SMV can produce empty modules. They can be for
example:

DCM, RAM16X1D, RAM32X1D, RAM64X1D, RAMB16 S18 S18, RAMB16 S18 S36,
RAMB16 S9 S18

Keeping these modules empty we abstract from their behavior and so all possible
outputs of these modules are taken in consideration. The reason is that saving
every state of memory module (e. g. RAM16X1D, RAM32X1D) to the computer
memory is unfeasible.

4 Obtaining Assertions

One of the biggest problems is the way of obtaining properties which should be
verified. There are three main sources of assertions:

� Assignment from VHDL designer: verbal description or assertions in com-
ments in VHDL codes (for more details see [VC]).

� Documentation of components contains a large amount of specifications.

� Analysis of VHDL source codes and Applications notes from various
sources (e. g. Xilinx).

CESNET technical report number 3/2004 4

5 Cadence SMV on Different Platforms

Cadence SMV model checker is freely available on the following platforms:
HP/UX, MIPS/IRIX, i386/Linux, Sparc/Solaris and Windows. The latest version of
Cadence SMV is only available on the i386/Linux, Windows and Sparc/Solaris

platforms. Ports to the HP/UX and MIPS/IRIX platforms are no longer being
maintained.

We want to choose the best platform for fast verification process. For this
purpose the test verification was created and the time and space consumed
by Cadence SMV with the test verification as input was analysed. The time
and space consumption on different platforms is shown in logarithmic scale in
Figure 1. We found difference between Cadence SMV versions on different
platforms in memory consuming with the same input. On Windows XP the test
verification never finished. It is unusual because on other platforms the space
consumption was at most 151 MB and on Windows XP the 600 MB of free physical
memory is not enough.

 1

 10

 100

 1000

 1 10 100 1000 10000

sp
ac

e
[M

B
]

time [s]

Complexity graph

126 MB 129 MB
151 MB

Comparison test on Linux
Comparison test SunOS

Comparison test on IRIX64

Figure 1: On Windows XP the test verification not finished (memory exceeded).

Running time of Cadence SMV with the testing input on several different ma-
chines is in Figure 2. These times are the average from two running times. On
every row there is a different computer although it may seem that Pentium 4 2,6

GHz, Linux and Pentium 4 3 GHz, Linux are only identical copy.

For efficient usage of Cadence SMV we recommended computer with the lat-

CESNET technical report number 3/2004 5

��������	�
���
��������������

��������������������������

������
�������������������	

��� !����"�����#���������$�%�

�&���$'�	��&�����
����(��$)

�&���$'�	�����
����(��$)�

�&���$'�	�����
����(��$)�

�&���$'�	���
����(��$)

�&���$'�	���
����(��$)

��������	�
���
����(��$)

�
��� ���� ���� 	��� ���� ���� #���

���

�	�

���

�	�

��	

���

��#�

����

�*& !+&���'&��,��&���*& �,�-!����

.�'&�����&-�����/���& ����0&��& 12

Figure 2: On Windows XP the test verification not finished (memory exceeded).

est Pentium or Athlon with some Linux distribution installed. The psychical
memory size should be 2 GB for huge state spaces.

6 Components Under Verification

We will present selected components from Liberouter and Scampi designs which
we currently verify according to several properties each time the new version of
design appears in CVS. The basic outline of components is depicted in Figure 3.
The highlighted components are currently under verification. Numbers under
components are counts of unique verified properties. The similar properties
are counted as one (see examples of verification to understand what ”similar”
means).

Using the number of examples we would like to present the techniques used to
achieve sufficiently efficient model checking in Cadence SMV.

6.1 Edit Engine

Basic documentation of Edit Engine (EE) is in the Liberouter CVS. [EditEngine]
EE is a block for output packet processing. The record from Priority Queues is the
first input information. It contains pointer to DRAM memory, where the packet
data is stored, pointer to the parameters data structure, and the information on
how to process the packet (so called edit parameters).

When EE gets record from Priority Queues it loads all parameters important
for further processing. Then EE just loads packet data from DRAM memory

CESNET technical report number 3/2004 6

Figure 3: Parts of design under verification with number of properties verified:

and proceeds its processing. The example of EE work is changing L2 header,
decrementation of Hop Limit entry (Time To Live in IPv4), processing Routing
Header, control of ICMPv6, or Encapsulation/Decapsulation of packet in a tunnel.

1. G (! (plx wr and plx rd));

2. G ((!DRAM COM U.RESET and DRAM COM U.START) -> (X
DRAM WR REQ));

3. G ((!DRAM COM U.RESET and DRAM COM U.START) -> (X
DRAM ACK));

4. G ((!DRAM COM U.RESET and DRAM COM U.START) -> (X
DRAM RD REQ));

5. G ((!DRAM COM U.RESET and DRAM COM U.START) -> (X
DRAM DEC REQ));

6. G ((!DRAM COM U.RESET and DRAM COM U.START) -> (X
CTRL U.DRAM FINISH));

7. G (!DRAM COM U.RESET and !((DRAM COM U.INP PTR + 1)
= DRAM COM U.OUT PTR));

CESNET technical report number 3/2004 7

The first assertion is simple mutual exclusion of signal plx wr and plx rd. This
assertion is true and verification takes only 0.62 seconds.

All other assertions are the matter of DRAM COM U (DRAM Scheduler Com-
munication Unit). It is assumed that at the beginning of the run the reset
signal DRAM COM U.RESET resets the DRAM Scheduler Communication Unit
and then the signal DRAM COM U.RESET is supposed to be disabled (to logical
value 0).

The second assertion for WR REQ FSM (Write Request Finite State Machine)
only ensures that after the START signal, which starts communication of DRAM
Scheduler, the signal DRAM WR REQ for writing request will be enabled in one
step.

Similarly for the other assertions. We considered these assertions as one unique
property.

