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distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly
and can be the subject of parameter synthesis. In this line, an algorithm is presented that solves the ε-optimal
parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives. The
approach provided in this article is based on a reduction of the problem to finding long-run average opti-
mal policies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of the parameter
(i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward
approach based on an explicit action-space construction fails to solve even simple instances of the problem.
The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space.
Soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions that satisfy
four mild assumptions, fulfilled by many kinds of distributions. Exemplifying proofs for the satisfaction of
these requirements are provided for Dirac, uniform, exponential, Erlang, and Weibull distributions in particu-
lar. An experimental implementation shows that the symbolic technique substantially improves the efficiency
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1 INTRODUCTION

Mean-payoff is widely accepted as an appropriate concept for measuring long-run average per-
formance of systems with rewards or costs. In this article, we study the problem of synthesizing
parameters for possibly non-exponentially distributed events in stochastic systems to achieve an
ε-optimal mean-payoff. One simple example of such events are timeouts that are widely used, e.g.,
to prevent deadlocks or to ensure some sort of progress in distributed systems. In practice, timeout
durations are usually determined in an ad hoc manner, requiring a considerable amount of exper-
tise and experimental effort. This naturally raises the question of automating this design step, i.e.,
is there an algorithm synthesizing optimal timeouts?

The underlying stochastic model this article relies on is provided by continuous-time Markov

chains with alarms (ACTMCs). Intuitively, ACTMCs extend continuous-time Markov chains by
generally distributed alarm events, where at most one alarm is enabled during a system execu-
tion and non-alarm events can disable the alarm. In parametric ACTMCs, every alarm distribution
depends on one single parameter ranging over a given interval of eligible values. For example, a
timeout is a Dirac distributed alarm event where the parameter specifies its duration. A parameter

function assigning to every alarm a parameter value within an interval of eligible values yields
a (non-parametric) ACTMC. We propose an algorithm that synthesizes a parameter function for
arbitrarily small ε > 0 achieving an ε-optimal mean-payoff.

Motivating example. To get some intuition about the described task, consider a dynamic power
management of a disk drive inspired by [36]. The behavior of the disk drive can be described as
follows (see Figure 1): At every moment, the drive is either active or asleep, and it maintains a
queue of incoming I/O operations of capacity N . The events of arriving and completing an I/O
operation have exponential distributions with rates 1.39 and 12.5, respectively. When the queue
is full, all newly arriving I/O operations are rejected. The I/O operations are performed only in
the active mode. When the drive is active and the queue becomes empty, an internal timer is set
to a given value ds . If then no further I/O request is received within the next ds time units, then
the sleep event changes the mode to asleep. When the drive is asleep and some I/O operation
arrives, the internal timer is set to a given value dw and after dw time the wakeup event changes
the mode to active. We annotate costs in terms of energy per time unit or instantaneous energy
costs for events. The power consumption is 4 and 2 per time unit in the states active and asleep,
respectively. Moving from asleep to active requires 4 units of energy. Rejecting a newly arrived I/O
request when the queue is full is undesirable, penalized by costs of 6. All other transitions incur
with cost 1. Obviously, the designer of the disk drive controller has some freedom in choosing
the delays ds and dw , i.e., they are free parameters of Dirac distributions. However, dw cannot be
lower than the minimal time required to wake up the drive, which is constrained by the physical
properties of the hardware used in the drive. Further, there is also a natural upper bound on ds and
dw given by the capacity of the internal timer. Observe that if ds is too small, then many costly
transitions from asleep to active are performed; and if ds is too large, a lot of time is wasted in
the more power consuming active0 state. Similarly, if dw is too small, a switch to the active mode
is likely to be invoked with a few I/O operations in the queue, and more energy could have been
saved by waiting somewhat longer; and if dw is too large, the risk of rejecting newly arriving I/O
operations increases. Now, we may ask the following instance of an optimal-parameter synthesis
problem we deal with in this article:

What values should a designer assign to the delays ds and dw such that the long-run

average power consumption is minimized?
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Fig. 1. Dynamic power manager of a disk drive.

Contribution. The main result of our article is a symbolic algorithm for ε-optimal parameter
synthesis that is generic in the sense that it is applicable to all ACTMCs where the optimized
alarm events satisfy four abstractly formulated criteria. We show that these criteria are fulfilled,
e.g., for timeout events modeled by Dirac distributions, uniformly distributed alarms (used, e.g., in
variants of the CSMA/CD protocol [8]), Erlang distributions (used in telecommunications traffic
engineering [1]), and Weibull distributions (used to model hardware failures [33]). Our synthesis
approach for such parametric ACTMCs fulfilling the aforementioned criteria then is as follows:
For a given ε > 0, our algorithm first computes a sufficiently small discretization step such that an
ε-optimal parameter function exists even when its range is restricted to the discretized parameter
values. The semantics of the parametric ACTMC over discretized parameter values is provided
by a semi Markov decision process (semi-MDP), turning the parameter synthesis problem into a
scheduler synthesis problem in semi-MDPs. Since the discretization step is typically very small,
an explicit construction of this semi-MDP is computationally infeasible. Instead, our algorithm
employs a symbolic variant of the standard policy iteration algorithm for finding schedulers that
have ε-optimal mean-payoff. We start with some parameter function that is gradually improved
until a fixed point is reached. In each improvement step, our algorithm computes a small candidate

subset of the discretized parameter values such that a possible improvement is realizable by one
of these candidate values. This is achieved by designing a suitable ranking function for each of
the optimized events such that an optimal parameter value is the minimal value of the ranking
function in the interval of eligible parameter values. Then, the algorithm approximates the roots
of the symbolic derivative of the ranking function and constructs the candidate subset by collecting
all discretized parameter values close to the approximated roots. This symbolic approach leads to
a drastic efficiency improvement that makes the resulting algorithm applicable to problems of
realistic size. We show correctness of the algorithm for the subclass of parametric ACTMCs with
localized alarms, i.e., parametric ACTMCs where for each alarm event there is a uniquely defined
state where the value of the alarm is set. In Section 3.4, we also discuss solution methods applicable
on ACTMCs with non-localized alarms, which is an NP-hard problem. This article is an extended
version of the conference paper published in [4].

Related work. Synthesis of optimal timeouts guaranteeing quantitative properties in timed
systems was considered in [15]. There are various parametric formalisms for timed systems
that deal with some sort of synthesis, such as parametric timed automata [2, 22, 23], parametric
one-counter automata [18], parametric timed Petri nets [37], or parametric Markov models [19].
However, all works referred to above do not consider models with continuous-time distributions.
Consequently, they synthesize different parameters than we do. Contrary, the synthesis of
appropriate rates in CTMCs was efficiently solved in [12, 14, 20, 21]. A special variant of ACTMC,
where only alarms with Dirac distributions are allowed, has been considered in [9, 24, 25]. Their
algorithms synthesize ε-optimal alarm parameters toward an expected reachability objective.
Using a simulation-based approach, the optimization environment of the tool TimeNET is able to
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approximate locally optimal distribution parameters in stochastic Petri nets, e.g., using methods
as simulated annealing, hill climbing, or genetic algorithms. To the best of our knowledge,
we present the first algorithm that approximates globally mean-payoff optimal parameters of
non-exponential distributions in continuous-time models.

The (non-parametric) ACTMCs form a subclass of Markov regenerative processes (MRP) [3,
13, 32]. Alternatively, ACTMCs can be also understood as a generalized semi-Markov processes
(GSMPs) with at most one non-exponential event enabled in each state or as bounded stochas-
tic Petri nets (SPNs) [17] with at most one non-exponential transition enabled in any reachable
marking [13]. Note that ACTMCs are analytically tractable thanks to methods for subordinated
Markov-chains (SMCs) that allow for efficient computation of transient and steady-state distri-
butions [13, 29]. Recently, methods for computing steady-state distributions in larger classes of
regenerative GSMPs or SPNs have been presented in [31]. We did not incorporate this method
into our approach as our methods to compute sufficiently small discretization and approximation
precisions to guarantee ε-optimal mean-payoffs are not directly applicable for this class of sys-
tems. To the best of our knowledge there are no efficient algorithms with a guaranteed error for
computation of steady-state distribution for a general GSMP (or SPN). For some cases it is even
known that the steady-state distribution does not exist [10].

2 PRELIMINARIES

Let N≥0, N>0, Q≥0, Q>0, R≥0, and R>0 denote the set of all non-negative integers, positive inte-
gers, non-negative rational numbers, positive rational numbers, non-negative real numbers, and
positive real numbers, respectively. For a countable set E, we denote by D (E) the set of discrete
probability distributions over E, i.e., functions μ : E → R≥0 where

∑
e ∈E μ (e ) = 1. The support of

μ is the set of all e ∈ E with μ (e ) > 0. A cumulative distribution function (CDF) of a real-valued
random variable X : E → R≥0 is a nondecreasing function F : R≥0 → [0, 1], where F (x ) is the
probability that X takes a value less or equal to x ∈ R≥0. In particular, we consider the follow-
ing principal CDFs F in this article: To model timeouts at some concrete value d , we use a CDF
F of a Dirac distribution such that F (τ ) = 1 for all τ ≥ d and F (τ ) = 0 for all τ < d . Similarly,
when we select a random delay that is uniformly distributed in the interval [0.01,d], then for all
τ < 0.01 F (τ ) = 0 and for all τ ≥ 0.01 F (τ ) = min{1, (τ − 0.01)/(d − 0.01)}. For Erlang distribu-
tions, we have F (τ ) = 0 for all τ ≤ 0 and F (τ ) = 1 − e−τ d ·∑k−1

n=0 (τd )n/n! for all τ > 0 and a fixed
constant k ∈ N>0. Finally, we consider Weibull distributions, i.e., where F (τ ) = 0 for all τ ≤ 0 and

F (τ ) = 1 − e−(τ d )k

for all τ > 0 and a fixed constantk ∈ N>0.1 A probability matrix over some finite
set E is a function M : E×E → R≥0 where M (e, ·) ∈ D (E) for all e ∈ E.

