
Reahability for Extended Proess Rewrite Systems

Vojt�eh

�

Reh�ak

�

Faulty of Informatis, Masaryk University Brno,

Botanik�a 68a, 602 00 Brno, Czeh Republi, rehak�fi.muni.z

Abstrat

We unify a view on three extensions of Proess Rewrite Systems (PRS) and

ompare their expressive power with that of PRS. We show that the reahability

problem for PRS extended with a so alled weak �nite state unit is deidable.

1 Introdution

An automati veri�ation of urrent software systems often needs to model them as in�nite-

state systems, i.e. systems with an evolving struture and/or operating on unbounded data

types. In�nite-state systems an be spei�ed in a number of ways with their respetive

advantages and limitations. Petri nets, pushdown automata, and proess algebras like

BPA, BPP, or PA all serve to exemplify this. Here we employ the lasses of in�nite-state

systems de�ned by term rewrite systems and alled Proess Rewrite Systems (PRS) as

introdued by Mayr [12℄. PRS subsume a variety of the formalisms studied in the ontext

of formal veri�ation (e.g. all the models mentioned above).

A PRS is a �nite set of rules t

a

�! t

0

where a is an ation under whih a subterm t an be

redued onto a subterm t

0

. Terms are built up from an empty proess " and a set of proess

onstants using (assoiative) sequential \." and (assoiative and ommutative) parallel \k"

operators. The semantis of PRS an be de�ned by labelled transition systems (LTS) {

labelled direted graphs whose nodes (states of the system) orrespond to terms modulo

properties of \." and \k" and edges orrespond to individual ations (omputational steps)

whih an be performed in a given state.

Mayr [12℄ has also shown that the reahability problem (i.e. given terms t; t

0

: is t

reduible to t

0

?) for PRS is deidable. Most researh has been devoted to the PRS lasses

from the lower part of the PRS hierarhy, espeially to pushdown automata (PDA), Petri

nets (PN) and their respetive sublasses. We mention the suesses of PDA in modelling

reursive programs (without proess reation) and PN in modelling dynami reation of

onurrent proesses (without reursive alls). These formalisms subsume a notion of a

�nite state unit (FSU) keeping some kind of global information whih is aessible to the

redies (the ready to be redued omponents) of a PRS term { hene a FSU an regulate

�

Author has been partially supported by GA

�

CR, grant No. 201/03/1161.

1

rewriting. On the other hand, using a FSU to extend the PRS rewriting mehanism is

very powerful sine the state-extended version of PA proesses (sePA) has a full Turing-

power [1℄ { the deidability of reahability and other problems relevant for an automati

veri�ation are lost for sePA, inluding all its superlasses (see Figure 1).

The paper presents a hierarhy of PRS lasses and their respetive extensions of three

types: PRS with �nite onstraint system (fPRS [17℄, motivated by onurrent onstraint

programming, see e.g. [16℄), state-extended PRS lasses [7℄, and our new formalism of PRS

with weak �nite-state unit (wPRS, introdued in [9℄). The notion of weakness employed

in the wPRS formalism orresponds to that of weak automaton [15℄ in automata theory.

In [9℄ we have shown that all the just mentioned extensions inrease the expressive power

of those PRS sublasses whih do not subsume the notion of �nite ontrol. The lasses in

the hierarhy (depited in Figure 1) are related by their expressive power with respet to

(strong) bisimulation equivalene. Besides of the results on the lassi�ation of expressive

power of extended PRS lasses [9, 8℄, we have shown that the reahability problem remains

deidable for the very expressive lass of wPRS [8℄.

2 Extended PRS

In this setion we reall the de�nitions of three di�erent extensions of proess rewrite

systems, namely state-extended PRS (sePRS) [7℄, PRS with a �nite onstraint system

(fPRS) [17℄, and PRS with a weak �nite-state unit (wPRS) [9℄. For detailed desription

and intuitive explanation we refer to [8℄.

We distinguish four lasses of proess terms: '1' stands for terms onsisting of a single

proess onstant only (e.g. " 62 1), 'S' are sequential terms { without parallel omposition,

'P' are parallel terms { without sequential omposition, 'G' are general terms { with

arbitrarily nested sequential and parallel ompositions.

De�nition Let At = fa; b; � � � g be a ountably in�nite set of atomi ations and �; � 2

f1; S; P;Gg suh that � � �. An extended (�; �)-PRS � is a tuple (M;�; R;m

0

; t

0

), where

� M is a �nite set of states of the state unit,

� � is a binary relation over M ,

� R is a �nite set of rewrite rules of the form (m; t

1

)

a

�! (n; t

2

), where t

1

2 �, t

1

6= ",

t

2

2 �, m;n 2 M , and a 2 At,

� Pair (m

0

; t

0

) 2M � � forms a distinguished initial state of the system.