Some of them are even isomorphic and Cadence SMV primarily skips the model
checking process when it finds a model checking problem which is isomorphic
to some that has been already solved in the past. (To prevent this behaviour,
use -force argument, or remove .smv history.)

The fourth assertion is false. The reason is not the bug in design but a very
imperfect specification. More preconditions would have to be added to make
this assertion valid.

The last assertion is very important. DRAM scheduler coordination of data
transfer into PD block using CNT CE FSM (Counter Clock Enable Finite State
Machine). If the condition ”(InputPointer + 1) = OutputPointer” is not satisfied,
then the data that was still not processed will be rewritten. This situation should
not happen.

No matter which abstraction we have used, the state space was always larger
than 4 GB memory. The limit of 4 GB memory is given by our precompiled
binary version of Cadence SMV.

6.2 Sampling Unit

VHDL structure of Scampi [VHDLScampi] project contains 16 Sampling Units

(SAU).

Each can be configured to do:

� probability sampling – the packet is passed through the unit with the
probability 1/n.

� deterministic sampling – each n-th packet is passed through.

CESNET technical report number 3/2004 8

� byte deterministic sampling – the packet containing each n-th byte is
passed through.

The packet could be processed simultaneously in more than one SAU. If the
packet is not passed through any of these units, it is discarded. The required
processing of the packet is coded in the control word. First half of 32-bit control
word is SAMASK – sampling unit assignment. Each SAU has one bit in this bit
array and ’1’ means that packed will be processed by corresponding SAU. The
SAMASK field is masked by the result of SAU processing. The ’1’ is remained
only if the packet is passed through the corresponding SAU.

Special configuration of SAU is the case of deterministic sampling with n=1. this
case represents the situation, when all specified packets are required to pass to
the application.

6.2.1 Assignment from hardware developers

Assertions obtained from hardware developer:

1. Mutual exclusion of control flag and data flag.

2. Mutual exclusion of mode wr and init wr vec.

3. Mutual exclusion of signals CONTROL A, CONTROL B, CON-
TROL C, and CONTROL D.

In the first assertion both signals have been synthesized into NOT control flag

and NOT data flag in component SAU INS notri. These signals are undefined
when one of the resets SAU INS notri.RESET or LRESET is enabled. Hence
the complete formula looks like:

G (! (

(!SAU_INS_notri.RESET) and

(!LRESET) and

SAU_INS_notri.NOT_control_flag and

SAU_INS_notri.NOT_data_flag

));

The second assertion is a mutual exclusion of signal mode wr and vector of 16
signals init wr vec in component SAU INS notri again.

Signal mode wr is synthesized into signal nx72 and vector init wr vec is syn-
thesized into 16 signals nx57, nx58, .., nx71, nx73. No bit of vector
init wr vec should be enabled, when mode wr is enabled, hence the formula

CESNET technical report number 3/2004 9

of mutual exclusion should be G (! (SAU INS notri.nx72 and SAU INS notri.nx57

and SAU INS notri.nx58 and ... and SAU INS notri.nx73);

The third assertion was not verified. It is due to the size of the state space
generated by the resulting formula:

G (! (SAU_INS_notri.sau_cores_0_U_SAU_CORE.CONTROL_A and

SAU_INS_notri.sau_cores_0_U_SAU_CORE.CONTROL_B and

SAU_INS_notri.sau_cores_0_U_SAU_CORE.CONTROL_C and

SAU_INS_notri.sau_cores_0_U_SAU_CORE.CONTROL_D));

In each tested abstraction the state space was larger than 4 GB memory. Same
as it was for the last assertion in Edit Engine component.

6.3 Header Field Extractor

Header Field Extractor (HFE) processes the instructions stored in block RAM.
Its purpose is to perform packet analysis and store packets into DRAM. HFE is
implemented as a full scope processor that is controlled by binary instructions.
These instructions form a program that may be described by an assembler. If the
parsing program has to be modified or extended in the future, only the parsing
program will have to be updated without changing the hardware design.

6.3.1 Basic assignment

We have chosen the subcomponent HFE CORE, because in due time the top-
level design was in the continuous development. Below are assertions from
developer and from our mind using developer’s description of the design:

1. G F (loop cntr 0 or loop cntr 1 or loop cntr 2 or loop cntr 3
or loop cntr 4 or loop cntr 5 or loop cntr 6 or loop cntr 7);

2. G ((indd inc -> (not indd dec)) and (indd dec -> (not
indd inc)))

3. G ((set int -> (not clear int)) and (clear int -> (not set int)))

4. ((not CLK) U G (not ((shortcut en and sel gpr) or (shortcut en
and sel din) or (shortcut en and sel din i) or (sel gpr and
sel din) or (sel gpr and sel din i) or (sel din and sel din i))
));

5. G ((ds ren -> F (not ds ren)) and ((not ds ren) -> F ds ren))

The first assertion is devised by the verifier. It can be rewritten into the assertions
described in [VC] as:

CESNET technical report number 3/2004 10

loop cntr is always alive

This assertion is true, when we specify some additional preconditions about the
instruction input, as it will be shown in the next subsection.

The second and the third were assigned by the developer in this form (which is
described in [VC]):

� exclusion indd inc, indd dec

� exclusion set int, clear int

Here we can see that for a developer it is very easy to understand what the
exclusion of signals is.

Unfortunately it was not the case of the fifth assertion that was given by this
assignment: alive ds ren

ds ren is the signal, which value determines whether it is possible to read data.
Of course it is very natural to think about it in such a way that we would like to be
always able to see the signal ds ren enabled (equal to 1) in the future. But is it
true to specify it in a way the designer did? No, because this requirement strongly
depends on instructions which are processed by the processor (coming from
processor input). But we do not have instructions for the processor encoded
in the design. Therefore if it will always come NOP, then ds ren signal will
be 0 forever. And this is only one of many possible counterexamples falsifying
activeness of ds ren.