2.1 Continuous-time Markov Chains with Alarms

A continuous-time Markov chain (CTMC) is a triple C = (S, λ, P ), where S is a finite set of states, λ ∈
R>0 is a common exit rate,2 and P is a probability matrix over S . Transitions in C are exponentially
distributed over the time, i.e., the probability of moving from a state s to state s ′ within time τ is
P (s, s ′) · (1 − e−λ ·τ ). We extend CTMCs by generally distributed events called alarms. A CTMC

with alarms (ACTMC) over a finite set of alarms A is a tuple

A = ( S, λ, P ,A, 〈Sa〉, 〈Pa〉, 〈Fa〉 ),

1Note that a Weibull and Erlang distributions with k = 1 are exponential distributions.
2We can assume without restrictions that the parameter λ is the same for all states of S, since every CTMC can be effectively
transformed into an equivalent CTMC satisfying this property by the standard uniformization method (see, e.g., [34]).
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where (S, λ, P ) is a CTMC and 〈Sa〉, 〈Pa〉, and 〈Fa〉 are tuples defined as follows: 〈Sa〉 = (Sa )a∈A
where Sa is a nonempty set of states where an alarm a ∈ A is enabled; 〈Pa〉 = (Pa )a∈A where Pa is a
probability matrix of some alarm a ∈ A for which Pa (s, s ) = 1 if s ∈ S\Sa ; and 〈Fa〉 = (Fa )a∈A where
Fa : R≥0 → [0, 1] is a CDF according to which the ringing time of an alarm a ∈ A is distributed.
We require that F (0) = 0 and that the associated distribution has finite mean. Note that then a
positive ringing time is chosen almost surely. We require Sa ∩ Sa′ = ∅ for a � a′, i.e., in each state
at most one alarm is enabled. The set of states where some alarm is enabled is denoted by Son, and
we also use Soff to denote the set S\Son. The pairs (s, s ′) ∈ S×S with P (s, s ′) > 0 and Pa (s, s ′) > 0
are referred to as delay transitions and a-alarm transitions, respectively.

Operational behavior. Since in every state only one alarm is enabled, the semantics of an ACTMC
can be seen as an infinite CTMC amended with a timer that runs backwards and is set whenever
a new alarm is set or the alarm gets disabled. A run of the ACTMC A is an infinite sequence
(s0,η0), t0, (s1,η1), t1, . . . , where ηi is the current value of the timer, ti is the time spent in si , and
(si ,ηi ) is called configuration. In each configuration (si ,ηi ), we require ηi = ∞ iff si ∈ Soff . Hence,
if s0 ∈ Sa for some a ∈ A, then the value of η0 is selected randomly according to Fa . In a current
configuration (si ,ηi ), a random delay t is chosen according to the exponential distribution with
rate λ. Then, the time ti and the next configuration (si+1,ηi+1) are determined as follows:

(alarm rings) If si ∈ Sa and ηi ≤ t , then ti
def
= ηi and si+1 is selected randomly according to

Pa (si , ·). The value of ηi+1 is either set to∞ or selected randomly according to Fb for some
b ∈ A, depending on whether the chosen si+1 belongs to Soff or Sb , respectively (note that
it may happen that b = a).

(leave before alarm rings) If t < ηi , then ti
def
= t and si+1 is selected randomly according

to P (si , ·). Clearly, if si+1 ∈ Soff , then ηi+1
def
= ∞. Further, if si+1 ∈ Sb and si � Sb for some

b ∈ A, then ηi+1 is selected randomly according to Fb . Otherwise, si , si+1 ∈ Sb for some

b ∈ A and ηi+1
def
= ηi − t (note that here ηi > t ).

Similar to standard CTMCs, we define a probability space over all runs initiated in a given s0 ∈ S .
We say thatA is strongly connected if its underlying graph is, i.e., for all s, s ′ ∈ S , where s � s ′, there
is a finite sequence s0, . . . , sn of states such that s = s0, s ′ = sn , and P (si , si+1) > 0 or Pa (si , si+1) > 0
(for some a ∈ A) for all 0 ≤ i < n.

Note that the timer is set to a new value in a state s only if s ∈ Sa for some a ∈ A, and the
previous state either does not belong to Sa or the transition used to enter s was an alarm transition.3

Formally, we say that s ∈ Sa is an a-setting state if there exists s ′ ∈ S such that either Pb (s ′, s ) > 0
for some b ∈ A (here, we do not require a � b), or s ′ � Sa and P (s ′, s ) > 0. The set of all alarm-
setting states is denoted by Sset. If Sset ∩ Sa is a singleton for each a ∈ A, then we say that the
alarms in A are localized.

Cost structures and mean-payoff for ACTMCs. We use the standard cost structures that assign
non-negative cost values to both states and transitions (see, e.g., [35]). More precisely, we consider
the following cost functions: R : S → R≥0, which assigns a cost rate R (s ) to every state s such that
the cost R (s ) is paid for every time unit spent in s , and functions I,IA : S×S → R≥0 that assign
to each delay transition and each alarm-setting transition, respectively, an instant execution cost.
For every run ω = (s0,η0), t0, (s1,η1), t1, . . . of N , we define the associated mean-payoff by

MP(ω) = lim sup
n→∞

∑n
i=0 (R (si ) · ti + J (si , si+1))∑n

i=0 ti
.

3In fact, another possibility (which does not require any special attention) is that s is the initial state of a run.
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Here, J (si , si+1) is either I (si , si+1) or IA (si , si+1), depending on whether ti < ηi or not, respec-
tively. We use E[MP] to denote the expectation of MP. In general, MP may take more than one
value with positive probability. However, if the graph of the underlying ACTMC is strongly con-
nected, then almost all runs yield the same mean-payoff value independent of the initial state [13].

2.2 Parametric ACTMCs

In ACTMCs the distribution functions for the alarms are already fixed. We now vary one parameter
d of the alarm distributions (cf. beginning of Section 2) and ask what parameter values minimize
the expected long-run average costs. 4 A parametric ACTMC is defined similarly as an ACTMC, but
instead of the concrete distribution function Fa , we specify a parameterized distribution function
Fa[x] together with an interval [�a ,ua] of eligible parameter values for everya ∈ A. We use Fa[d] to
denote the distribution obtained by instantiating the parameter x with somed ∈ [�a ,ua]. Formally,
a parametric ACTMC is a tuple,

N = ( S, λ, P ,A, 〈Sa〉, 〈Pa〉, 〈Fa[x]〉, 〈�a〉, 〈ua〉 ),
where all components are defined in the same way as for ACTMC except for the tuples 〈Fa[x]〉,
〈�a〉, and 〈ua〉 of all Fa[x], �a , and ua discussed above. Strong connectedness, localized alarms, and
cost structures are defined as for (non-parametric) ACTMCs.

A parameter function forN is a function d : A→ R such that d(a) ∈ [�a ,ua] for every a ∈ A. We
only consider parametric ACTMCs where each parameter function d yields an ACTMC given by
replacing each Fa[x] inN with the distribution function Fa[d(a)]. We denote the arising ACTMC
byN d. When cost structures are defined onN , we useEd[MP] to denote the expected mean-payoff
in N d. For a given ε > 0, we say that a parameter function d is ε-optimal if

Ed[MP] ≤ inf
d′

Ed′[MP] + ε,

where d′ ranges over all parameter functions for N .

2.3 Semi-Markov Decision Processes

A semi-Markov decision process (semi-MDP) is a tupleM = (M,Act,Q, t , c ), where M is a finite set
of states, Act =

⊎
m∈M Actm is a set of actions where Actm � ∅ is a subset of actions enabled in a

statem, Q : Act → D (M ) is a function assigning the probability Q (b) (m′) to move fromm ∈ M to
m′ ∈ M executing b ∈ Actm , and functions t , c : Act → R≥0 provide the expected time and costs
when executing an action, respectively.5 A run inM is an infinite sequence ω =m0,b0,m1,b1, . . .
where bi ∈ Actmi

for every i ∈ N≥0. The mean-payoff of ω is

MP(ω) = lim sup
n→∞

∑n
i=0 c (bi )∑n
i=0 t (bi )

.

A (stationary and deterministic) policy forM is a function σ : M → Act such that σ (m) ∈ Actm

for all m ∈ M . Applying σ to M yields the standard probability measure Prσ
M over all runs ini-

tiated in a given initial state. We say that M is strongly connected if for each policy σ and
all m,m′ ∈ M , where m �m′, there is a finite sequence m0, . . . ,mn of states such that m =m0,
m′ =mn , and Q (σ (mi )) (mi+1) > 0 for all i ∈ N≥0. The expected mean-payoff achieved by σ is

4In our current setting, distribution functions with several parameters can be accommodated by choosing the parameter
to optimize and fixing the others. In some cases, we can also use simple extensions to synthesize, e.g., both d1 and d2 for
the uniform distribution in [d1, d2].
5For our purposes, the actual distribution of the time and costs spent before executing some action is irrelevant, only their
expectations matter, see Section 11.4 in [35].
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denoted by Eσ
M[MP]. An optimal 6 policy achieving the minimal expected mean-payoff is guar-

anteed to exist, and it is computable by a simple policy iteration algorithm for strongly connected
semi-MDPs (see, e.g., [35]).

κ-Approximations of semi-MDPs. LetM = (M,Act,Q, t , c ) be a semi-MDP and κ ∈ Q>0. We
say that Qκ : Act → D (M ) and tκ , cκ : Act → R≥0 are κ-approximations of Q , t , c , respectively, if
for all m,m′ ∈ M and b ∈ Actm it holds that Q (b) and Qκ (b) have the same support, |Q (b) (m′) −
Qκ (b) (m′) | ≤ κ, |t (b) − tκ (b) | ≤ κ, and |c (b) − cκ (b) | ≤ κ. A κ-approximation ofM is a semi-MDP
(M,Act,Qκ , tκ , cκ ) where Qκ , tκ , cκ are κ-approximations of Q , t , c , respectively. We denote by
[M]κ the set of all κ-approximations ofM.

3 SYNTHESIZING ε-OPTIMAL PARAMETER FUNCTIONS

In the following, we fix a strongly connected parametric ACTMC,

N = ( S, λ, P ,A, 〈Sa〉, 〈Pa〉, 〈Fa[x]〉, 〈�a〉, 〈ua〉 ),
with cost functions R, I, and IA, and aim toward an algorithm synthesizing an ε-optimal param-
eter function for N . Here, ε-optimality is understood with respect to the expected mean-payoff.
That is, we deal with the following computational problem:

ε-optimal parameter synthesis for parametric ACTMCs

Input: ε ∈ Q>0 and a strongly connected parametric ACTMC N with rational7 transition
probabilities, rate λ, bounds 〈�a〉, 〈ua〉, and cost functions R, I, and IA.

Output: An ε-optimal parameter function d.

Our approach to solve the above problem for parametric ACTMCs with localized alarms is based
on a reduction to the problem of synthesizing expected mean-payoff optimal policies in semi-
MDPs. For non-localized parametric ACTMCs, the approach is similar but we use a more general
formalism than semi-MDPs. For presentation reasons, we first focus on the localized case, and
hence in the following we assume N to be with localized alarms.

