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Abstra
t

We unify a view on three extensions of Pro
ess Rewrite Systems (PRS) and


ompare their expressive power with that of PRS. We show that the rea
hability

problem for PRS extended with a so 
alled weak �nite state unit is de
idable.

1 Introdu
tion

An automati
 veri�
ation of 
urrent software systems often needs to model them as in�nite-

state systems, i.e. systems with an evolving stru
ture and/or operating on unbounded data

types. In�nite-state systems 
an be spe
i�ed in a number of ways with their respe
tive

advantages and limitations. Petri nets, pushdown automata, and pro
ess algebras like

BPA, BPP, or PA all serve to exemplify this. Here we employ the 
lasses of in�nite-state

systems de�ned by term rewrite systems and 
alled Pro
ess Rewrite Systems (PRS) as

introdu
ed by Mayr [12℄. PRS subsume a variety of the formalisms studied in the 
ontext

of formal veri�
ation (e.g. all the models mentioned above).

A PRS is a �nite set of rules t

a

�! t

0

where a is an a
tion under whi
h a subterm t 
an be

redu
ed onto a subterm t

0

. Terms are built up from an empty pro
ess " and a set of pro
ess


onstants using (asso
iative) sequential \." and (asso
iative and 
ommutative) parallel \k"

operators. The semanti
s of PRS 
an be de�ned by labelled transition systems (LTS) {

labelled dire
ted graphs whose nodes (states of the system) 
orrespond to terms modulo

properties of \." and \k" and edges 
orrespond to individual a
tions (
omputational steps)

whi
h 
an be performed in a given state.

Mayr [12℄ has also shown that the rea
hability problem (i.e. given terms t; t

0

: is t

redu
ible to t

0

?) for PRS is de
idable. Most resear
h has been devoted to the PRS 
lasses

from the lower part of the PRS hierar
hy, espe
ially to pushdown automata (PDA), Petri

nets (PN) and their respe
tive sub
lasses. We mention the su

esses of PDA in modelling

re
ursive programs (without pro
ess 
reation) and PN in modelling dynami
 
reation of


on
urrent pro
esses (without re
ursive 
alls). These formalisms subsume a notion of a

�nite state unit (FSU) keeping some kind of global information whi
h is a

essible to the

redi
es (the ready to be redu
ed 
omponents) of a PRS term { hen
e a FSU 
an regulate

�
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rewriting. On the other hand, using a FSU to extend the PRS rewriting me
hanism is

very powerful sin
e the state-extended version of PA pro
esses (sePA) has a full Turing-

power [1℄ { the de
idability of rea
hability and other problems relevant for an automati


veri�
ation are lost for sePA, in
luding all its super
lasses (see Figure 1).

The paper presents a hierar
hy of PRS 
lasses and their respe
tive extensions of three

types: PRS with �nite 
onstraint system (f
PRS [17℄, motivated by 
on
urrent 
onstraint

programming, see e.g. [16℄), state-extended PRS 
lasses [7℄, and our new formalism of PRS

with weak �nite-state unit (wPRS, introdu
ed in [9℄). The notion of weakness employed

in the wPRS formalism 
orresponds to that of weak automaton [15℄ in automata theory.

In [9℄ we have shown that all the just mentioned extensions in
rease the expressive power

of those PRS sub
lasses whi
h do not subsume the notion of �nite 
ontrol. The 
lasses in

the hierar
hy (depi
ted in Figure 1) are related by their expressive power with respe
t to

(strong) bisimulation equivalen
e. Besides of the results on the 
lassi�
ation of expressive

power of extended PRS 
lasses [9, 8℄, we have shown that the rea
hability problem remains

de
idable for the very expressive 
lass of wPRS [8℄.

2 Extended PRS

In this se
tion we re
all the de�nitions of three di�erent extensions of pro
ess rewrite

systems, namely state-extended PRS (sePRS) [7℄, PRS with a �nite 
onstraint system

(f
PRS) [17℄, and PRS with a weak �nite-state unit (wPRS) [9℄. For detailed des
ription

and intuitive explanation we refer to [8℄.