The fourth assertion was given by developer in this form:

exclusion shortcut en, sel gpr, sel din, sel din i

It is valid, but it is also very special. This is the fragment of code of HFE CORE
(hfe core.vhd, version 1.10):

-- Data in bus address decoder

din_addr_decoder : process(clk,src_addr_i, dst_addr_i,

res_wen_reg, acc_wen_reg)

begin

if clk’event and clk = ’1’ then

sel_gpr <= ’0’;

sel_din <= ’0’;

sel_din_i <= ’0’;

shortcut_en <= ’0’;

if ((src_addr_i = dst_addr_i) and

CESNET technical report number 3/2004 11

(res_wen_reg = ’1’)) or

-- ”shortcut” enable process

. . .

Here you can see that signals sel gpr, sel din, sel din i and shortcut en

are set by the edge of clock. But they are not set by signal reset. Nevertheless it
is not the fault, because it suffices to initialize the signal at the first tick of clock.
Suppose that formula Frm expresses mutual exclusion of those four signals.
Then the validity of Frm can be falsified by the run where all four signals are
initialized to 1 (it is possible, because they are not reset at the beginning of the
run). Therefore we have to create new formula, that exactly corresponds to the
requirement of exclusivity after the first tick of clocks:

(not CLK) U Frm

This formula assumes that signal CLK representing clock is initialized to 0. This
is given as a precondition:

not CLK

In this place it is also proper to list some basic preconditions we made about
the system:

1. RESET and X G not RESET . . . It means that signal RESET is 1 only at the
first state and then it is 0.

2. G ((F CLK) and (F not CLK)). . . It means that clock is always changed
in future.

3. assert (not CLK). . . It means that clock is initiated to zero (we do not have
to use this precondition always)

As we have continued in trying to prove the assertions, we were continuously
persuaded by model checker, that these assertions are false, if we use such a
small count of preconditions. Therefore we had to enlarge the set of precondi-
tions according to the counterexample we had got from the model checker for
the given LTL formula.

6.3.2 More preconditions

In the case of LTL formulas number 2, 3 and 4 only first two preconditions from
the given above suffice to show validity of assertions. In the case of the first LTL

formula we get validity only if we add many additional (but valid) preconditions.

CESNET technical report number 3/2004 12

First we have to assign the precondition saying that instruction REPI comes in-
finitely times. In general it has not to be true, but we want to verify, that there is
no obstacle to correctly increase and decrease loop cntr in future. The obsta-
cle should not be the absence of REPI instructions, because we know that REPI
instructions are the only instructions working with loop cntr and therefore
these instructions are the only possible source of liveness of loop cntr.

G F ((INSTR IN1[17..10] = 30 and not reg pc sel) or
(INSTR IN2[17..10] = 30 and reg pc sel))

The instruction REPI has one argument. If this argument was always zero,
then the REPI instruction would not cause the increase of loop cntr and the
assertion would not be true. Therefore we have to add one more precondition:

G ((INSTR IN1[17..10] = 30 -> INSTR IN1[7..0]>=2) and
(INSTR IN2[17..10] = 30 -> INSTR IN2[7..0]>=2))

Unfortunately it does not suffice for validity of the first assertion. The rea-
son is the asynchronism of the instruction input (signal buses INSTR IN1 and
INSTR IN2). This piece of code is the only piece, that modifies loop cntr:

if reset = ’1’ then

loop_cntr <= (others => ’0’);

...

elsif clk’event and clk = ’1’ then

...

if lc_wen=’1’ then

loop_cntr <= ALU_RES(7 downto 0) - 1;

end if;

if from_loop_ld = ’1’ then -- write to loop_cntr

loop_cntr <= instruction(7 downto 0)-1;

elsif loop_in_progress = ’1’ and lc_gtz=’1’

and stop=’0’ then

loop_cntr <= loop_cntr - 1;

end if;

end if;

Signal from loop ld is dependent only on the instruction input (when REPI

instruction occurs). Instruction input is not explicitly synchronized with clock
and hence REPI can cause enabling of from loop ld for so short time that it is
not noticed by the above code synchronized with clock.

This would cause invalidity of the first LTL formula. Therefore we have to add
the set of preconditions, which set the synchronism of instruction input with
clock:

CESNET technical report number 3/2004 13

G (X CLK -> CLK)->(INSTR IN1[0]<->X INSTR INi[bit])

where i is the number of the instruction bus (it can be 1 or 2) and bit is the number
of the single bit (it can be from 0 to 17). Therefore the set of preconditions setting
synchronism of instruction bus with clock contains 36 preconditions.

All assertions except for the liveness ofds renhas been found true. To be able to
finish the model checking of single formulas we had to make the abstraction. We
have deleted the content of HFE ALU. This abstraction has broken the relation
between the present content of the most of registers and the far history, because
HFE ALU lies on the circular way of the data through the registers of HFE.

6.4 Unified Header FIFO

Unified Header FIFO (UHFIFO) is the data queue between HFE and LUP (Look
up Processor). UHFIFO was verified continuously during the development.
The verifications from year 2003 are not fully reliable because there were some
mistakes in the verification procedures and verifications were not repeated.
The more reliable and interesting verification was the verification of UHFIFO

exported on 22/02/2004 and 18/04/2004.

6.4.1 Export from 22/02/2004

This export corresponds to the version 1.1 of uh fifo.vhd in the new CVS
repository. It is the old version of UHFIFO that had to be redesigned because of
problems connected with two clocks in one design. But from the simple point
of view, when we work on the level of abstraction where these problems do not
occur, this model works well.