3.1 The Set of Semi-Markov Decision Processes [MN〈δ〉]κ

Let a ∈ A, and let s ∈ Sa ∩ Sset. Recall that we assumeN to be localized and thus, s is the uniquely
defined a-setting state. Then, for every d ∈ [�a ,ua] consider runs initiated in a configuration (s,η)
where η is chosen randomly according to Fa[d]. Almost all such runs eventually visit a regenera-

tive configuration (s ′,η′) where either s ′ ∈ Soff or η′ is chosen randomly in s ′ ∈ Sset, i.e., either all
alarms are disabled or one is newly set. We use Πs (d ) to denote the associated probability distri-
bution over Sset ∪ Soff , i.e., Πs (d ) (s ′) is the probability of visiting a regenerative configuration of
the form (s ′,η′) from s without previously visiting another regenerative configuration. Note that
Πs (d ) (·) has the same support for all d ∈ [�a ,ua]. Further, we use €s (d ) and Θs (d ) to denote the ex-
pected accumulated costs and the expected time elapsed until visiting a regenerative configuration,
respectively. We use the same notation also for s ∈ Soff , where Πs (d ) (·) = P (s, ·), Θs (d ) = 1/λ, and
€s (d ) = R (s )/λ + P (s, ·) · IP . Note that here the functions are constant, i.e., they are independent
of d . The semi-MDPMN = (Sset ∪ Soff ,Act,Q, t , c ) is defined over actions

Act = {〈〈s,d〉〉 : d ∈ [�a ,ua], s ∈ Sset ∩ Sa ,a ∈ A} ∪ {〈〈s, 0〉〉 : s ∈ Soff },

6This policy is optimal not only among stationary and deterministic policies, but even among more general (randomized
and history-dependent) policies.
7The additional restrictions imply finitely representable input.
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where for all 〈〈s,d〉〉 ∈ Act, we have Q (〈〈s,d〉〉) = Πs (d ), t (〈〈s,d〉〉) = Θs (d ) and c (〈〈s,d〉〉) = es (d ).
Note that the action space ofMN is dense and that Πs (d ), Θs (d ), and es (d ) might be irrational.
For our algorithms, we have to ensure a finite action space as well as rational probability and expec-
tation values. We thus define the δ -discretization ofMN asMN〈δ〉 = (Sset ∪ Soff ,Actδ ,Qδ , tδ , cδ )
for a given discretization function δ : A→ Q>0 as follows:MN〈δ〉 is defined asMN above, but
over the action space Actδ =

⋃
s ∈Sset∪Soff

Actδ
s with

Actδ
s = {〈〈s,d〉〉 : d = �a + i · δ (a) < ua , i ∈ N≥0} ∪ {〈〈s,ua〉〉},

for s ∈ Sset ∩ Sa and Actδ
s = {〈〈s, 0〉〉} otherwise.

To ensure rational values of Πs (d ), Θs (d ), and es (d ), we consider the set of κ-approximations
[MN〈δ〉]κ ofMN〈δ〉 for any given approximation constant κ ∈ Q>0. Note that as N is strongly
connected, everyM ∈ [MN〈δ〉]κ is also strongly connected.

3.2 An Explicit Parameter-synthesis Algorithm

Every policy σ minimizing the expected mean-payoff inMN yields an optimal parameter func-
tion dσ for N defined by dσ (a) = d where σ (s ) = 〈〈s,d〉〉 for the unique a-setting state s . A naïve
approach toward an ε-optimal parameter function minimizing the expected mean-payoff in N is
to compute sufficiently small discretization function δ and approximation constant κ such that
synthesizing an optimal policy in anyM ∈ [MN〈δ〉]κ yields an ε-optimal parameter function for
N . AsM is finite and contains only rational probability and expectation values, the synthesis of
an optimal policy forM can then be carried out using standard algorithms for semi-MDPs (see,
e.g., [35]). This approach is applicable under the following mild assumptions:

(1) For every ε ∈ Q>0, there are computable δ : A→ Q>0 and κ ∈ Q>0 such that for every
M ∈ [MN〈δ〉]κ and every optimal policy σ forM, the associated parameter function dσ

is ε-optimal for N .
(2) For all κ ∈ Q>0 and s ∈ Sset, there are computable rational κ-approximations Πκ

s , Θκ
s , and

eκ
s of Πs , Θs , and es , respectively.

Assumption 1 usually follows from perturbation bounds on the expected mean-payoff using a
straightforward error-propagation analysis. Assumption 2 can be obtained, e.g., by first comput-
ing κ/2-approximations of Πs , Θs , and es for s ∈ Sset ∩ Sa , considering a as alarm to which a
Dirac distribution is assigned to, and then integrating the obtained functions over the probability
measure determined by Fa[x] to get the resulting κ-approximation (see also [9, 13]). Hence, As-
sumptions 1 and 2 rule out only those types of distributions that are rarely used in practice. In
particular, the assumptions are satisfied for uniform, Dirac, Erlang, and Weibull distributions, as
we will show in Section 4. Note that Assumption 2 implies that for all δ : A→ Q>0 and κ ∈ Q>0,
there is a computable semi-MDPM of [MN〈δ〉]κ .

3.3 A Symbolic Parameter-synthesis Algorithm

Usually, the naïve explicit approach to parameter synthesis explained above is computationally
infeasible due a large number of actions inM ∈ [MN〈δ]κ . We now present a symbolic parameter-
synthesis algorithm that computes the set of states of some M (see Assumption 1) but avoids
computing the set of all actions ofM and their effects. The algorithm is obtained by modifying
the standard policy iteration [35] for semi-MDPs.

Standard policy iteration. When applied to M, standard policy iteration starts by picking an
arbitrary policy σ , which is then repeatedly improved until a fixed point is reached. In each
iteration, the current policy σ is first evaluated by computing the associated gain д ∈ Q and
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bias h : S → Q.8 Then, for each state s ∈ Sset, every outgoing action 〈〈s,d〉〉 is ranked by the
function

Rκ
s [д, h](d )

def
= eκ

s (d ) − д · Θκ
s (d ) + Πκ

s (d ) · h, (×)

where eκ
s , Θκ

s , and Πκ
s are the determining functions ofM. If the action chosen by σ at s does not

have the best (minimal) rank, then it is improved by redefining σ (s ) to some best-ranked action.
The new policy is then evaluated by computing its gain and bias and possibly improved again. The
standard algorithm terminates when for all states the current policy cannot be improved.

Analytical κ-approximations. In many cases Πs (d ), Θs (d ), and es (d ) for s ∈ Sset are express-
ible as infinite sums where the summands comprise elementary functions such as polynomials
or exp(·). Given κ ∈ Q>0 one may effectively truncate these infinite sums into finitely many
initial summands such that the obtained expressions are differentiable in the interval [�a ,ua]
and yield analytical κ-approximations ΠΠΠκ

s (d ), ΘΘΘκ
s (d ), and eeeκ

s (d ), respectively. Note that we use
bold type for analytical κ-approximations, complementing the non-bold type used for rational
κ-approximations.

Now, we can introduce the analytical version of the ranking function, denoted by RRRκ
s [д, h](d ),

obtained by replacing the rational κ-approximations in the right-hand side of Equation (×) with
their analytical counterparts:

RRRκ
s [д, h](d )

def
= eeeκ

s (d ) − д ·ΘΘΘκ
s (d ) +ΠΠΠκ

s (d ) · h. (�)

Note that Rκ
s [д, h](d ) given in Equation (×) andRRRκ

s [д, h](d ) given above in Equation (�) are differ-

ent functions with different properties. The function RRRκ
s [д, h](d ) is differentiable for d ∈ [�a ,ua]

when д and h are constant. Observe that the discretized parameters minimizing Rκ
s [д, h](d ) are

either close to �a , ua , or roots of the derivative ofRRRκ
s [д, h](d ). Using the isolated roots and bounds

�a and ua , we identify a usually small set of candidate actions and explicitly evaluate only those
instead of all actions. As ΠΠΠκ

s (d ), ΘΘΘκ
s (d ), and eeeκ

s (d ) may be irrational for rational arguments, they
might not be computable even for the discretized parameter values. However, when Assumption 2
is fulfilled, it is safe to use rational κ-approximations Πκ

s (d ), Θκ
s (d ), and eκ

s (d ) for the evaluation
step. The analytical κ-approximations ΠΠΠκ

s (d ), ΘΘΘκ
s (d ), and eeeκ

s (d ) are hence used to identify a sub-
set of candidate actions that may provide some improvement, while the rational and computable
κ-approximations Πκ

s (d ), Θκ
s (d ), and eκ

s (d ) are used to evaluate the candidate actions.
Before we provide our symbolic algorithm, we formally state the additional assumptions re-

quired to guarantee its soundness:

(3) For all a ∈ A, s ∈ Sset ∩ Sa , δ : A→ Q>0 and κ ∈ Q>0, there are analytical κ-
approximations ΠΠΠκ

s , ΘΘΘκ
s , and eeeκ

s of Πs , Θs , and es , respectively, such that the function
RRRκ

s [д, h](d ) from Equation (�), where д ∈ Q and h : Sset ∪ Soff → Q are constant, is dif-
ferentiable for d ∈ [�a ,ua]. Further, there is an algorithm to approximate the roots of the
derivative of RRRκ

s [д, h](d ) in the interval [�a ,ua] up to the absolute error δ (a)/2.
(4) For each s ∈ Sset in which alarm a ∈ A is set there is a computable constant Πmin

s ∈
Q>0 such that for all d ∈ [�a ,ua] and s ′ ∈ Sset ∪ Soff , we have that Πs (d ) (s ′) > 0 implies
Πs (d ) (s ′) ≥ Πmin

s .

Note that compared to Assumption 2, the κ-approximations of Assumption 3 are harder to con-
struct: We require closed forms for ΠΠΠκ

s , ΘΘΘκ
s , andeeeκ

s making the symbolic derivative ofRRRκ
s [д, h](d )

computable and suitable for effective root approximation.

8Here, it suffices to know that д is a scalar and h is a vector assigning numbers to states; for more details, see Sections 8.2.1
and 8.6.1 in [35].
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ALGORITHM 1: Symbolic policy iteration

input: A strongly connected parametric ACTMC N with localized alarms, rational-valued cost
functions R, I, IA, and ε ∈ Q>0 such that Assumptions 1–4 are fulfilled.

output: An ε-optimal parameter function d.

