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Abstract

We unify a view on three extensions of Process Rewrite Systems (PRS) and
compare their expressive power with that of PRS. We show that the reachability
problem for PRS extended with a so called weak finite state unit is decidable.

1 Introduction

An automatic verification of current software systems often needs to model them as infinite-
state systems, i.e. systems with an evolving structure and/or operating on unbounded data
types. Infinite-state systems can be specified in a number of ways with their respective
advantages and limitations. Petri nets, pushdown automata, and process algebras like
BPA, BPP, or PA all serve to exemplify this. Here we employ the classes of infinite-state
systems defined by term rewrite systems and called Process Rewrite Systems (PRS) as
introduced by Mayr [12]. PRS subsume a variety of the formalisms studied in the context
of formal verification (e.g. all the models mentioned above).

A PRS is a finite set of rules ¢ — ' where @ is an action under which a subterm ¢ can be
reduced onto a subterm ¢'. Terms are built up from an empty process € and a set of process
constants using (associative) sequential “.” and (associative and commutative) parallel “||”
operators. The semantics of PRS can be defined by labelled transition systems (LTS) —
labelled directed graphs whose nodes (states of the system) correspond to terms modulo
properties of “.” and “||” and edges correspond to individual actions (computational steps)
which can be performed in a given state.

Mayr [12] has also shown that the reachability problem (i.e. given terms ¢,t": is t
reducible to ¢'?) for PRS is decidable. Most research has been devoted to the PRS classes
from the lower part of the PRS hierarchy, especially to pushdown automata (PDA), Petri
nets (PN) and their respective subclasses. We mention the successes of PDA in modelling
recursive programs (without process creation) and PN in modelling dynamic creation of
concurrent processes (without recursive calls). These formalisms subsume a notion of a
finite state unit (FSU) keeping some kind of global information which is accessible to the
redices (the ready to be reduced components) of a PRS term — hence a FSU can regulate
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rewriting. On the other hand, using a FSU to extend the PRS rewriting mechanism is
very powerful since the state-extended version of PA processes (sePA) has a full Turing-
power [1] — the decidability of reachability and other problems relevant for an automatic
verification are lost for sePA, including all its superclasses (see Figure 1).

The paper presents a hierarchy of PRS classes and their respective extensions of three
types: PRS with finite constraint system (fcPRS [17], motivated by concurrent constraint
programming, see e.g. [16]), state-extended PRS classes [7], and our new formalism of PRS
with weak finite-state unit (wPRS, introduced in [9]). The notion of weakness employed
in the wPRS formalism corresponds to that of weak automaton [15] in automata theory.
In [9] we have shown that all the just mentioned extensions increase the expressive power
of those PRS subclasses which do not subsume the notion of finite control. The classes in
the hierarchy (depicted in Figure 1) are related by their expressive power with respect to
(strong) bisimulation equivalence. Besides of the results on the classification of expressive
power of extended PRS classes [9, 8], we have shown that the reachability problem remains
decidable for the very expressive class of wPRS [8].

2 Extended PRS

In this section we recall the definitions of three different extensions of process rewrite
systems, namely state-extended PRS (sePRS) [7], PRS with a finite constraint system
(fcPRS) [17], and PRS with a weak finite-state unit (wPRS) [9]. For detailed description
and intuitive explanation we refer to [§].

We distinguish four classes of process terms: ’1’ stands for terms consisting of a single
process constant only (e.g. € € 1), ’S’ are sequential terms — without parallel composition,
P’ are parallel terms — without sequential composition, 'G’ are general terms — with
arbitrarily nested sequential and parallel compositions.

Definition Let Act = {a,b,---} be a countably infinite set of atomic actions and «, 5 €
{1, S, P,G} such that o C 5. An extended (o, 3)-PRS A is a tuple (M, <, R, mg, ty), where

M is a finite set of states of the state unit,

e < is a binary relation over M,

R is a finite set of rewrite rules of the form (m,t,) — (n,t), where t; € , t;, # &,
ty € B, m,n € M, and a € Act,

Pair (my,ty) € M x ( forms a distinguished initial state of the system.

The specific type of an extended («, 5)-PRS is given by further requirements on <. An
extended («, 5)-PRS is

e (a,3)-sePRS without any requirements on <.!
e (a,B)-wPRS iff (M, <) is a partially ordered set.

'In this case, the relation < can be omitted from the definition.



e (a,)-fcPRS iff (M, <) is a bounded lattice. The lub operation (least upper bound)
is denoted by A, the least and the greatest elements are denoted by ¢t and ff, respec-
tively. We also assume that mgy # ff.

We define Const(A) as the set of all constants occurring in the rewrite rules of A or
in its initial state, and Act(A) as the set of all actions occurring in the rewrite rules of A.
To shorten our notation we prefer mt over (m,t). Instead of (mt, — nt,) € R we usually
write (mt, —— nty) € A.