The spei� type of an extended (�; �)-PRS is given by further requirements on �. An

extended (�; �)-PRS is

� (�; �)-sePRS without any requirements on �.

1

� (�; �)-wPRS i� (M;�) is a partially ordered set.

1

In this ase, the relation � an be omitted from the de�nition.

2

� (�; �)-fPRS i� (M;�) is a bounded lattie. The lub operation (least upper bound)

is denoted by ^, the least and the greatest elements are denoted by tt and ff, respe-

tively. We also assume that m

0

6= ff.

We de�ne Const(�) as the set of all onstants ourring in the rewrite rules of � or

in its initial state, and At(�) as the set of all ations ourring in the rewrite rules of �.

To shorten our notation we prefer mt over (m; t). Instead of (mt

1

a

�! nt

2

) 2 R we usually

write (mt

1

a

�! nt

2

) 2 �.

The semantis of an extended (�; �)-PRS system � is given by the orresponding

labelled transition system (S;At(�);�!; m

0

t

0

), where S = M � ft 2 � j Const(t) �

Const(�)g and the relation �! is de�ned as the least relation satisfying the inferene

rules orresponding to the appliation of rewrite rules (and dependent on the onrete

formalism):

sePRS

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

wPRS

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

if n � m

fPRS

(mt

1

a

�! nt

2

) 2 �

ot

1

a

�! (o ^ n)t

2

if m � o and o ^ n 6= ff

and two ommon inferene rules

mt

1

a

�! nt

0

1

m(t

1

kt

2

)

a

�! n(t

0

1

kt

2

)

;

mt

1

a

�! nt

0

1

m(t

1

:t

2

)

a

�! n(t

0

1

:t

2

)

;

where t

1

; t

2

; t

0

1

2 T and m;n; o 2M .

Instead of (1; S)-sePRS, (1; S)-wPRS, (1; S)-fPRS, . . . we use a more natural notation

seBPA, wBPA, fBPA, et. The lass seBPP is also known as multiset automata (MSA),

see [13℄. Let us note that the \non-extended" PRS an be de�ned as a speial ase of the

extended formalism where M is a singleton.

3 Expressiveness

Figure 1 desribes the hierarhy of PRS lasses and their extended ounterparts with

respet to bisimulation equivalene. If any proess in lass X an be also de�ned (up to

bisimilarity) in lass Y we write X � Y . If additionally Y 6� X holds, we write X (Y

and say X is less expressive than Y . This is depited by the line(s) onneting X and Y

with Y plaed higher than X in Figure 1. The dotted lines represent the fats X � Y ,

where we onjeture that X (Y hold.

The stritness ('(') between the PRS-hierarhy lasses has been proved by Mayr [12℄,

the stritness between the orresponding lasses of PRS and fPRS has been proved in [17℄,

and the stritness relating fPRSs and wPRSs is shown in [9℄. Note the stritness relations

wX (seX hold for all X = PA, PAD, PAN, PRS due to our reahability result for wPRS

given in [8℄ and due to the full Turing-power of sePA [1℄. These proofs together with Moller's

result establishing that MSA (PN [14℄ and our proof that PN (sePA [8℄ omplete the

justi�ation of Figure 1.