1 compute the sets Sset and Soff

2 compute the constant κ, function δ , and for all s ∈ Sset the constant Πmin
s of Assumptions 1 and 4

3 let ξ = min{κ/2,Πmin
s /3 : s ∈ Sset}

4 fix the functions Π
ξ
s ,Θ

ξ
s , and e

ξ
s of Assumption 2 determiningMξ ∈ [MN〈δ〉]ξ

5 choose an arbitrary state s ′ ∈ Sset ∪ Soff and a policy σ ′ forMξ

6 repeat

7 σ := σ ′

// policy evaluation

8 compute the gain, i.e., the scalar д := Eσ [MP]

9 compute the bias, i.e., the vector h : S → Q satisfying h(s ′) = 0 and for each

s ∈ Sset ∪ Soff , h(s ) = eξ
s (d ) − д · Θξ

s (d ) + Π
ξ
s (d ) · h, where σ (s ) = 〈〈s,d〉〉

10 foreach a ∈ A and s ∈ Sset ∩ Sa do

// policy improvement

11 compute the set R of δ (a)/2-approximations of the roots of the derivative of RRRξ
s [д, h](d ) in

[�a ,ua] using Assumption 3

12 C :=
{
σ (s )

}
∪
{
〈〈s,d〉〉 ∈ Actδ

s : |d − r | ≤ 3 · δ (a)/2, for r ∈ R ∪ {�a ,ua }
}

13 B := argmin
〈〈s,d〉〉∈C

Rξ
s [д, h](d )

14 if σ (s ) ∈ B then σ ′(s ) := σ (s )

15 else pick an 〈〈s,d〉〉 ∈ B and set σ ′(s ) := 〈〈s,d〉〉
16 end

17 until σ = σ ′

18 return dσ

Symbolic policy iteration algorithm. Algorithm 1 closely mimics the standard policy iteration
algorithm except for the definition of new precision ξ at line 3 and the policy improvement part.

The local extrema points of RRRξ
s [д, h](d ) (cf. Equation (�)) in the interval [�a ,ua] are identified by

computing roots of its symbolic derivative (line 11). Then, we construct a small setC of candidate

actions that are close to these roots or the bounds �a ,ua (line 12). Each given candidate action is

then evaluated using the function Rξ
s [д, h](d ) = eξ

s (d ) − д · Θξ
s (d ) + Π

ξ
s (d ) · h (cf. Equation (×)).

An improving candidate action is chosen based on the computed values (lines 14 and 15).

Theorem 3.1 (Correctness of Algorithm 1). The symbolic policy iteration algorithm solves

the ε-optimal parameter synthesis problem for localized parametric ACTMCs and cost functions that

fulfill Assumptions 1–4.

Proof. First, observe that in Algorithm 1 the actions of the currently improved policy are main-
tained in the set of candidate actions (line 12). From the properties of the policy iteration [35], it is
hence guaranteed that if the policy is changed, then the gain and bias strictly (lexicographically)
improve. Since the number of policies inMξ is finite, Algorithm 1 terminates. A challenging point

is that we compute only approximate minima of the functionRRRξ
s [д, h](d ), which might be different
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from the function Rξ
s [д, h](d ) used to evaluate the candidate actions. There may exist an action

that is not in the candidate setC but has minimal Rξ
s [д, h](d ). A priori it is hence not clear whether

the policy computed by Algorithm 1 is optimal forMξ . Fortunately, due to Assumption 1, we know
that if the computed policy is optimal for someM′ ∈ [MN〈δ]κ , then it induces ε-optimal parame-
ters forN . Therefore, it is sufficient to construct some Π′s , Θ′s , ande′s for each s ∈ Sset determining
such a candidateM′.

Let s ∈ Sset be a state and a ∈ A be the uniquely defined alarm such that s ∈ Sa . Furthermore,
we consider the values and functions of the last iteration of the repeat-until loop of Algorithm 1
when applied to the given parametric ACTMCN . That is, we use the gain д, bias h, current policy

σ , approximations Π
ξ
s , eξ

s , Θ
ξ
s , ΠΠΠ

ξ
s , eeeξ

s , ΘΘΘ
ξ
s , from the last iteration of the repeat-until loop and

candidate sets C and B in the inner foreach iteration concerning s . Let policy σ select an action
σ (s ) = 〈〈s,d〉〉 in s , i.e., d is the alarm parameter of a in s , and consider the sets of candidate alarm

parameters D
def
=

{
d ′′ : 〈〈s,d ′′〉〉 ∈ Actδ

s

}
and C ′

def
= {d ′′ : 〈〈s,d ′′〉〉 ∈ C}.

For each state s ∈ Sset, we need to define κ-approximations Π′s , Θ′s , and e′s of Πs , Θs , and es on

D, respectively, and such that for R′s [д, h](·) def
= e′s (·) − д · Θ′s (·) + Π′s (·) · h and every d ′ ∈ D \ {d },

R′s [д, h](d ) ≤ R′s [д, h](d ′).

First, we will construct Π′s , Θ′s , e′s and prove the theorem assuming that we have in hand certain
“shifted” κ-approximations ΠΠΠ′s , eee′s , ΘΘΘ′s that have some good properties. Then, we will construct
the “shifted” κ-approximations ΠΠΠ′s ,eee′s , ΘΘΘ′s and show that they have the desired properties.

Assume we have in hand “shifted” κ-approximations ΠΠΠ′s , eee′s , ΘΘΘ′s (of Πs , es , Θs on [�a ,ua]) and

RRR′s [д, h](d ′)
def
= eee′s (d ′) − д ·ΘΘΘ′s (d ′) +ΠΠΠ′s (d ′) · h for each d ′ ∈ [�a ,ua] such that

∃c ≥ 0 : ∀d ′ ∈ [�a ,ua] : RRRξ
s [д, h](d ′) + c = RRR′s [д, h](d ′) (1)

and
∀d ′ ∈ C ′ : Rξ

s [д, h](d ′) ≤ RRR′s [д, h](d ′). (2)

Now, for each d ′ ∈ D, we set

• Π′s (d ′)
def
= Π

ξ
s (d ′), e′s (d ′)

def
= eξ

s (d ′), Θ′s (d ′)
def
= Θ

ξ
s (d ′) if d ′ = d and

• Π′s (d ′)
def
= ΠΠΠ′s (d ′), e′s (d ′)

def
= eee′s (d ′), Θ′s (d ′)

def
= ΘΘΘ′s (d ′) if d ′ � d .

From Assumption 3 and the definition of RRR′s [д, h] it follows thatRRR′s [д, h] has the same arguments

of local extrema as RRRξ
s [д, h] on [�a ,ua]. Further, the definition of the candidate set C (line 12 of

Algorithm 1) and C ′ yields that C ′ ∩ argmind ′ ∈DRRR′s [д, h](d ′) is nonempty. We thus can pick an
arbitrary d ∈ C ′ ∩ argmind ′ ∈DRRR′s [д, h](d ′) and then for each d ′ ∈ D \ {d }, we have

R′s [д, h](d ) = Rξ
s [д, h](d ) ≤ RRR′s [д, h](d ) ≤ RRR′s [д, h](d ′) = R′s [д, h](d ′).

The left inequality follows from the definition of RRR′s [д, h] (see Equation (2)), the right inequality
follows from the definition of d .

To complete the proof, it remains to define the “shifted” κ-approximations ΠΠΠ′s , eee′s , ΘΘΘ′s (of Πs ,

es , Θs on [�a ,ua]) such that they satisfy Equations (1) and (2). Let d ∈ argmaxd ′ ∈C ′Rξ
s [д, h](d ′) −

RRRξ
s [д, h](d ′). If Rξ

s [д, h](d ) −RRRξ
s [д, h](d ) ≤ 0, then we set ΔΠ

def
= 0, ΔΘ

def
= 0, and Δe

def
= 0. Other-

wise, we set

• ΔΠ
def
= Π

ξ
s (d ) −ΠΠΠ

ξ
s (d ),

• ΔΘ
def
= Θ

ξ
s (d ) −ΘΘΘ

ξ
s (d ), and
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• Δe
def
= eξ

s (d ) −eeeξ
s (d ).

Now, for all d ′ ∈ D, we put

• ΠΠΠ′s (d ′)
def
= ΠΠΠ

ξ
s (d ′) + ΔΠ,

• ΘΘΘ′s (d ′)
def
= ΘΘΘ

ξ
s (d ′) + ΔΘ, and

• eee′s (d ′)
def
= eeeξ

s (d ′) + Δe.

We show that Equations (1) and (2) hold: For each d ′ ∈ [�a ,ua], we have that

RRR′s [д, h](d ′) = eee′s (d ′) − д ·ΘΘΘ′s (d ′) +ΠΠΠ′s (d ′) · h

= (eeeξ
s (d ′) + Δe) − д · (ΘΘΘξ

s (d ′) + ΔΘ) + (ΠΠΠ
ξ
s (d ′) + ΔΠ) · h

= RRRξ
s [д, h](d ′) + c,

where c = 0 if Rξ
s [д, h](d ) −RRRξ

s [д, h](d ) ≤ 0 and c = Rξ
s [д, h](d ) −RRRξ

s [д, h](d ) > 0 oth-

erwise. Thus, Equation (1) holds. Since c = max{0,Rξ
s [д, h](d ) −RRRξ

s [д, h](d )} and

d ∈ argmaxd ′ ∈C ′Rξ
s [д, h](d ′) −RRRξ

s [д, h](d ′), for each d ′ ∈ C ′ it holds that

Rξ
s [д, h](d ′) ≤ RRRξ

s [д, h](d ′) + c = RRR′s [д, h](d ′),

which implies Equation (2). It remains to show that ΠΠΠ′s , ΘΘΘ′s ,eee′s are κ-approximations of Πs , Θs , es

on [�a ,ua]: Note, that for each s ′ ∈ Sset ∪ Soff it holds that ΔΠ(s ′) ≤ 2ξ , ΔΘ ≤ 2ξ , and Δe ≤ 2ξ .
Since ξ ≤ κ/2, ΘΘΘ′s andeee′s are κ-approximations of Θs andes on [�a ,ua], respectively; and for each
d ′ ∈ [�a ,ua] and s ′ ∈ Sset ∪ Soff it holds that |ΠΠΠ′s (d ′) (s ′) − Πs (d ′) (s ′) | ≤ 2ξ ≤ κ.

Furthermore, for eachd ′ ∈ [�a ,ua], ΠΠΠ′s (d ′) is a distribution and it has the same support as Πs (d ′):

Let us fix d ′ ∈ [�a ,ua]. Since ΠΠΠ
ξ
s and Π

ξ
s are ξ -approximations of Πs , for each s ′ ∈ Sset ∪ Soff , we

have if Πs (d ′) (s ′) = 0 then ΠΠΠ
ξ
s (d ′) (s ′) = 0 and Π

ξ
s (d ′) (s ′) = 0 (if defined) and thus also ΠΠΠ′s (d ′) (s ′) =

0. Moreover, since ξ ≤ Πmin
s /3 and |ΠΠΠ′s (d ′) (s ′) − Πs (d ′) (s ′) | ≤ 2ξ , we have that if Πs (d ′) (s ′) > 0

then ΠΠΠ′s (d ′) (s ′) > 0 for each s ′ ∈ Sset ∩ Soff . Thus, ΠΠΠ′s (d ′) has the same support as Πs (d ′). Finally,
observe that

∑
s ′ ∈Sset∪Soff

ΔΠ(s ′) = 0. Thus, it holds that
∑

s ′ ∈Sset∪Soff
ΠΠΠ′s (d ′) (s ′) = 1. All the previ-

ous statements imply that ΠΠΠ′s (d ′) is a distribution and thus, ΠΠΠ′s is a κ-approximation of Πs on
[�a ,ua]. �

3.4 Parametric ACTMCs with Non-localized Alarms

In the preceding section, we presented the symbolic Algorithm 1 to solve the ε-optimal parameter
synthesis problem for parametric ACTMCs with localized alarms. However, our methods can also
be extended to synthesize parameters when the given parametric ACTMC N has non-localized
alarms. Note that if we create the semi-MDPMN in the same way as for the localized case, there
might be multiple a-setting states for some alarm a. Hence, we need to restrict ourselves to policies
that, for each alarm a, return the action with the same alarm parameter in all a-setting states. That
is, we restrict the policy space to policiesσ that for eacha ∈ A satisfy that {d : s ∈ Sset ∩ Sa , 〈〈s,d〉〉 =
σ (s )} is a singleton. Let DM be the set of policies of a semi-MDPM that satisfy this restriction.

