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Abstract. Our work is focused on properties of Process Rewrite Sys-
tems (PRS). Namely, we introduce an extension of PRS, so called weakly
ertended Process Rewrite Systems (wPRS). We compare the expressive-
ness of wPRS with original PRS classes and their known extensions.
In addition, for wPRS classes, we study decidability and complexity of
problems related to model checking and other formal verification proce-
dures such as weak and strong bisimulation, the reachability problem,
etc. The aim of our work is to extend expressive power of known mod-
elling facilities while preserving decidability and maintaining complexity
of problems in reasonable bounds.

1 Research Area

Automatic verification of current software systems often needs to model them as
infinite-state systems, i.e. systems with an evolving structure (e.g. unbounded
control structures such as recursive procedure calls and/or dynamic creation of
concurrent processes) and/or operating on unbounded data types, e.g., a net-
work of mobile phones is a concurrent system with evolving structure which
dynamically changes its size (and can become very large). Robustness of the
network requires that underlying protocols should work for an arbitrarily large
(i.e. potentially infinite) number of client processes. A JAVA applet dynamically
downloads classes over the network and executes their methods, the stack of
activation records should be seen as potentially infinite.

Infinite-state systems can be specified in a number of ways with their respec-
tive advantages and limitations. Petri nets, pushdown automata, and process
algebras like BPA, BPP, or PA all serve to exemplify this. However a unifying
view is to interpret them as labelled transition systems (LTS) with possibly in-
finite number of states. LTS families are often specified via a variety of rewrite
systems and form hierarchies (w.r.t. strong bisimulation equivalence), see for
example [Cau92,BCS96,Mo0196,May00]. Here we employ the classes of infinite-
state systems defined by term rewrite systems and called Process Rewrite Sys-
tems (PRS) as introduced by Mayr [May00]. PRS subsume a variety of the
formalisms studied in the context of formal verification (e.g. all the models men-
tioned above).
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A PRS is a finite set of rules t —— ¢’ where a is an action under which
a subterm ¢ can be reduced to a subterm ¢'. Terms are built up from an empty
process ¢ and a set of process constants using (associative) sequential “.” and
(associative and commutative) parallel “||” operators. The semantics of PRS can
be defined by labelled transition systems (LTS) — labelled directed graphs whose
nodes (states of the system) correspond to terms modulo structural congruence
by properties of “.” and “||” and edges correspond to individual actions (compu-
tation steps) which can be performed in a given state. The relevance of various
subclasses of PRS for modelling and analysing programs is shown e.g. in [Esp02],
for automatic verification see e.g. surveys [BCMS01,Srb02,KJ02].

Mayr [May00] has shown that the reachability problem (i.e. given terms ¢,¢':
is ¢ reducible to ¢'?) for PRS is decidable. In a context of reachability analysis
one can see at least two approaches: (i) abstraction (approximate) analysis tech-
niques on stronger 'models’ such as sePA and its superclasses with undecidable
reachability problem, e.g., see a recent work [BET03], and (ii) precise techniques
for ’weaker’ models, e.g., [LS98] and another recent work [BT03]. In the latter
one, symbolic representations of a set of reachable states are built with respect to
various term structural equivalences. Among others it is shown that for the PAD
class and the same equivalence as in the setting presented here, when properties
of sequential and parallel compositions are taken into account, one can construct
non-regular representations based on counter tree automata.

Most research (with some recent exceptions, e.g. [BT03,Esp02]) has been de-
voted to the PRS classes from the lower part of the PRS hierarchy, especially to
pushdown automata (PDA), Petri nets (PN) and their respective subclasses. We
mention the successes of PDA in modelling recursive programs (without process
creation), PN in modelling dynamic creation of concurrent processes (without
recursive calls), and CPDS (communicating pushdown systems [BET03]) mod-
elling both features. All of these formalisms subsume a notion of a finite-state
control unit (FSU) keeping some kind of global information which is accessible
to the redices (the ready to be reduced components) of a PRS term — hence an
FSU can regulate rewriting. On the other hand, using an FSU to extend the
PRS rewriting mechanism is very powerful since a state-extended version of PA
processes (sePA) has full Turing-power [BEH95] — the decidability of reachabil-
ity and other problems relevant for an automatic verification are lost for sePA,
including all its superclasses (see Figure 1), and CPDS as well.

2 Directions of the work

Our work presents a hierarchy of PRS classes and their respective extensions
of three types: PRS with finite constraint systems (fcPRS [Str02], motivated by
concurrent constraint programming, see e.g. [SR90]), state-extended PRS classes
[JKMO1], and our new formalism of weakly extended PRS (wPRS, introduced
in [KRS04b)). In [KRS04b], we have shown that all the just mentioned extensions
increase the expressive power of those PRS subclasses which do not subsume the
notion of a finite control. The classes in the hierarchy (depicted in Figure 1) are



related by their expressive power with respect to (strong) bisimulation equiva-
lence.