We distinguish four 
lasses of pro
ess terms: '1' stands for terms 
onsisting of a single

pro
ess 
onstant only (e.g. " 62 1), 'S' are sequential terms { without parallel 
omposition,

'P' are parallel terms { without sequential 
omposition, 'G' are general terms { with

arbitrarily nested sequential and parallel 
ompositions.

De�nition Let A
t = fa; b; � � � g be a 
ountably in�nite set of atomi
 a
tions and �; � 2

f1; S; P;Gg su
h that � � �. An extended (�; �)-PRS � is a tuple (M;�; R;m

0

; t

0

), where

� M is a �nite set of states of the state unit,

� � is a binary relation over M ,

� R is a �nite set of rewrite rules of the form (m; t

1

)

a

�! (n; t

2

), where t

1

2 �, t

1

6= ",

t

2

2 �, m;n 2 M , and a 2 A
t,

� Pair (m

0

; t

0

) 2M � � forms a distinguished initial state of the system.

The spe
i�
 type of an extended (�; �)-PRS is given by further requirements on �. An

extended (�; �)-PRS is

� (�; �)-sePRS without any requirements on �.

1

� (�; �)-wPRS i� (M;�) is a partially ordered set.

1

In this 
ase, the relation � 
an be omitted from the de�nition.
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� (�; �)-f
PRS i� (M;�) is a bounded latti
e. The lub operation (least upper bound)

is denoted by ^, the least and the greatest elements are denoted by tt and ff, respe
-

tively. We also assume that m

0

6= ff.

We de�ne Const(�) as the set of all 
onstants o

urring in the rewrite rules of � or

in its initial state, and A
t(�) as the set of all a
tions o

urring in the rewrite rules of �.

To shorten our notation we prefer mt over (m; t). Instead of (mt

1

a

�! nt

2

) 2 R we usually

write (mt

1

a

�! nt

2

) 2 �.

The semanti
s of an extended (�; �)-PRS system � is given by the 
orresponding

labelled transition system (S;A
t(�);�!; m

0

t

0

), where S = M � ft 2 � j Const(t) �

Const(�)g and the relation �! is de�ned as the least relation satisfying the inferen
e

rules 
orresponding to the appli
ation of rewrite rules (and dependent on the 
on
rete

formalism):

sePRS

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

wPRS

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

if n � m

f
PRS

(mt

1

a

�! nt

2

) 2 �

ot

1

a

�! (o ^ n)t

2

if m � o and o ^ n 6= ff

and two 
ommon inferen
e rules

mt

1

a

�! nt

0

1

m(t

1

kt

2

)

a

�! n(t

0

1

kt

2

)

;

mt

1

a

�! nt

0

1

m(t

1

:t

2

)

a

�! n(t

0

1

:t

2

)

;

where t

1

; t

2

; t

0

1

2 T and m;n; o 2M .

Instead of (1; S)-sePRS, (1; S)-wPRS, (1; S)-f
PRS, . . . we use a more natural notation

seBPA, wBPA, f
BPA, et
. The 
lass seBPP is also known as multiset automata (MSA),

see [13℄. Let us note that the \non-extended" PRS 
an be de�ned as a spe
ial 
ase of the

extended formalism where M is a singleton.

3 Expressiveness

Figure 1 des
ribes the hierar
hy of PRS 
lasses and their extended 
ounterparts with

respe
t to bisimulation equivalen
e. If any pro
ess in 
lass X 
an be also de�ned (up to

bisimilarity) in 
lass Y we write X � Y . If additionally Y 6� X holds, we write X ( Y

and say X is less expressive than Y . This is depi
ted by the line(s) 
onne
ting X and Y

with Y pla
ed higher than X in Figure 1. The dotted lines represent the fa
ts X � Y ,

where we 
onje
ture that X ( Y hold.

The stri
tness ('(') between the PRS-hierar
hy 
lasses has been proved by Mayr [12℄,

the stri
tness between the 
orresponding 
lasses of PRS and f
PRS has been proved in [17℄,

and the stri
tness relating f
PRSs and wPRSs is shown in [9℄. Note the stri
tness relations

wX ( seX hold for all X = PA, PAD, PAN, PRS due to our rea
hability result for wPRS

given in [8℄ and due to the full Turing-power of sePA [1℄. These proofs together with Moller's

result establishing that MSA ( PN [14℄ and our proof that PN ( sePA [8℄ 
omplete the

justi�
ation of Figure 1.
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Figure 1: The hierar
hy of 
lasses de�ned by extended pro
ess rewrite systems.