As in the localized case, our aim is now to find a policy for a semi-MDPM ∈ [MN〈δ]κ that
has a minimal expected mean payoff among policies in DM . This is equivalent to finding station-
ary deterministic policies in a certain subclass of partially observable MDPs (POMDPs) that is a
generalization of semi-MDPs. This problem is known to be NP-hard [30], and hence we hardly
can expect an exact polynomial-time algorithm. There are two exponential-time algorithms that
solve this problem: an exhaustive search through the policy space and a branch and bound method
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that prunes the search space on the fly [30]. These methods are not feasible in our case, since
the semi-MDPs we would generate have a large action (policy) space. There are also heuristic
approaches that run much faster but might not return an optimal policy: gradient-based policy it-

eration (GBPI) [11], modified value iteration (MVI) [38], and regular gradient descent [6]. We can
easily accommodate our symbolic approach in the GBPI and MVI methods.

In the context of this article, we explain the GBPI as an extension of the standard policy itera-
tion when executed on the semi-MDPM ∈ [MN〈δ〉]κ . The initial policy is chosen from DM . In
the policy improvement step, in addition to the gain and bias, we compute also the steady-state
distribution ψ : Sset ∪ Soff → Q≥0 ofM for the current policy. This can be done by the standard
polynomial-time methods. In the policy improvement step, we then rank each action 〈〈s,d〉〉 for
every state s ∈ Sset ∩ Sa and alarm a ∈ A by a function

∑
s ∈Sset∩Sa

ψ (s ) · Rκ
s [д, h](d ),

where Rκ
s [д, h](d ) = eκ

s (d ) − д · Θκ
s (d ) + Πκ

s (d ) · h and eκ
s , Θκ

s , and Πκ
s are the determining func-

tions ofM. Hence, when using the current policy the GBPI gives larger weights to ranking func-
tions corresponding to states where M stays a larger amount of time. Note that for each a ∈ A
the GBPI method ranks actions of states in Sset ∩ Sa by the same function. This implies that the
improved policy will be in DM . The remaining parts of the GBPI are the same as for the stan-
dard policy iteration and one can easily adapt Algorithm 1 to use the GBPI. Note that we need to
strengthen Assumption 3 such that roots of the derivative of

∑
s ∈Sset∩Sa

ψ (s ) · RRRκ
s [д, h](d ) can be

efficiently found for any given rational distribution ψ . This holds for all alarm distributions that
we consider in the next section. Note that the GBPI may not return the optimal policy and it may
not even terminate [28], i.e., a theorem corresponding to Theorem 3.1 can only be expected when
posing additional assumptions onN . However, the use of GBPI may result in satisfactory policies
for realistic models, what was demonstrated in [11, 28]. For more details on applications of the
generalized approach for non-localized parametric ACTMCs, see [26].

4 EXAMPLE ALARM DISTRIBUTIONS

We now demonstrate that our approach using the explicit and symbolic algorithms developed
in the preceding sections is applicable to solve the ε-optimal parameter synthesis problem for
parametric ACTMCs with well-known distributions. This technical section also provides theoret-
ical background needed for implementation of Algorithm 1. Even though some of the obtained
bounds are loose to simplify the presentation, our experimental evaluation provided in the next
section shows promising results. Note that the following theorem holds for any kind of parametric
ACTMCs, localized and non-localized ones.

Theorem 4.1. Assumptions 1–4 are fulfilled for parametric ACTMCs with rational-valued cost

functions where for all a ∈ A we have that Fa[x] is either a Dirac, uniform, exponential, Erlang, or a

Weibull distribution.

In the rest of this section, we develop the proof of Theorem 4.1. First, we provide technical lem-
mas in Section 4.1 to estimate perturbation bounds on semi-MDPs to get small errors in the ex-
pected mean payoff. Then, in Section 4.2, we provide auxiliary assumptions and their relationship
to Assumptions 1–4 that will ease the actual proof of Theorem 4.1 for all mentioned distributions
types. For the following, let us fix a strongly connected parametric ACTMC N = (S, λ, P ,A, 〈Sa〉,
〈Fa[d]〉, 〈�a〉, 〈ua〉, 〈Pa〉) and cost functionsR,I,IA, where all constants and functions are rational.
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4.1 Computation of Sufficiently Small Precisions

For obtaining the perturbation bound κ of Assumption 1, we require technical statements that
connect the error bound of a fraction with perturbation bounds of its numerator and denominator.
Intuitively, to guarantee an error φ of a fraction, the numerator and the denominator have to
be computed with a certain precision. The proof of the following lemma is technical and thus
omitted—it can be found, e.g., in [5, 26].

Lemma 4.2. For every a,b,a′,b ′,a,b,b,φ ∈ R>0 such that a ≤ a, and b ≤ b ≤ b, we have that

if both |a − a′ | and |b − b ′ | are ≤
b2 · φ

a + b + b · φ
then

�����
a

b
− a′

b ′

����� ≤ φ.

Another technical lemma establishes an upper bound on κ such that the expected mean-payoff
achieved by a given policy changes among κ-approximations at most by a given ε > 0.

Lemma 4.3. LetM be a strongly connected semi-MDP, σ be a policy such thatM stays strongly

connected when the set of actions is restricted to those selected by σ . LetM′ be a κ-approximation of

M. Then for every error ε > 0, we have |Eσ
M[MP] − Eσ

M′[MP]| ≤ ε if

κ ≤ min
{

(tmin/2)2 · ε
n

2wmax ·(2/Qmin )n ·(2+ ε

n
) ·(1+2nwmax (2/Qmin )n ) ,

Qmin

2 ,
tmin

2 ,
cmax

2

}
.

Here, Qmin, tmin, tmax, cmax ∈ Q>0 are bounds on the minimal probability, minimal and maximal ex-

pected time step, and maximal expected costs occurring inM, n is the number of states ofM, and

wmax = max{cmax, tmax}.

Proof. Let M = (M,Act,Q, t , c ) be a semi-MDP with M = {m1, . . . ,mn } and σ some policy
for M. Note that every κ-approximation M′ of M can be obtained via a sequence of semi-
MDPs M1, . . . ,Mn+1, where M1 =M, Mn+1 =M′, and every Mi+1 is obtained from Mi by
modifying only the values of Q (b), t (b), and c (b) with b ∈ Actmi

. Note further that the bounds
Qmin, tmin, tmax, cmax ∈ Q>0 may not hold for allMi due to the changes in the previous semi-MDPs.
Hence, we require

∀m ∈ M : κ ≤ min{Qmin, tmin, cmax}/2,
and then the new constants Q ′min = Qmin/2, t ′min = tmin/2, t ′max = 2tmax, and c ′max = 2cmax correctly
bound all semi-MDPs in the sequence. Formally, for each 1 ≤ i ≤ n + 1, Mi = (M,Act,Qi , ti , ci )
satisfies

• Qi (b) (m′) > 0 implies Qi (b) (m′) ≥ Qmin/2 = Q ′min,
• t ′min = tmin/2 ≤ ti (b) ≤ 2tmax = t ′max,
• ci (b) ≤ 2cmax = c

′
max

for allm,m′ ∈ M and b ∈ Actm .
Now, it suffices to construct κ ∈ Q>0 such that κ ≤ min{Qmin, tmin, cmax}/2 and the expected

mean-payoff obtained by applying σ toMi andMi+1 differs by at most ε/n.
Let us discuss one particular change, say inmi =m, and for the sake of simplicity omit indexes

in the following. For every m′ ∈ M , let Eσ [Cost(m,m′)] and Eσ [Time(m,m′)] be the expected
cost and time accumulated before visitingm′ (in at least one transition) along a run that has been
initiated in m. AsM is strongly connected, every m′ is eventually visited by a run initiated in m
with probability one and the mean-payoff value Eσ [MP] achieved by σ inM can be expressed as

Eσ [MP] =
Eσ [Cost(m,m)]

Eσ [Time(m,m)]
. (3)
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To use Lemma 4.2, we need to provide an upper bound on the numerator and upper and lower
bounds on the denominator. The expected number of transitions required to visitm′′ fromm′ can
be bounded from above by (n/Q ′min)n . Hence,

• Eσ [Cost(m′,m′′)] ≤ c ′max · (n/Q ′min)n , and
• t ′min ≤ Eσ [Time(m′,m′′)] ≤ t ′max · (n/Q ′min)n .

Moreover, according to Lemma 4.2, we need to bound the changes in the numerator and denomi-
nator. For this purpose, observe that using standard flow-equation arguments, we obtain

Eσ [MP] =
Eσ [Cost(m,m)]

Eσ [Time(m,m)]

=
c (σ (m)) +

∑
m′ ∈M\{m }Q (σ (m)) (m′) · Eσ [Cost(m′,m)]

t (σ (m)) +
∑

m′ ∈M\{m }Q (σ (m)) (m′) · Eσ [Time(m′,m)]
. (4)

Note that for m′ �m, Eσ [Cost(m′,m)] and Eσ [Time(m′,m)] do not depend on the actions (and
theirQ , t , and c values) of Actm . Hence, these values do not change when modifyingQ (b), t (b), and
c (b) only for b ∈ Actm , and we can treat them as constants. If Q (σ (m)) (m′), t (σ (m)), and c (σ (m))
change at most by κ, then the numerator and the denominator of the above fraction (4) change
at most by κ + n · κ · c ′max (n/Q ′min)n and κ + n · κ · t ′max (n/Q ′min)n , respectively. To this end, we use
maximum to bound both of them. By Lemma 4.2, the error of the fraction is bounded by ε/n if

κ + n · κ ·w ′max (n/Q ′min)n ≤
(t ′min)2 · ε

n

c ′max · (n/Q ′min)n + t ′max · (n/Q ′min)n · (1 + ε
n

)
,

where w ′max = max{c ′max, t
′
max}, which can be strengthened to

κ + n · κ ·w ′max (n/Q ′min)n ≤
(t ′min)2 · ε

n

w ′max · (n/Q ′min)n · (2 + ε
n

)
,

i.e.,

κ ≤
(t ′min)2 · ε

n

w ′max · (n/Q ′min)n · (2 + ε
n

) · (1 + n ·w ′max (n/Q ′min)n )
.