<h4>Basic assignment</h4>

We have verified this set of assertions:

1. alive ready

2. globally if (ready(conv integer(unsigned(lup block)))) then ((hfe block <>

lup block) or (not write i))

3. (hfe block does not change after HFE RDY=1 until hfe is producing=1)

or (hfe block does not change forever after HFE RDY=1)

4. (uh valid=0 after HFE RDY=1 until HFE VALID=1) or

(uh valid=0 forever after HFE RDY=1)

5. HFE RDY=1 infinitely-times

6. hfe is producing=1 infinitely-times

CESNET technical report number 3/2004 14

First two assertions are given by the developer. The others are devised by the
verifier. Rewriting to LTL was not so easy as it could seem. The first assertion is
rewritten to the set of 32 LTL formulas:

� 16 formulas of the form not (F G ready i) . . . it means that i-th bit of ready
does not stay constant 1 in the future.

� 16 formulas of the form not (F G not ready i) . . . it means that i-th bit of
ready does not stay constant 0 in the future.

The transcription to the 32 formulas instead of the single one is necessary mainly
for the memory complexity reasons.

For the purpose of formal verification the second assertion is simplified so that
lup block is substituted by 0 (therefore we verify the assertion only for one
of sixteen possible values of lup block). It is probably not wrong because
cases of the verification for different values of lup block look very similar. The
simplified assertion is this one:

globally if ready(0) and LUP ADDR[8..5]=0 then (hfe block or not

write i)

It can be easily rewritten to LTL (some variables are substituted by their real
counterparts in the SMV code):

G ((ready 0 and LUP ADDR[8..5]=0) -> (hfe block 0 or hfe block 1

or hfe block 2 or hfe block 3 or not (HFE WEN and hfe allocated)))

Third assertion is rewritten to LTL using 8 formulas:

� 4 formulas of the form

G ((HFE RDY and hfe block i)->

((hfe block i U hfe is producing) or (G hfe block i)))

where i is the number of bit (from 0 to 3)

� 4 formulas of the form

G ((HFE RDY and not hfe block i)->

(((not hfe block i) U hfe is producing) or (G not hfe block i)))

where i is the number of bit (from 0 to 3)

The rest of assertions is rewritten to LTL in this way:

CESNET technical report number 3/2004 15

� G (HFE RDY -> ((G not uh valid) or ((not X uh valid) U hfe is producing)))

� G F HFE RDY

� G F hfe is producing

The assertions 3 and 4 need only the precondition restricting the signal RESET
to be valid:

RESET and X G (not RESET). . . This means that signal RESET is 1
only at the first state and then it is 0.

More preconditions

The rest of assertions needs many more preconditions. These preconditions
model the behavior of inputs (sometimes with regard to outputs). There is the
list of preconditions used in verification of the rest of assertions.

� G ((F HFE CLK) and (F not HFE CLK)). . . HFE CLK=1 infinitely-times and
also HFE CLK=0 infinitely-times

� G ((F LUP CLK) and (F not LUP CLK)). . . LUP CLK=1 infinitely-times and
also LUP CLK=0 infinitely-times

� G F (HFE REQ). . . HFE REQ=1 infinitely-times

� G F (LUP SR CLEAN). . . LUP SR CLEAN=1 infinitely-times

� G (HFE RDY -> F not HFE REQ). . . After enabling of HFE READY, HFE REQ

will be disabled

� G (LUP SR VALID -> F LUP SR CLEAN). . . There comes LUP SR CLEAN=1

after LUP SR VALID=1

� This formula is so big that it is better to write it structured:

G (

((LUP_ADDR[5] xor (X LUP_ADDR[5])) or

(LUP_ADDR[6] xor (X LUP_ADDR[6])) or

(LUP_ADDR[7] xor (X LUP_ADDR[7])) or

(LUP_ADDR[8] xor (X LUP_ADDR[8]))) ->

(

(X not LUP_SR_CLEAN) and

X (

(not ((LUP_ADDR[5] xor (X LUP_ADDR[5])) or

CESNET technical report number 3/2004 16

(LUP_ADDR[6] xor (X LUP_ADDR[6])) or

(LUP_ADDR[7] xor (X LUP_ADDR[7])) or

(LUP_ADDR[8] xor (X LUP_ADDR[8]))))

U LUP_SR_CLEAN

)

)

);

After change of LUP ADDR there is no further change of LUP ADDR until
LUP SR CLEAN=1. The only magic about this formula are the positions of
X operators.

� G F ((LUP ADDR[5] xor (X LUP ADDR[5])) or

(LUP ADDR[6] xor (X LUP ADDR[6])) or

(LUP ADDR[7] xor (X LUP ADDR[7])) or

(LUP ADDR[8] xor (X LUP ADDR[8])))

. . . LUP ADDR[8..5] is not constant

� LUP ADDR[8..5]=0 . . . LUP ADDR[8..5] is initialized to zero

� hfe block 0 =0 and hfe block 1 =0 and hfe block 2 =0 and hfe block 3 =0

. . . hfe block is initialized to zero

� G ((LUP ADDR[8..5]=x) -> X((LUP ADDR[8..5]=x) or (LUP ADDR[8..5]=y)

)), where x is a value from 0 to 15 and y=x+1 mod 16 . . . LUP ADDR[8..5]

can only be the constant or it can increase (except for the overflow, of
course)

� G (((X HFE CLK) -> HFE CLK) -> ((HFE REQ<->X HFE REQ))). . . HFE REQ

is synchronized with clock of HFE

� G (((X LUP CLK) -> LUP CLK) -> ((LUP SR CLEAN<->X LUP SR CLEAN)))

. . . LUP SR CLEAN is synchronized with clock of LUP

6.4.2 Export from 18/04/2004

This is absolutely new implementation of UHFIFO implemented using compo-
nent DP REGFLAGS = Dual Ported Register of Flags. We want to verify the same
properties as in the case of the previous implementation. Fortunately inner sig-
nals used in formulas remained unchanged. Therefore it is possible to simply
run the verification with the same formulas and preconditions as in the previous
implementation.