4 Rea
hability Problem is De
idable for wPRS

By the rea
hability problem we mean to de
ide for a wPRS � with an initial state rt

0

and

a given state st, whether the state st is rea
hable from the initial state rt

0

or not (st is

rea
hable from rt

0

if a sequen
e of a
tions � su
h that rt

0

�

�! st exists).

It was proved by Mayr [12℄ that the rea
hability problem is de
idable for PRS. Our

proof exhibits a similar stru
ture; �rst we redu
e the general problem to the rea
hability

problem for wPRS in so-
alled normal form (i.e. PRS with rules 
ontaining at most one

o

urren
e of a sequential or parallel operator), and then we solve this subproblem using

the fa
t that the rea
hability problems for both PN and PDA are de
idable [11, 2℄. The

latter part of Mayr's proof for PRS transforms the PRS � in normal form into the PRS

�

0

in so-
alled transitive normal form satisfying (X �! Y ) 2 �

0

whenever X �

�

Y . This

step employs the lo
al e�e
t of rewriting under sequential rules in a parallel environment

and vi
e versa. Intuitively, whenever there is a rewriting sequen
e

XkY �! (X

1

:X

2

)kY �! (X

1

:X

2

)kZ �! X

2

kZ
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in a PRS in normal form, then the rewriting of ea
h parallel 
omponent is independent

in the sense that there are also rewriting sequen
es X �! X

1

:X

2

�! X

2

and Y �! Z.

This does not hold for wPRS in normal form as the rewriting in one parallel 
omponent


an in
uen
e the rewriting in other parallel 
omponents via a weak state unit. To get this

independen
e ba
k we introdu
ed the 
on
ept of passive steps emulating the 
hanges of a

weak state produ
ed by the environment. For more details see [8℄.

To sum up, we proved that the rea
hability problem for wPRS is de
idable. As

\stronger" 
lasses (i.e. sePA and its super
lasses) of the hierar
hy are Turing powerful

(thus the problem is unde
idable for them), the problem is solved for all the 
lasses in the

re�ned hierar
hy.

5 Appli
ations of the Rea
hability Result

By our opinion (sub)
lasses of wPRS are suitable for modelling some of the software sys-

tems whi
h 
an be found in real-time 
ontrol programs as well as in 
ommuni
ation and


ryptographi
 proto
ols. Let us mention that H�uttel and Srba [4℄ de�ne a repli
ative

variant of a 
al
ulus for Dolev and Yao's ping-pong proto
ols [3℄. They show that the

rea
hability problem for these proto
ols is de
idable as it 
an be redu
ed to the rea
habil-

ity problem for wPRS, more pre
isely their repli
ative ping-pong proto
ols belong to the

wPAD 
lass.

Finally we mention another appli
ation of our de
idability result exemplifying that the

introdu
tion of wPRS was well-motivated and 
ontributes to the results on in�nite-state

systems. The de
idability of the rea
hability for wPRS opens an easy way how to solve

an open problem of a weak tra
e non-equivalen
e (for the de�nition see e.g. [6℄) for wPRS

and its sub
lasses.

Using the de
idability of rea
hability for wPRS, it is easy to show that the weak tra
e

set is re
ursive for every state of any wPRS. So far it has been known that the weak tra
e

non-equivalen
e is semi-de
idable for Petri nets (see e.g. [5℄), pushdown pro
esses (due to

[2℄), and PA pro
esses (due to [10℄). It follows from our result that the weak tra
e non-

equivalen
e is semi-de
idable for wPRS. Hen
e, the border of the semi-de
idability was

moved up to the 
lass of wPRS in the hierar
hy. Let us note that the semi-de
idability

result is new for some 
lasses of the \non-extended" PRS hierar
hy, too; namely PAN,

PAD, and PRS. As other 
lasses of our re�ned hierar
hy (i.e. sePA and its super
lasses)

have a full Turing-power, the problem is unde
idable for them. Hen
e, the problem is

solved for all 
lasses of the re�ned hierar
hy.
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