Using the bounds of the original semi-MDP and the above mentioned restriction on κ, we obtain

κ ≤ min
{

(tmin/2)2 · ε
n

2wmax ·(2n/Qmin )n ·(2+ ε

n
) ·(1+2nwmax (2n/Qmin )n ) ,

Qmin

2 ,
tmin

2 ,
cmax

2

}
,

where wmax = max{cmax, tmax}. �

4.2 Auxiliary Assumptions

We define new Assumptions A) and B) forN that guarantee important discretization bounds and,
as we will show later on, imply Assumption 1 and 4:

A) For every s ∈ Sset, there are effectively computable positive rational bounds

Πmin
s ,Θ

min
s ,Θ

max
s , and emax

s

such that for all d ∈ [�a ,ua] where a is the alarm of s , i.e., s ∈ Sa , we have
• Πmin

s ≤ Πs (d ) (s ′) for all s ′ ∈ Sset ∪ Soff where Πs (d ) (s ′) > 0
• Θmin

s ≤ Θs (d ) ≤ Θmax
s

• es (d ) ≤ emax
s .

B) For every a ∈ A, s ∈ Sset ∩ Sa , and κ ∈ Q>0 there is a discretization bound δ (s,κ ) ∈ Q>0 such
that for every d,d ′ ∈ [�a ,ua] and |d − d ′ | ≤ δ (s,κ ) it holds that
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• |Πs (d ) (s ′) − Πs (d ′) (s ′) | ≤ κ for all s ′ ∈ Sset ∪ Soff ,
• |Θs (d ) − Θs (d ′) | ≤ κ, and
• |es (d ) − es (d ′) | ≤ κ.

Intuitively, Assumption B) connects κ-approximation and δ -discretization.

Lemma 4.4. In case N fulfills Assumptions A) and B), Assumptions 1 and 4 are fulfilled as well.

Proof. We have to show that for every ε ∈ Q>0, there are computable δ : A→ Q>0 and
κ ∈ Q>0 such that for every M ∈ [MN〈δ〉]κ and every optimal policy σ for M, the associated
parameter function dσ is ε-optimal for N .

Assumption A) provides that rational bounds on the minimal probability, minimal and maxi-
mal time step, and maximal costs occurring in MN are effectively computable for any s ∈ Sset.
Computing such bounds for every s ∈ Sset and applying Lemma 4.2 yields that for every ε ∈ Q>0,
we can compute a sufficiently small κ ∈ Q>0 such that for every M ∈ [MN ]κ and every opti-
mal policy σ forM the associated parameter function dσ is ε-optimal for N . Let us fix such an
ε ∈ Q>0 and a κ ∈ Q>0. Thus, when computing the action effects, an error of κ is possible. To
connect approximation and discretization precision, we dedicate a precision of κ/2 for the ac-
tion effects (i.e., we will allow only κ/2-approximation for Assumption 1) and a precision of κ/2
for the errors caused by discretization. Let δ : A→ Q>0 be a function obtained from Assump-

tion B) by setting δ (a)
def
= min{δ (s,κ/2) : s ∈ Sa ∩ Sset} for each a ∈ A. We show that an optimal

policy σ ofM ∈ [MN〈δ〉]κ/2 is optimal for someM′ ∈ [MN ]κ what induces an ε-optimal pol-

icy dσ for N and validity of Assumption 1: For each d ∈ [�a ,ua ) we define δ ′(d )
def
= �a + i · δ (a)

where i ∈ N≥0 is such that d ∈ [�a + i · δ (a),min{ua , �a + (i + 1) · δ (a)}). Let Πs , Θs , es be the de-
termining functions ofM. We define the determining functions Π′s , Θ′s , e′s ofM′ ∈ [MN ]2κ/2 as

follows: Π′s (d )
def
= Πs (δ ′(d )), Θ′s (d )

def
= Θs (δ ′(d )), and e′s (d )

def
= es (δ ′(d )) for each d ∈ [�a ,ua ) and

Π′s (ua )
def
= Πs (ua ), Θ′s (ua )

def
= Θs (ua ), and e′s (ua )

def
= es (ua ). Clearly, M′ ∈ [MN ]2κ/2 = [MN ]κ

and σ is an optimal policy ofM′. Assumption 4 is a trivial consequence of Assumption A). �

We now show for each kind of distribution mentioned in Theorem 4.1 that Assumptions A), B),
2, and 3 are fulfilled. Application of Lemma 4.4 then completes the proof of Theorem 4.1.

4.3 Dirac Alarm Distributions

We start with showing that the Assumptions are fulfilled for alarm distributions that are Dirac. We
assume a fixed s ∈ Sset such that s ∈ Sa , Fa[d](τ ) = 1 for all τ ≥ d , and Fa[d](τ ) = 0 for all τ < d ,
where d ∈ [�a ,ua] ⊂ (0,∞).9

Note that for Dirac distributions, we can easily obtain Πs (d ) by employing a Poisson distribution
ranging over the number of exponentially distributed delay transitions until time d . Then,

Πs (d ) =

∞∑
i=0

e−λd (λd )i

i!
·
(
1s · P

i
)
· Pa ,

where i represents the number of exponential transitions fired before the alarm rings (i.e., time

d), e−λd (λd )i

i ! is the corresponding probability according to the Poisson distribution, 1s is a vector

of zeroes except for 1s (s ) = 1, and P : S×S → [0, 1] is a probability matrix that is as P but where
all states in Soff are made absorbing, i.e., P (s ′, ·) = P (s ′, ·) for all s ′ ∈ Sa , and P (s ′, s ′) = 1 for all
s ′ ∈ S \ Sa .

9Note that we need to restrict �a and ua to work with correct parametric ACTMC.
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Similarly, es is the expected total cost computable as follows:

es (d ) =
∞∑

i=0

e−λd (λd )i

i!
��
�

i−1∑
j=0

(
1s · P

j
)
· ��

d · R
i + 1

+ I�	 +
(
1s · P

i
)
· ��

d · R
i + 1

+ IA
�
	
�

	 ,

where R is a vector that is the same as R but returns 0 for all states of S \ Sa , and I,IA : S → R≥0

are vectors that assign zero to states S \ Sa and to each state of Sa they assign the expected instant
execution cost of the next delay and the next alarm transition, respectively. Note that Θs is a special
case of es where R (s ) = 1 for all s ∈ S , and I,IA return zero for all arguments.

Note that the functions Πs (τ̂ ), Θs (τ̂ ), andes (τ̂ ) are defined as infinite sums. However, for every
τ̂ ∈ Q>0 andκ ∈ Q>0, we can effectively compute a k ∈ N>0 and truncated versions of Πs , Θs , and
es for all s ∈ Sset, obtained by taking the first k summands of the corresponding defining series.
Then, for all s ∈ Sset and d ≤ τ̂ these truncated versions under-approximate up to an absolute error
of at most κ the values of Πs (d ), Θs (d ), and es (d ), respectively. We restrict k to be always larger
than |Sa |, thus we detect all non-zero probabilities and all distributions will have the same support.
We use

Πτ̂ ,κ
s ,Θ

τ̂ ,κ
s , and eτ̂ ,κ

s

to denote these truncated versions that are κ-approximations for all values d up to τ̂ . Note that
due to the factor e−λd , the values of Πτ̂ ,κ

s , Θτ̂ ,κ
s , and eτ̂ ,κ

s are still irrational even for rational d’s.
Nevertheless, these values can be effectively approximated by rational numbers up to a given
arbitrarily small error. Also note that the components of Πτ̂ ,κ

s may not sum up to 1. When we need
to understand Πτ̂ ,κ

s as a distribution, the remaining probability is split evenly among the states
where Πτ̂ ,κ

s is positive.

Assumption A). Deriving the bounds Πmin
s , Θmin

s , Θmax
s , and emax

s is easy. We put

• Πmin
s

def
= (Pmin)n ·min

{
e−λd (λd )k

k ! : 0 ≤ k ≤ n,d ∈ {�a ,ua }
}

• Θmin
s

def
=
∫ �a

0
x · λ · e−λx dx + �a · e−λ�a = 1−e−λ·�a

λ
,

• Θmax
s

def
= ua , and

• emax
s

def
= Rmax · ua + Imax · (λua + 1),

where n = |Sa |, Pmin = min{P (s, s ′), Pa (s, s ′) : s ∈ Sa , s
′ ∈ S }, Rmax = max{R (s ) : s ∈ Sa }, and

Imax = max{I (s, s ′),IA (s, s ′) : s ∈ Sa , s
′ ∈ S }. Note that although some of the defining expres-

sions involve the function ex , we can still effectively under-approximate their values by positive
rationals.

Assumption B). To define an appropriate δ (s,κ ) ∈ Q>0, first note that for every s ′ ∈ S ,d ∈ [�a ,ua],
and every δ ∈ Q>0 such that d − δ ∈ [�a ,ua], we have that

• |Θs (d ) − Θs (d−δ ) | ≤ δ ,
• |es (d ) − es (d−δ ) | ≤ δRmax + 2λδImax, and
• |Πs (d ) (s ′) − Πs (d−δ ) (s ′) | ≤ λδ ,

where Rmax and Imax are as defined above. Note also that δRmax bounds the change of rate cost
caused by changing d by δ , λδ bounds the change of the number of delay transitions in time d
vs. time d − δ , and λδ can be also used as a bound on the change of probabilities in the transient
probability distribution in CTMCs with rate λ after time d vs. d − δ (see, e.g., Theorem 2.1.1 of
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[34]). Hence, for a given κ > 0, we can set

δ (s,κ ) = min

{
κ,

κ

Rmax + 2λImax

}
.

Assumption 2). Let τ̂ = ua . We first obtain functions Πτ̂ ,κ/2
s , Θτ̂ ,κ/2

s , and eτ̂ ,κ/2
s and then κ/2

approximate them by rational functions using truncated Taylor series for e ( ·) . We define Πκ
s , Θκ

s ,

and eκ
s as the obtained rational κ/2-approximations of Πτ̂ ,κ/2

s , Θτ̂ ,κ/2
s , and eτ̂ ,κ/2

s , respectively.

Assumption 3). For τ̂ = ua , we put

ΠΠΠκ
s

def
= Πτ̂ ,κ

s , ΘΘΘκ
s

def
= Θτ̂ ,κ

s , eee
κ
s

def
= eτ̂ ,κ

s , and recall RRRκ
s [д, h](d )

def
= eeeκ

s (d ) − д ·ΘΘΘκ
s (d ) +ΠΠΠκ

s (d ) · h,

whereд ∈ Q and h : Sset ∪ Soff → Q are constant (cf. Equation (�)). Observe thateeeκ
s (d ), ΘΘΘκ

s (d ), and
ΠΠΠκ

s (d ) · h are all of the form e−λd · Poly (d ), where Poly (d ) is a polynomial. Hence, the first deriv-
ative of RRRκ

s [д, h](d ) also has the special form e−λd ·Vs,д,h where Vs,д,h is a polynomial of one free
variable. Since e−λd is positive for all d ∈ R≥0, the derivative e−λd ·Vs,д,h is zero iff Vs,д,h is zero.
Hence, the roots of the derivative in the interval [�a ,ua] can be approximated by approximating
the roots of Vs,д,h, which is computationally easy (e.g., using tools such as Maple [7]).