But if you simply repeat the verification in the same way as above it will not
finish because of high memory complexity. There is not any other way than that
of making changes inside of VHDL code. We have decided to shrink the length

CESNET technical report number 3/2004 17

of FIFO to only 4 items. Of course, this modification may cause that the formula
which is valid for the modified code would not be valid for the original one, but
it is the matter of good reasoning of the verifier to choose formulas, which are
valid equivalently in both designs. Formal proof of this equality would be hard
and a lot of time consuming.

There are LTL formulas for the shrunk UHFIFO:

1. � 4 formulas of the form not (F G ready i) . . . it means that i-th bit of
ready does not stay constant 1 in the future.

� 4 formulas of the form not (F G not ready i) . . . it means that i-th bit
of ready does not stay constant 0 in the future.

2. G ((ready 0 and (LUP ADDR[8..7]=0)) -> (hfe block 0 or hfe block 1 or

not (HFE WEN and hfe allocated)))

3. � 2 formulas of the form G ((HFE RDY and hfe block i)->((hfe block i
U hfe is producing) or (G hfe block i))) where i is the number of bit
(from 0 to 1)

� 2 formulas of the form G ((HFE RDY and not hfe block i)->(((not

hfe block i) U hfe is producing) or (G not hfe block i))) where i is
the number of bit (from 0 to 1)

4. G (HFE RDY -> ((G not uh valid) j ((not X uh valid) U hfe is producing)))

5. G F HFE RDY

6. G F hfe is producing

There are preconditions for the shrunk UHFIFO:

� RESET and X G (not RESET)

� G ((F HFE CLK) and (F not HFE CLK))

� G ((F LUP CLK) and (F not LUP CLK))

� G F (HFE REQ)

� G F (LUP SR CLEAN)

� G (HFE RDY -> F not HFE REQ)

� G (LUP SR VALID -> F LUP SR CLEAN)

CESNET technical report number 3/2004 18

� G (

((LUP_ADDR[7] xor (X LUP_ADDR[7])) or

(LUP_ADDR[8] xor (X LUP_ADDR[8]))) ->

(

(X not LUP_SR_CLEAN) and

X (

(not ((LUP_ADDR[7] xor (X LUP_ADDR[7])) or

(LUP_ADDR[8] xor (X LUP_ADDR[8]))))

U LUP_SR_CLEAN

)

)

);

� G F ((LUP ADDR[7] xor (X LUP ADDR[7])) or

(LUP ADDR[8] xor (X LUP ADDR[8])))

� LUP ADDR[8..7]=0

� hfe block 0 =0 and hfe block 1 =0 and hfe block 2 =0 and hfe block 3 =0

� G ((LUP ADDR[8..7]=x) -> X((LUP ADDR[8..7]=x) or (LUP ADDR[8..7]=y)

)), where x is a value from 0 to 3 and y=x+1 mod 4

� G (((X HFE CLK) -> HFE CLK) -> ((HFE REQ<->X HFE REQ))). . . HFE REQ

is synchrinized with clock of HFE

� G (((X LUP CLK) -> LUP CLK) -> ((LUP SR CLEAN<->X LUP SR CLEAN)))

. . . LUP SR CLEAN is synchronized with clock of LUP

The VHDL code of the shrunk UHFIFO is placed in the Appendix A The model
checking for the shrunk UHFIFO runs relatively fast.

By the process of verification there have not been found any mistakes in the
design of UHFIFO, but surprisingly the mistakes have been found in LUP, which
was under development at that time. LUP did not control the part of signals
leading to UHFIFO. This mistake was found during the search for the possi-
ble preconditions for UHFIFO. It was not found by the model checker, but by
verificators during studying of the source code of LUP.

6.5 Statistic Unit

Currently there have been verified only properties of the part STU LENGTH

of the Statistic Unit, because the part for the processing of time stamps has not
been implemented yet. The verification of STU LENGTH has been very specific,
because we have focused our attention to the mechanism of addressing in this

CESNET technical report number 3/2004 19

unit. LBCONN MEM is accessing the same memory at the same time as the
finite state machine inside STU LENGTH. Therefore, it is necessary that the
highest bit of the address used by LBCONN MEM and the finite state machine of
STU LENGTH has to be different. The highest bit of the address is called a bank.
LBCONN MEM sets the bank used by the finite state machine of STU LENGTH

in the following way:

1. LBCONN MEM sends the special address value via the address bus.

2. Concurrently with the special address value LBCONN MEM sends a new
flag register value and the new bank value is the part of the flag register.

It is wanted to verify that the bank stored in STU LENGTH is always the inverse
of the bank used by LBCONN MEM for an access to the memory.

6.5.1 The different approaches to the verification

The first approach to the verification of this property was very simple. We took
the component STU LENGTH together with the component LBCONN MEM and
translated the code to SMV. But the verification of even the simple properties
did not finish in the time limit. The reason was the complex structure of
LBCONN MEM.

This situation is now solved by the abstraction. The component LBCONN MEM

has been be deleted. This simple abstraction would cause invalidity of the prop-
erty. First we were trying to put additional preconditions on the signals leading
from LBCONN MEM, but the set of preconditions was too large, complex and
finally even incorrect. We were not capable to set the sufficiently detailed be-
havior of LBCONN MEM only using the preconditions written in LTL. Therefore
we have created the abstract model of LBCONN MEM (it has not been proved
that it is correct abstract model, but we believe it) - the source code of this
abstract model can be found in Appendix B.