The semantics of an extended («,)-PRS system A is given by the corresponding
labelled transition system (S, Act(A), —, moty), where S = M x {t € 8 | Const(t) C
Const(A)} and the relation — is defined as the least relation satisfying the inference
rules corresponding to the application of rewrite rules (and dependent on the concrete
formalism):

(mty i)(Lntg) €A WPRS (mty i)(Lntg) €A
mt; — niy mt; — niy
(mt, == nty) € A
ot; = (0 An)ty

and two common inference rules

sePRS

ifn<m

fcPRS

ifm<oandoAn#ff

mt; —— nt) mt; — nt)
m(ty||tz) = n(th][ts)”  m(tits) —= n(t).ts)’
where t1,%5,t, € T and m,n,o0 € M.
Instead of (1, 5)-sePRS, (1, 5)-wPRS, (1, S)-fcPRS, ...we use a more natural notation
seBPA, wBPA, fcBPA, etc. The class seBPP is also known as multiset automata (MSA),

see [13]. Let us note that the “non-extended” PRS can be defined as a special case of the
extended formalism where M is a singleton.

3 Expressiveness

Figure 1 describes the hierarchy of PRS classes and their extended counterparts with
respect to bisimulation equivalence. If any process in class X can be also defined (up to
bisimilarity) in class Y we write X C Y. If additionally ¥ ¢ X holds, we write X C Y
and say X is less expressive than Y. This is depicted by the line(s) connecting X and Y
with Y placed higher than X in Figure 1. The dotted lines represent the facts X C Y,
where we conjecture that X C Y hold.

The strictness (’C’) between the PRS-hierarchy classes has been proved by Mayr [12],
the strictness between the corresponding classes of PRS and fcPRS has been proved in [17],
and the strictness relating fcPRSs and wPRSs is shown in [9]. Note the strictness relations
wX C seX hold for all X = PA, PAD, PAN, PRS due to our reachability result for wPRS
given in [8] and due to the full Turing-power of sePA [1]. These proofs together with Moller’s
result establishing that MSA C PN [14] and our proof that PN C sePA [8] complete the
justification of Figure 1.
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Figure 1: The hierarchy of classes defined by extended process rewrite systems.

4 Reachability Problem is Decidable for wPRS

By the reachability problem we mean to decide for a wPRS A with an initial state rt, and
a given state st, whether the state st is reachable from the initial state rty or not (st is
reachable from 7, if a sequence of actions o such that rt, — st exists).

It was proved by Mayr [12] that the reachability problem is decidable for PRS. Our
proof exhibits a similar structure; first we reduce the general problem to the reachability
problem for wPRS in so-called normal form (i.e. PRS with rules containing at most one
occurrence of a sequential or parallel operator), and then we solve this subproblem using
the fact that the reachability problems for both PN and PDA are decidable [11, 2]. The
latter part of Mayr’s proof for PRS transforms the PRS A in normal form into the PRS
A’ in so-called transitive normal form satisfying (X — Y) € A’ whenever X =2 Y. This
step employs the local effect of rewriting under sequential rules in a parallel environment
and vice versa. Intuitively, whenever there is a rewriting sequence
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in a PRS in normal form, then the rewriting of each parallel component is independent
in the sense that there are also rewriting sequences X — X;.Xo — Xy, and ¥ — Z.
This does not hold for wPRS in normal form as the rewriting in one parallel component
can influence the rewriting in other parallel components via a weak state unit. To get this
independence back we introduced the concept of passive steps emulating the changes of a
weak state produced by the environment. For more details see [8].

To sum up, we proved that the reachability problem for wPRS is decidable. As
“stronger” classes (i.e. sePA and its superclasses) of the hierarchy are Turing powerful
(thus the problem is undecidable for them), the problem is solved for all the classes in the
refined hierarchy.

5 Applications of the Reachability Result

By our opinion (sub)classes of wPRS are suitable for modelling some of the software sys-
tems which can be found in real-time control programs as well as in communication and
cryptographic protocols. Let us mention that Hiittel and Srba [4] define a replicative
variant of a calculus for Dolev and Yao’s ping-pong protocols [3]. They show that the
reachability problem for these protocols is decidable as it can be reduced to the reachabil-
ity problem for wPRS, more precisely their replicative ping-pong protocols belong to the
wPAD class.

Finally we mention another application of our decidability result exemplifying that the
introduction of wPRS was well-motivated and contributes to the results on infinite-state
systems. The decidability of the reachability for wPRS opens an easy way how to solve
an open problem of a weak trace non-equivalence (for the definition see e.g. [6]) for wPRS
and its subclasses.

Using the decidability of reachability for wPRS, it is easy to show that the weak trace
set is recursive for every state of any wPRS. So far it has been known that the weak trace
non-equivalence is semi-decidable for Petri nets (see e.g. [5]), pushdown processes (due to
[2]), and PA processes (due to [10]). It follows from our result that the weak trace non-
equivalence is semi-decidable for wPRS. Hence, the border of the semi-decidability was
moved up to the class of wPRS in the hierarchy. Let us note that the semi-decidability
result is new for some classes of the “non-extended” PRS hierarchy, too; namely PAN,
PAD, and PRS. As other classes of our refined hierarchy (i.e. sePA and its superclasses)
have a full Turing-power, the problem is undecidable for them. Hence, the problem is
solved for all classes of the refined hierarchy.
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