4.4 Symbolic Functions for Action Effects with Non-Dirac Distributions

To illustrate the main idea that we will repeatedly apply in the following sections, let us exem-
plify the cost function es (d ) for a non-Dirac continuous distribution Fa[d] with a known density
function fa[d] : R→ R≥0. This function can be computed by integration of the cost function for
Dirac distribution, denoted as Dirac-es (·), multiplied by the density function. That is,

es (d ) =

∫ maxa

mina

Dirac-es (τ ) · fa[d](τ ) dτ , (5)

where τ stands for the randomly chosen time according to the non-Dirac distribution and mina

andmaxa bound the support of fa[d]. Note that for every (even non-continuous) distributions, we
can obtain es (d ) by employing Lebesgue integral, i.e., let μa be the measure of Fa[d], then

es (d ) =

∫
[mina,maxa ]

Dirac-es (τ ) μa (dτ ).

With д standing for some function Πs ,Θs ,es ,Π
τ̂ ,κ
s ,Θ

τ̂ ,κ
s ,e

τ̂ ,κ
s ,Π

min
s ,Θ

min
s ,Θ

max
s , or emax

s , we use
the notation Dirac-д in the following sections to denote the respective quantities computed for the
Dirac distribution.

4.5 Uniform Alarm Distributions

In a (continuous) uniform distribution there are two parameters, the lower bound on possible
random values, say α , and the upper bound, say β . Let us note that using a smart construction,
we can easily synthesize both of the parameters by our algorithm. Note that the first parameter
α can be modeled as an alarm with Dirac distribution (parametrized by α that we can synthesize)
that subsequently enables a uniformly distributed alarm with the first parameter fixed to 0 and
the second parameter, say β ′, that is also subject of synthesis. Then, the required parameters of
the original uniform distribution are α and β = α + β ′. Note that the newly created uniformly
distributed alarm may not be localized, what can rule out the applicability of Algorithm 1 and
force us to use the synthesis algorithm for ACTMCs with non-localized alarms.

Therefore, in what follows we consider alarms that are uniformly distributed on a time inter-
val starting in 0 with a parametrized length. That is, we assume a fixed s ∈ Sset such that s ∈ Sa ,
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Fa[d](τ ) = τ
d

for all 0 ≤ τ ≤ d , Fa[d](τ ) = 0 for all τ < 0, and Fa[d](τ ) = 1 for all τ > d , where
d ∈ [�a ,ua] ⊂ (0,∞).10

Assumption A). Note that for eachd ∈ [�a ,ua], the uniform distribution has its support at most on
[0,ua]. Moreover, Dirac-Θs , and Dirac-es are bounded from above by Dirac-Θmax

s , and Dirac-emax
s

on [0,ua], respectively. Thus, also the integral expressions defining Θs and es are bounded, and
we have

• Θmax
s

def
= Dirac-Θmax

s = ua and

• emax
s

def
= Dirac-emax

s = Rmax · ua + Imax · (λua + 1).

Note that for each d ∈ [�a ,ua], the uniform distribution has at least 1/2 of the probability on
[�a/2,ua]. Thus, we can use half of Dirac-Πmin

s and Dirac-Θmin
s for Dirac distribution on [�a/2,ua]:

• Πmin
s

def
= (Pmin)n ·min

{
e−λd (λd )k

2·k ! : 0≤k≤n,d ∈ {�a/2,ua }
}

and

• Θmin
s

def
= 1−e−λ·�a /2

2λ
,

where n and Pmin are the same as in Section 4.3.

Assumptions 2) and 3). We show that es can be κ-approximated by a function eeeκ
s (d ) of the

form V (d )/d , where V (d ) is a computable polynomial of rational coefficients. By using the same
technique, we can construct also ΘΘΘκ

s and ΠΠΠκ
s , which are of the same form. Hence, the function

RRRκ
s [д, h](d ) = eeeκ

s (d ) − д ·ΘΘΘκ
s (d ) +ΠΠΠκ

s (d ) · h has also the same form, since д and h are constant.
After differentiation of RRRκ

s [д, h](d ), we get a function of form V ′(d )/d2, where we isolate roots of
polynomial V ′(d ) to obtain the candidate actions. Note that the denominator d2 may disable root
d = 0 that is not within the eligible parameter values. Generally, the correctness of the symbolic
algorithms is not harmed by including candidate actions computed from the “false positive” root,
since these actions do not correspond to values that are near extrema of RRRκ

s [д, h](d ) and some
other action of the candidate set must outperform all of them. Thus, the function RRRκ

s [д, h](d )
fulfills Assumptions 2 and 3.

Now, we show that es can be κ-approximated by a function eeeκ
s (d ) of the form V (d )/d , where

V (d ) is a computable polynomial of rational coefficients. From definition es (d ) equals to
∫ d

0
1/d ·

Dirac-es (τ ) dτ . Instead of Dirac-es (τ ), we can use its κ/2-approximation Dirac-eua,κ/2
s (τ ) =

P (τ ) · e−λτ , where P (τ ) is an univariate polynomial with rational coefficients. The main difficulty
is the integration of P (τ ) · e−λτ . Fortunately, we can use the Taylor series representation for e−λτ ,
i.e.,

e−λτ =

∞∑
n=0

1

n!
· (−λτ )n .

Then, we can truncate the infinite sum, such that we cause at most κ/2 error in P (τ ) · e−λτ for each
τ ∈ [0,ua] (observe that we can compute the maximal and minimal values of polynomial P (τ ) for
τ ∈ [0,ua] using differentiation and root isolation of polynomials). Thus, we obtain polynomial
P (τ ) · S (τ ) with rational coefficients, that κ-approximates Dirac-es (τ ). Hence, we can set

eeeκ
s (d ) =

1

d
·
∫ d

0
P (τ ) · S (τ ) dτ =

1

d
·V (d ),

which is a κ-approximation of es , since V (d ) is κd-approximation of
∫ d

0
P (τ ) · S (τ ) dτ .

10Note that we need to restrict �a and ua to work with a correct parametric ACTMC.
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Assumption B). Let us fix s ∈ Sset ∩ Sa and κ ∈ Q>0. We will show how to compute a discretiza-
tion bound δ (s,κ,e) ∈ Q>0 such that for every d,d ′ ∈ [�a ,ua] where |d − d ′ | ≤ δ (s,κ,e) it holds that

|es (d ) − es (d ′) | ≤ κ .

First, we set κ ′
def
= κ/3. Using κ ′, we κ ′-approximate es function by polynomialeeeκ′

s defined above
for Assumption 3. Then, we use eeeκ′

s to obtain safe bounds on its first derivative (e.g., using its
second derivative and root isolation on interval [�a ,ua]). We use these bounds to obtain sufficiently
small δ (s,κ,e) to cause at most κ ′ error in eeeκ′

s . Then for every d,d ′ ∈ [�a ,ua] where |d − d ′ | ≤
δ (s,κ,e) it holds that

|es (d ) − es (d ′) | ≤ 2κ ′ + |eeeκ′
s (d ) −eeeκ′

s (d ′) | ≤ 3κ ′ = κ .

Similarly, we can define and obtain bounds δ (s,κ,Π) and δ (s,κ,Θ) . Then δ (s,κ )
def
= minΓ∈{Π,Θ,e } δ (s,κ,Γ) .

4.6 Erlang, Weibull, and Other Continuous Alarm Distributions

As we already noted in Section 2, the abstract assumptions enabling the applicability of our syn-
thesis algorithms are satisfied also by other distributions. Since the arguments are increasingly
more involved (and not used in our experiments reported in Section 5), we just sketch the argu-
ments that show how to handle distributions with polynomial approximations and illustrate them
on the Erlang and Weibull distributions. Note that exponential distribution is a special case of the
Erlang and Weibull distributions, where the fixed shape constant k is 1.

In what follows, we assume a fixed s ∈ Sset ∩ Sa for some a ∈ A and Fa[d](τ ) such that for each
d ∈ [�a ,ua] the CDF Fa[d](τ ) is continuous and differentiable for all τ > 0 and Fa[d](τ ) = 0 for all
τ ≤ 0.

Assumption A). Let fa[d](τ ) be the derivative of Fa[d](τ ), i.e., a probability density function.
Note that for uniform distribution, we first bounded the support of the density function. Here the
support of the density function can be whole R≥0 even for d bounded by �a and ua . Hence, we
first provide boundsmin′s andmax ′s , satisfying∫ ∞

0
fa[d](τ ) · 〈 . 〉 dτ −

∫ max ′s

min′s

fa[d](τ ) · 〈 . 〉 dτ ≤ 1

2
,

for all 〈 . 〉 ∈ {Dirac-Πs (τ ),Dirac-Θs (τ ),Dirac-es (τ )}. To find such bounds, we strengthen the
condition by requiring 〈 . 〉 ∈ {Dirac-Πmax

s ,Dirac-Θmax
s ,Dirac-emax

s }. Formally, we use 1 for

Dirac-Πmax
s , Dirac-Θmax

s
def
= τ , and Dirac-emax

s
def
= Rmax · τ + Imax · (λτ+1), whereRmax andImax are

the same as in Section 4.3. Note that the boundsmin′s andmax ′s exist because the density function
has to decrease in its extrema faster than at most linearly increasing (in τ ) functions Dirac-Θmax

s

and Dirac-emax
s .

Having such boundsmin′s andmax ′s , we can safely set

• Θmax
s

def
= Dirac-Θmax

s + 1/2 =max ′s + 1/2, and

• emax
s

def
= Dirac-emax

s + 1/2 = Rmax ·max ′s + Imax · (λmax ′s + 1) + 1/2.

Let cs
def
= mind ∈[�a,ua ]

∫ max ′s
min′s

fa[d](τ ) dτ . One can easily bound cs from below by 1/2 or more ex-

actly by (1 − 1/(2 ·max{1,Dirac-Θmax
s ,Dirac-emax

s })) where τ is substituted by max′s . Using cs , we
can set

• Πmin
s

def
= cs · Dirac-Πmin

s = cs · (Pmin)n ·min{ e
−λd (λd )k

k ! : 0≤k≤n,d ∈ {min′s ,max ′s }}, and

• Θmin
s

def
= cs · Dirac-Θmin

s = cs · 1−e−λ·min
′
s

2λ
,

where n and Pmin are the same as in Section 4.3.
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Assumptions 2) and 3). Employing Assumption A), we can compute sufficiently small κ. Now,
we definemaxs such that for all d ∈ [�a ,ua] and 〈 . 〉 ∈ {1,maxs ,Rmax ·maxs +Imax · (λ maxs +1)}
(i.e., 〈 . 〉 is the same as above, but we usemaxs instead of τ ), we have

1 −
∫ maxs

0
fa[d](τ ) dτ ≤ κ

2 · 〈 . 〉 .