Furthermore it has been given by developer that the clock of LBCONN MEM

can be at most twice as fast as the clock of STU LENGTH . This precondition has
played the important role in the verification. Again it seems too hard to write
the formula expressing such a property of clock. Therefore the system of clocks
has been modeled in SMV :

init(LBCLK) := 0;

init(lbclk_count) := 0;

init(CLK) := 0;

if ((LBCLK=0) && (lbclk_count=2))

CESNET technical report number 3/2004 20

--no lbclk edge when the count of lbclk is high

aux_lbclk := 0;

else

aux_lbclk := {0,1};

next(LBCLK) := aux_lbclk;

if (CLK=0 & lbclk_count=0)

--no clk edge when the count of lbclk is low

aux_clk := 0;

else

aux_clk := {0,1};

next(CLK) := aux_clk;

--computation of lbclk_count:

if (CLK=0 & aux_clk=1)

{

if (LBCLK=0 & aux_lbclk=1)

next(lbclk_count) := lbclk_count;

else

next(lbclk_count) := 0;

}

else

{

if (LBCLK=0 & aux_lbclk)

next(lbclk_count) := lbclk_count + 1;

else

next(lbclk_count) := lbclk_count;

}

The developer also states that READY is enabled at most each 5 ticks of clock. It
has been modeled in SMV this way:

init(READY) := 0;

init(delay_ready) := 0;

delay_ready_decrease := {0,1};

if (CLK=0 & aux_clk=1)

{

if (delay_ready~=0)

{

if (delay_ready_decrease)

CESNET technical report number 3/2004 21

{ next(delay_ready) := delay_ready - 1; }

else { next(delay_ready) := delay_ready; }

next(READY) := 0; --while waiting producing 0

}

else

{

--after at most 5 ticks it decides to produce 1:

next(delay_ready) := 5;

next(READY) := 1;

}

}

else { next(READY) := READY; }

The LTL property, which has been verified in the system with the above modi-
fications, is the following:

G (not en reg 5 and (reg phase 1 or reg phase 2 or reg phase 3 or

reg phase 4) ->

(not reg addr out 8 <-> br addr lb 9))

To prove it we only need these two basic preconditions:

� RESET and (X G not RESET). . . This means that signal RESET is 1 only at
the first state and then it is 0.

� (G F CLK) and (G F not CLK). . . This means that clock is always changed
in future.

Take notice that the source code of abstract model of LBCONN MEM in Ap-

pendix B contains the variable delay, which sets the speed of abstract model
of LBCONN MEM. The delay is set to 8 ticks of LB CLK. If it was less than 8
ticks, the design would be incorrect, because LBCONN MEM would be able to
read from the address with new bank earlier than STU LENGTH would be able
to finish the writing operation to the address with the old bank. Therefore the
conflict would be possible. In fact this way it has been shown that LBCONN MEM

may change its outputs at most each 8 ticks of LB CLK. There arises the new task
for a verification of LBCONN MEM.

There has been also verified the property of the phase register, which says, that
any of bits of the phase register does not remain a zero forever. Expressed in
LTL as:

not F G reg phase i = 0 . . . where i is the index of the bit in the
phase register.

CESNET technical report number 3/2004 22

There is only needed one more precondition (together with two above):

G F READY . . . READY is infinitely-times 1

7 Conclusion

In this paper it has been shown that in the complex formal verification we
have to use techniques which are not absolutely formal. For example in the
verification of UHFIFO a shrunk model was used without any proof of equality
of LTL formulas in the shrunk and in the original model. This is because of the
lack of time for the verification. If the verification was finished one year after
the design it would be useless.

It has been also shown that the fight with the state explosion problem may be
not always successful. When it is successful, it is often in spite of the price of
large changes in the model. It was found out that the space complexity is not
directly dependent on the length of source code or the count of registers. By the
virtue of cone of influence it more depends on the complexity of an LTL formula
and the variables which appear in the formula (including the variables which
affect the value of these variables).

On one hand we have gained the pessimistic results, because we had to do many
changes in the design and write large amounts of preconditions ourselves. It
took a lot of time and human resources. On the other hand we have shown that
even using such simple freeware verification tool as Cadence SMV it is possible
to verify the large amount of complex properties of hardware components.

8 Appendix A - the source code of shrunk UHFIFO

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

library unisim;

use unisim.all;

entity UH_FIFO is

port(

-- HFE interface

HFE_DOUT : in std_logic_vector(15 downto 0);

HFE_ADDR : in std_logic_vector(5 downto 0);

HFE_RDY : out std_logic; -- Control signals

CESNET technical report number 3/2004 23

HFE_REQ : in std_logic;

HFE_WEN : in std_logic;

HFE_CLK : in std_logic;

-- LUP interface

-- whether cell contains unfied header:

LUP_SR_VALID : out std_logic;

-- clean addressed cell:

LUP_SR_CLEAN : in std_logic;

LUP_DATA : out std_logic_vector(31 downto 0);

LUP_ADDR : in std_logic_vector(8 downto 0);

LUP_CLK : in std_logic;

RESET : in std_logic

);

end UH_FIFO;

architecture behavioral of UH_FIFO is

signal hfe_block : std_logic_vector(1 downto 0);

signal hfe_block_aux : std_logic_vector(1 downto 0);

signal ready : std_logic_vector(3 downto 0);

signal reg_ready : std_logic_vector(3 downto 0);

signal hfe_allocated : std_logic;

signal addra_i : std_logic_vector(9 downto 0);

signal write_i : std_logic;

signal uh_valid : std_logic;

signal hfe_is_producing : std_logic;

signal hfe_rdy_i : std_logic;

signal lup_block : std_logic_vector(1 downto 0);

signal gnd_bus : std_logic_vector(31 downto 0);

signal gnd : std_logic;

signal pwr : std_logic;

component RAMB16_S18_S36

port (

ADDRA: IN std_logic_vector(9 downto 0);

ADDRB: IN std_logic_vector(8 downto 0);

DIA: IN std_logic_vector(15 downto 0);