The notion of a weak FSU within wPRS formalism is inspired by weak au-
tomata as introduced in [MSS92], but used here as a nondeterministic (NFA)
rather than alternating one. A NFA A = (@, X, 4, qo, F') is weak if its state space
is partitioned into a disjoint union @ = |J @, and there is a partial order >
on the collection of the ;. The set X' is the input alphabet and the transition
function ¢ : Q x X' — P(Q) is such that if ¢ € Q; and ¢’ € 0(q,a) then ¢' € Q;,
where ); > @); (this requirement on the transition structure is also known as an
acyclicity condition). The set F' of final states satisfies that Q; C F or Q;NF =
for each @Q;.

As we are not interested in language equivalence, the set of final states does
not play any role in our application, hence all the states of a weak NFA could
belong to one class and the formalism would coincide with an arbitrary NFA.
Thus we have chosen to employ a 1-weak (also known as very weak) variant of
the restriction where each partition block contains exactly one state. In other
words, although a weak FSU can cycle in any of its control state, each wPRS
rewriting sequence can only change its state a finitely many times.

Figure 1 describes the hierarchy of PRS classes and their extended counter-
parts with respect to strong bisimulation equivalence. The depicted hierarchy is
then the upward oriented Hasse diagram of a partial order relation ‘C’ between
these sets of labelled transition systems modulo strong bisimulation equivalence.
In other words, a line connecting X and Y with Y placed higher than X means
that every transition system definable in X can be (up to bisimulation equiv-
alence) defined in Y while the reverse does not hold — we write X C Y. The
dotted lines represent the facts X C Y, where the relation X C Y is only our
conjecture.

The wPRS classes refine the presented hierarchy of extended PRS formalisms
and so it motivates us to focus on borders of decidability and complexity of some
interesting problems. By interesting problems we mean reachability, strong and
weak bisimulation equivalence, model checking problems for linear or branching
time logics, etc.

3 Results

Besides of the results on the classification of expressive power of extended PRS
classes [KRS04b,KRS04a], we have shown that the reachability problem remains
decidable for the very expressive class of wPRS [KRS04a]. Let us mention that
Hiittel and Srba [HS05] define a replicative variant of a calculus for Dolev and
Yao’s ping-pong protocols [DY83]. They show that the reachability problem for
these protocols is decidable as it can be reduced to the reachability problem
for wPRS, more precisely their replicative ping-pong protocols belong to the
wPAD class. Further, we mention another application of our decidability result
exemplifying that the introduction of wPRS was well-motivated and contributes
to the results on infinite-state systems. The decidability of the reachability for
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Fig. 1. The hierarchy of classes defined by extended process rewrite systems with
respect to the strong bisimulation equivalence.

wPRS opens an easy way how to solve an open problem of a weak trace non-
equivalence (for definition see, e.g. [JEM99]) for wPRS and its subclasses.

A reachability property problem, for a given system A and a given formula ¢,
is to decide whether EFy holds in the initial state of A. Hence, these problems
are parametrized by the class to which the system A belongs, and by the type
of the formula . In most of practical situations, ¢ specifies error states and the
reachability property problem is a formalization of a natural verification problem
whether some error state is reachable in a given system.

We recall that the (full) EF logic is decidable for PAD [May98] (PAD sub-

sumes both PA and PDA). It is undecidable for PN [Esp94]; an inspection of the
proof moves this undecidability border down to seBPP (also known as multiset



automata, MSA). If we consider the reachability HM property problem, i.e., the
reachability property problem where ¢ is a formula of Hennessy—Milner logic
(HM formula), then this problem has been shown to be decidable for the classes
of PN [JM95] and PAD [JKMO01]. In [KRS05], we lift the decidability border for
this problem to the wPRS class. This results also move the decidability border
for the reachability simple property problem, i.e., the reachability property prob-
lem where ¢ is a HM formula without any nesting of modal operators (a), as
the problem has been known to be decidable only for PRS [May00] so far.

Let us recall that the (full) EG logic is decidable for PDA (a consequence
of [MS85] and [Cau92]), whilst undecidability has been obtained for its EGp
fragment on (deterministic) BPP [EK95], where ¢ is a HM formula. In [KRS05],
we show that this problem remains undecidable for (deterministic) BPP even if
we restrict ¢ to a HM formula without nesting of modal operators {(a).

As a corollary of decidability of the reachability HM property problem for
wPRS, we observe that the problem of strong bisimilarity between wPRS systems
and finite-state ones is decidable. As PRS and its subclasses are proper subclasses
of wPRS, it follows that we positively answer the question of the reachability
HM property problem for the PRS class and hence the questions of bisimilarity
checking the PAN and PRS processes with finite-state ones, which have been
open problems, see for example [Srb02]. Their relevance to program specification
and verification is advocated, for example, in [JKMO01,KS04].
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