Now, letU (τ ) be a polynomial approximation of fa[d](τ ) · Dirac-es (τ ) whose error is bounded
by κ/(2 ·maxs ) on interval [0,maxs ]. Theneeeκ

s =
∫ maxs

0
U (τ ) dτ is a κ-approximation of es , since

�����
∫ ∞

0
fa[d](τ ) · Dirac-es (τ ) dτ −

∫ maxs

0
fa[d](τ ) · Dirac-es (τ ) dτ

����� ≤
κ

2
,

which follows from the setting ofmaxs , and since

�����
∫ maxs

0
fa[d](τ ) · Dirac-es (τ ) dτ −

∫ maxs

0
U (τ ) dτ

����� ≤
�����
∫ maxs

0

κ

2 ·maxs
dτ

����� =
κ

2
.

Note that U (τ ) is a polynomial with variable τ , but might not be polynomial in the parameter
d . Thus, there is a question whethereeeκ

s =
∫ maxs

0
U (τ ) dτ is differentiable for every d ∈ [�a ,ua].

As a concrete example, let us consider a Weibull distribution with a fixed shape parameter
k ∈ N>0 and the scale parameter 1/d (i.e., we aim at synthesizing an ε-optimal scale). The Weibull
density function is

kd · (τd )k−1 · e−(τ d )k

.

As we know from Section 4.3, Dirac-emaxs ,κ
s (τ ) = P (τ ) · e−λτ , where P (τ ) is a polynomial function.

Note that in fa[d](τ ) · Dirac-emaxs ,κ
s (τ ), we can approximate e−(τ d )k · e−λτ , i.e., e−(τ d )k−λτ , to an

arbitrary precision for all d ∈ [�a ,ua] and τ ∈ [0,maxs ] using a finite prefix of a Taylor series

∞∑
n=0

1

n!
· (−(τd )k − λτ )n .

Then, for some sufficiently high bound i ∈ N>0,

U (τ )
def
= kd · (τd )k−1 · P (τ ) ·

i∑
n=0

1

n!
· (−(τd )k − λτ )n

is a polynomial function of τ and d , and hence,eeeκ
s

def
=
∫ maxs

0
U (τ ) dτ is a polynomial function of d .

Similarly, we can provide polynomial κ-approximations ΠΠΠκ
s and ΘΘΘκ

s , thus Assumption 3 is fulfilled.
Moreover, ΠΠΠκ

s , ΘΘΘκ
s , andeeeκ

s are computable for each d ∈ [�a ,ua] ∩Q, thus Assumption 2 also holds.
As a second example, let us consider an Erlang distribution with a fixed shape parameter

k ∈ N>0 and the rate parameter d (i.e., we aim at synthesizing an ε-optimal scale). The Erlang
density function is

dk · τ k−1

(k − 1)!
· e−τ d .

Similar to the Weibull distribution, we approximate e−τ d · e−λτ using a finite prefix of a Taylor
series

∑∞
n=0

1
n! (−τd − λτ )n . Then, for some sufficiently high bound i ∈ N>0,

U (τ )
def
=

dk · τ k−1

(k − 1)!
· P (τ ) ·

i∑
n=0

1

n!
· (−τd − λτ )n
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Fig. 2. Results for the disk drive example: optimal expected mean-payoff (left), and trade-off illustrated by
the synthesized delay values (right).

is a polynomial function of τ and d , and hence,eeeκ
s

def
=
∫ maxs

0
U (τ ) dτ is a polynomial function of d .

Similarly, we can provide polynomial κ-approximations ΠΠΠκ
s and ΘΘΘκ

s , thus Assumption 3 is fulfilled.
Moreover, ΠΠΠκ

s , ΘΘΘκ
s , andeeeκ

s are computable for each d ∈ [�a ,ua] ∩Q, thus Assumption 2 also holds.

Assumption B). The proof of this assumption follows the same arguments as in Section 4.5.

5 EXPERIMENTAL EVALUATION

We demonstrate feasibility of the symbolic algorithm presented in Section 3 on the running exam-
ple of Figure 1 and on a preventive maintenance model inspired by [16]. The experiments were car-
ried out11 using our prototype implementation of the symbolic algorithm implemented in Maple
[7]. Maple is appropriate as it supports the root isolation of univariate polynomials with arbi-
trary high precision due to its symbolic engine. The implementation currently supports Dirac and
uniform distributions only, but could be easily extended by any other distribution that fulfills As-
sumptions 1–4. Note that our models do not match our definition of ACTMC, since states have
various exit rates. This is easy to solve by the standard uniformization method.

Disk drive model. In the running example of this article (see Section 1 and Figure 1) we aimed
toward synthesizing delays ds and dw such that the long-run average power consumption of the
disk drive is ε-optimal. Let us describe the impact of choosing delay values ds and dw on the
expected mean-payoff in more detail. In Figure 2 (left), we illustrate the trade-off between choosing
different delays dw depending on delays ds ∈ {0.1, 10} and queue sizes N ∈ {2, 8}. When the queue
is small, e.g., N = 2 (dashed curves), the expected mean-payoff is optimal for large ds (here, ds =

10). Differently, when the queue size is large, e.g., N = 8 (solid curves), it is better to choose small
ds (here, ds = 0.1) to minimize the expected mean-payoff with dw chosen at the minimum of the
solid curve at around 3.6. This illustrates that the example is non-trivial.

The results of applying our synthesis algorithm for determining ε-optimal delays ds and dw

depending on different queue sizes N ∈ {1, . . . , 8} with common delay bounds � = 0.1 and u = 10
are depicted in Figure 2 (right). From this figure, we observe that for increasing queue sizes, also
the synthesized value dw increases, whereas the optimal value for ds is u in case N < 6 and �
otherwise.

The table in Figure 3 shows the running time of creation and solving of the Maple models, as
well as the largest polynomial degrees for selected queue sizes N = {2, 4, 6, 8} and error bounds ε =
{0.1, 0.01, 0.001, 0.0005}. In all cases, discretization step sizes of 10−25 < δ (·) < 10−19 were required
to obtain results guaranteeing ε-optimal parameter functions. These small discretization constants
underpin that the ε-optimal parameter synthesis problem cannot be carried out using the explicit

11We used a machine equipped with Intel CoreTM i7-3770 CPU processor at 3.40 GHz and 8 GiB of DDR RAM.
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Fig. 3. Statistics of the symbolic algo-
rithm applied to the disk drive example.

Fig. 4. Results and statistics of the symbolic algorithm ap-
plied to the preventive maintenance example.

Fig. 5. Preventive maintenance of a server.

approach (our implementation of the explicit algorithm runs out of memory for all of the listed
instances). However, the symbolic algorithm evaluating roots of polynomials with high degree is
capable to solve the problem within seconds in all cases. This can be explained through the small
number of candidate actions we had to consider (always at most 200).

Preventive maintenance. As depicted in Figure 5, we consider a slightly modified model of a
server that is susceptible to software faults [16]. A rejuvenation is the process of performing a
preventive maintenance of the server after a fixed period of time (usually during night time) to
prevent performance degradation or even failure of the server. The first row of states in Figure 5
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represents the normal behavior of the server. Jobs arrive with rate 2 and are completed with rate
3. If job arrives and queue is full, then it is rejected, which is penalized by cost 6. Degradation
of server is modeled by delay transitions of rates 1 leading to degrad states of the second row
or eventually leading to the failed state. The failure causes rejection of all jobs in the queue and
incurs cost 4 for each rejected job. After the failure is reported (delay event with rate 3), the repair
process is initiated and completed after two exponentially distributed steps of rate 1. The repair
can also fail with a certain probability (rate 0.1), thus after uniformly distributed time, the repair
process is restarted. After each successful repair, the server is initialized by an exponential event
with rate 3. The rejuvenation procedure is enabled after staying in normal or degrad states for
time do . Then the rejuvenation itself is initiated after all jobs in the queue are completed. The
rejuvenation procedure behaves similarly as the repair process, except that it is twice as fast (all
rates are doubled).

First, we want to synthesize the value of the delay after which the rejuvenation is enabled, i.e., we
aim toward the optimal schedule for rejuvenation. Furthermore, we synthesize the shifts dp and dq

of the uniform distributions with length 2 associated with rejuvenation and repair, respectively, i.e.,
the corresponding uniform distribution function is Fx [dx ](τ ) = min{1,max{0, (τ − dx )/2}}, where
x ∈ {p,q}. The interval of eligible values is [0.1, 10] for all synthesized parameters. Similar to the
previous example, we show results of experiments for queue sizes N = {2, 4, 6, 8} and error bounds
ε = {0.1, 0.01, 0.001, 0.0001} in Figure 4. The CPU time of model creation grows (almost quadrati-
cally) to the number of states, caused by multiplication of large matrices in Maple. As within the
disk-drive example, we obtained the solutions very fast, since we had to consider small number of
candidate actions (always at most 500).

Optimizations in the implementation. For the sake of a clean presentation in this article, we
established global theoretical upper bounds on δ and κ sufficient to guarantee ε-optimal solu-
tions. The theoretical bounds assume the worst underlying transition structure of a given ACTMC.
In the prototype implementation, we applied some optimizations, e.g., computing different uni-
formization rates for each alarm a ∈ A and its states Sa [26]. Also, to achieve better perturbation
bounds on the expected mean-payoff, i.e., to compute bounds on expected time and cost to reach
some state from all other states, we rely on techniques presented in [9, 24, 26]. Using these opti-
mizations, for instance in the experiment of disk drive model, some discretization bounds δ were
improved from 2.39 · 10−239 to 7.03 · 10−19. Note that even with these optimizations, the explicit
algorithm for parameter synthesis would not be feasible as, more than 1018 actions would have
to be considered for each state. This would clearly exceed the memory limit of state-of-the art
computers.

Non-localized alarms. For our case studies, we implemented the symbolic algorithm for para-
metric ACTMCs with localized alarms. We are currently developing a new implementation in
the prominent probabilistic model checker Prism [27] that will be more suitable for experiments
with the different heuristics for ACTMCs with non-localized alarms (GBPI and MVI methods, as
described in Section 3.4). According to experimental evaluation of our symbolic algorithm for
parametric ACTMCs with localized alarms, we conjecture that these algorithms will be very fast.
However, since they are heuristics, we need to provide more detailed performance evaluation,
which is a subject of our future research.
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