DIB: IN std_logic_vector(31 downto 0);

DIPA: IN std_logic_vector(1 downto 0);

CESNET technical report number 3/2004 24

DIPB: IN std_logic_vector(3 downto 0);

WEA: IN std_logic;

WEB: IN std_logic;

CLKA: IN std_logic;

CLKB: IN std_logic;

SSRA: IN std_logic;

SSRB: IN std_logic;

ENA: IN std_logic;

ENB: IN std_logic;

DOA: OUT std_logic_vector(15 downto 0);

DOB: OUT std_logic_vector(31 downto 0);

DOPA: OUT std_logic_vector(1 downto 0);

DOPB: OUT std_logic_vector(3 downto 0));

END component;

component dp_regflags

generic(

EXADDR : integer

);

port(

RESET : in std_logic;

-- SET part

CLK_SET : in std_logic;

SET : in std_logic;

ADDR_SET : in std_logic_vector(EXADDR-1 downto 0);

DO_SET : out std_logic;

-- CLR part

CLK_CLR : in std_logic;

CLR : in std_logic;

ADDR_CLR : in std_logic_vector(EXADDR-1 downto 0);

DO_CLR : out std_logic;

DO_ALL : out std_logic_vector((2**EXADDR)-1 downto 0)

);

end component;

begin

gnd_bus <= ”00000000000000000000000000000000”;

CESNET technical report number 3/2004 25

gnd <= ’0’;

pwr <= ’1’;

lup_block <= LUP_ADDR(8 downto 7); --PP

addra_i <= hfe_block & ”00” & HFE_ADDR; --PP

write_i <= HFE_WEN and hfe_allocated;

HFE_RDY <= hfe_rdy_i;

hfe_communication:process(HFE_CLK, RESET)

begin

if reset = ’1’ then

hfe_rdy_i <= ’0’;

hfe_allocated <= ’0’;

hfe_is_producing <= ’0’;

hfe_block <= ”00”; --PP

hfe_block_aux <= ”00”; --PP

uh_valid <= ’0’;

elsif HFE_CLK’event and HFE_CLK = ’1’ then

uh_valid <= ’0’;

hfe_rdy_i <= ’0’;

if HFE_REQ=’1’ then

if hfe_is_producing=’1’ then

uh_valid <= ’1’;

hfe_block <= hfe_block+1;

hfe_is_producing <= ’0’;

hfe_allocated <= ’0’;

elsif reg_ready(conv_integer(unsigned(

hfe_block)))=’0’ then

hfe_rdy_i <= ’1’;

hfe_allocated <= ’1’;

hfe_block_aux <= hfe_block;

end if;

elsif hfe_allocated=’1’ then

hfe_is_producing<=’1’;

end if;

end if;

end process;

reg_ready_proc: process(HFE_CLK,RESET)

begin

if reset=’1’ then

CESNET technical report number 3/2004 26

reg_ready <= (others => ’0’);

elsif HFE_CLK’event and HFE_CLK=’1’ then

reg_ready <= ready;

end if;

end process;

block_ram: RAMB16_S18_S36 port map(

ADDRA => addra_i,

ADDRB => LUP_ADDR,

DIA => HFE_DOUT,

DIB => gnd_bus,

DIPA => gnd_bus(1 downto 0),

DIPB => gnd_bus(3 downto 0),

WEA => write_i,

WEB => gnd,

CLKA => HFE_CLK,

CLKB => LUP_CLK,

SSRA => gnd,

SSRB => gnd,

ENA => pwr,

ENB => pwr,

DOA => open,

DOB => LUP_DATA,

DOPA => open,

DOPB => open

);

flags: dp_regflags

generic map(

EXADDR => 2 --PP

)

port map(

RESET => RESET,

-- SET part

CLK_SET => HFE_CLK,

SET => uh_valid,

ADDR_SET => hfe_block_aux,

DO_SET => open,

-- CLR part

CLK_CLR => LUP_CLK,

CLR => lup_sr_clean,

CESNET technical report number 3/2004 27

ADDR_CLR => lup_block,

DO_CLR => LUP_SR_VALID,

DO_ALL => ready

);

end behavioral;

9 Appendix B - the source code of abstract model
of LBCONN MEM

module \lbconn_mem_524288_13_notri (

\ADDR ,\nx1653 ,\LBLAST ,\nx1797 ,\nx1603 ,\NOT_lb_oen ,

\LBFRAME_modgen_select_12 , \data_in_reg_0_ ,\DATA_IN ,

\data_in_reg_1_ ,\data_in_reg_2_ ,\data_in_reg_3_ ,

\data_in_reg_4_ ,\data_in_reg_5_ ,\data_in_reg_6_ ,

\data_in_reg_7_ ,\data_in_reg_8_ ,\data_in_reg_9_ ,

\data_in_reg_10_ ,\data_in_reg_11_ ,\data_in_reg_12_ ,

\data_in_reg_13_ ,\data_in_reg_14_ ,\data_in_reg_15_ ,

\DATA_OUT ,\LBAD ,\RW ,\LBAS_modgen_select_11 ,\LBRW ,

\EN ,\LBCLK , LBCLK_NEXT ,\RESET ,\ARDY_modgen_select_6 ,

\SEL ,\DRDY){

output \ADDR : array 12..0 of boolean resolve;

\nx1653 : boolean resolve;

input \LBLAST : boolean resolve;

\nx1797 : boolean resolve;

\nx1603 : boolean resolve;

\NOT_lb_oen : boolean resolve;

input \LBFRAME_modgen_select_12:array 9..9 of boolean resolve;

\data_in_reg_0_ : boolean resolve;

input \DATA_IN : array 15..0 of boolean resolve;

\data_in_reg_1_ : boolean resolve;

\data_in_reg_2_ : boolean resolve;

\data_in_reg_3_ : boolean resolve;

\data_in_reg_4_ : boolean resolve;

\data_in_reg_5_ : boolean resolve;

\data_in_reg_6_ : boolean resolve;

\data_in_reg_7_ : boolean resolve;

\data_in_reg_8_ : boolean resolve;

CESNET technical report number 3/2004 28

\data_in_reg_9_ : boolean resolve;

\data_in_reg_10_ : boolean resolve;

\data_in_reg_11_ : boolean resolve;

\data_in_reg_12_ : boolean resolve;

\data_in_reg_13_ : boolean resolve;

\data_in_reg_14_ : boolean resolve;

\data_in_reg_15_ : boolean resolve;

output \DATA_OUT : array 15..0 of boolean resolve;

input \LBAD : array 15..0 of boolean resolve;

\RW : boolean resolve;

input \LBAS_modgen_select_11:array 9..9 of boolean resolve;

input \LBRW : boolean resolve;

\EN : boolean resolve;

input \LBCLK : boolean resolve;

input LBCLK_NEXT : boolean resolve;

input \RESET : boolean resolve;

input \ARDY_modgen_select_6:array 9..9 of boolean resolve;

\SEL : boolean resolve;

input \DRDY : boolean resolve;

gener_data: array 8..0 of boolean resolve;

bank: boolean resolve;

aux_bank: boolean resolve;

action: array 2..0 of boolean resolve;

aux_action: array 2..0 of boolean resolve;

delay: array 4..0 of boolean resolve;

init(bank) := 1;

init(action) := 0;

init(gener_data) := 0;

init(DATA_OUT) := 1;

init(RW) := 0;

init(delay) := 0;

if (LBCLK=0 && LBCLK_NEXT=1)

{

if (delay~=0)

{

next(delay) := delay - 1;

next(DATA_OUT) := DATA_OUT;

next(action) := action;

next(gener_data) := gener_data;

next(bank) := bank;

CESNET technical report number 3/2004 29

next(RW) := RW;

}

else

{

next(delay) := 5;

next(DATA_OUT[0]) := {0,1};

next(DATA_OUT[2]) := {0,1};

next(DATA_OUT[3]) := {0,1};

next(DATA_OUT[4]) := {0,1};

next(DATA_OUT[5]) := {0,1};

next(DATA_OUT[6]) := {0,1};

next(DATA_OUT[7]) := {0,1};

next(DATA_OUT[8]) := {0,1};

next(DATA_OUT[9]) := {0,1};

next(DATA_OUT[10]) := {0,1};

next(DATA_OUT[11]) := {0,1};

next(DATA_OUT[12]) := {0,1};

next(DATA_OUT[13]) := {0,1};

next(DATA_OUT[14]) := {0,1};

next(DATA_OUT[15]) := {0,1};

aux_action[0] := {0,1};

aux_action[1] := {0,1};

aux_action[2] := {0,1};

if (aux_action > 5) { next(action) := 0; }

else { next(action) := aux_action; }

if (aux_action = 5)

{

next(gener_data) := 0;

aux_bank := {0,1};

next(bank) := aux_bank;

next(DATA_OUT[1]) := !aux_bank;

next(RW) := 1;

}

else

{

next(gener_data[0]) := {0,1};

next(gener_data[1]) := {0,1};

next(gener_data[2]) := {0,1};

next(gener_data[3]) := {0,1};

next(gener_data[4]) := {0,1};

next(gener_data[5]) := {0,1};

next(gener_data[6]) := {0,1};

next(gener_data[7]) := {0,1};

CESNET technical report number 3/2004 30

next(gener_data[8]) := {0,1};

next(DATA_OUT[1]) := {0,1};

next(bank) := bank;

next(RW) := 0;

}

}

}

else

{

next(DATA_OUT) := DATA_OUT;

next(bank) := bank;

next(RW) := RW;

next(gener_data) := gener_data;

next(action) := action;

}

ADDR := action::(bank & !RW)::gener_data;

EN := 1;

SEL := 1;

}

References
[FormalVHDL] J. Holeček, T. Kratochvíla, V. Řehák, D. Šafránek, and P. Šimeček:

How to Formalize a FPGA Hardware Design.

Technical report number 4/2004, CESNET, 2004.

[VerifVHDLCombo6] T. Kratochvíla, V. Řehák, P. Šimeček: Verification of

COMBO6 VHDL Design.

Technical report number 17/2003, CESNET, 2003.

[VHDLScampi] Vladimir Smotlacha: Design of the VHDL structure of SCAMPI

adapter.

http://www.liberouter.org/cgi-bin2/cvsweb.cgi/

liberouter/vhdl design/projects/scampi ph1/doc/

VHDL structure.ps

[EditEngine] Tomáš Martínek: Basic documentation of Edit Engine.

http://www.liberouter.org/cgi-bin2/cvsweb.cgi/

liberouter/vhdl design/units/ee/doc/

[LibWWW] Liberouter: Liberouter Project WWW Pages.

http://www.liberouter.org/

CESNET technical report number 3/2004 31

[Nov04] Novotný J., Fučík O., Antoš D.: Project of IPv6 Router with FPGA

Hardware Accelerator.

In Proceedings of Field-Programmable Logic and Applications: 13th
International Conference FPL 2003, page 964-967, Springer Verlag,
2003. ISBN 3-540-40822-3.

[SMV] Cadence SMV: Cadence SMV WWW Pages.

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

[VC] Tomáš Kratochvíla: Verification cookbook (Liberouter policy WWW

Pages).

http://www.liberouter.org/policy.html

[VHDL] Ashenden Peter J.: The VHDL Cookbook.

http://tech-www.informatik.uni-hamburg.de/

vhdl/doc/cookbook/VHDL-Cookbook.pdf

CESNET technical report number 3/2004 32