3

sePRS

wPRS

ooooooooooooooooooooooooooo

NNNNNNNNNNNNNNNNNNNNNNNNNN

fPRS

ooooooooooooooooooooooooooo

NNNNNNNNNNNNNNNNNNNNNNNNNN

PRS

(G;G)-PRS

oooooooooooooooooooooooooo

NNNNNNNNNNNNNNNNNNNNNNNN

sePAD sePAN

wPAD

OOOOOOOOOOOOOOOOOOOOOOOOOOO
wPAN

pppppppppppppppppppppppppp

fPAD

OOOOOOOOOOOOOOOOOOOOOOOOOOO
fPAN

pppppppppppppppppppppppppp

PAD

(S;G)-PRS

OOOOOOOOOOOOOOOOOOOOOOOOOO

PAN

(P;G)-PRS

qqqqqqqqqqqqqqqqqqqqqqqqq

sePA

kkkkkkkkkkkkkkkkkkkkkkk

RRRRRRRRRRRRRRRRRRRRRR

wPA

pppppppppppppppppppppppppppp

MMMMMMMMMMMMMMMMMMMMMMMMMM

fPA

pppppppppppppppppppppppppppp

MMMMMMMMMMMMMMMMMMMMMMMMMM

fse,w,fgPDA=PDA=seBPA

(S; S)-PRS

PA

(1; G)-PRS

oooooooooooooooooooooooooo

MMMMMMMMMMMMMMMMMMMMMMMMM

fse,w,fgPN=PN

(P;P)-PRS

seBPP=MSA

wBPA wBPP

fBPA fBPP

BPA

(1; S)-PRS

VVVVVVVVVVVVVVVVVVVV

BPP

(1; P)-PRS

iiiiiiiiiiiiiiiiii

fse,w,fgFS=FS

(1; 1)-PRS

Figure 1: The hierarhy of lasses de�ned by extended proess rewrite systems.

4 Reahability Problem is Deidable for wPRS

By the reahability problem we mean to deide for a wPRS � with an initial state rt

0

and

a given state st, whether the state st is reahable from the initial state rt

0

or not (st is

reahable from rt

0

if a sequene of ations � suh that rt

0

�

�! st exists).

It was proved by Mayr [12℄ that the reahability problem is deidable for PRS. Our

proof exhibits a similar struture; �rst we redue the general problem to the reahability

problem for wPRS in so-alled normal form (i.e. PRS with rules ontaining at most one

ourrene of a sequential or parallel operator), and then we solve this subproblem using

the fat that the reahability problems for both PN and PDA are deidable [11, 2℄. The

latter part of Mayr's proof for PRS transforms the PRS � in normal form into the PRS

�

0

in so-alled transitive normal form satisfying (X �! Y) 2 �

0

whenever X �

�

Y . This

step employs the loal e�et of rewriting under sequential rules in a parallel environment

and vie versa. Intuitively, whenever there is a rewriting sequene

XkY �! (X

1

:X

2

)kY �! (X

1

:X

2

)kZ �! X

2

kZ

4

in a PRS in normal form, then the rewriting of eah parallel omponent is independent

in the sense that there are also rewriting sequenes X �! X

1

:X

2

�! X

2

and Y �! Z.

This does not hold for wPRS in normal form as the rewriting in one parallel omponent

an inuene the rewriting in other parallel omponents via a weak state unit. To get this

independene bak we introdued the onept of passive steps emulating the hanges of a

weak state produed by the environment. For more details see [8℄.

To sum up, we proved that the reahability problem for wPRS is deidable. As

\stronger" lasses (i.e. sePA and its superlasses) of the hierarhy are Turing powerful

(thus the problem is undeidable for them), the problem is solved for all the lasses in the

re�ned hierarhy.

5 Appliations of the Reahability Result

By our opinion (sub)lasses of wPRS are suitable for modelling some of the software sys-

tems whih an be found in real-time ontrol programs as well as in ommuniation and

ryptographi protools. Let us mention that H�uttel and Srba [4℄ de�ne a repliative

variant of a alulus for Dolev and Yao's ping-pong protools [3℄. They show that the

reahability problem for these protools is deidable as it an be redued to the reahabil-

ity problem for wPRS, more preisely their repliative ping-pong protools belong to the

wPAD lass.

Finally we mention another appliation of our deidability result exemplifying that the

introdution of wPRS was well-motivated and ontributes to the results on in�nite-state

systems. The deidability of the reahability for wPRS opens an easy way how to solve

an open problem of a weak trae non-equivalene (for the de�nition see e.g. [6℄) for wPRS

and its sublasses.

Using the deidability of reahability for wPRS, it is easy to show that the weak trae

set is reursive for every state of any wPRS. So far it has been known that the weak trae

non-equivalene is semi-deidable for Petri nets (see e.g. [5℄), pushdown proesses (due to

[2℄), and PA proesses (due to [10℄). It follows from our result that the weak trae non-

equivalene is semi-deidable for wPRS. Hene, the border of the semi-deidability was

moved up to the lass of wPRS in the hierarhy. Let us note that the semi-deidability

result is new for some lasses of the \non-extended" PRS hierarhy, too; namely PAN,

PAD, and PRS. As other lasses of our re�ned hierarhy (i.e. sePA and its superlasses)

have a full Turing-power, the problem is undeidable for them. Hene, the problem is

solved for all lasses of the re�ned hierarhy.

Referenes

[1℄ A. Bouajjani, R. Ehahed, and P. Habermehl. On the veri�ation problem of nonreg-

ular properties for nonregular proesses. In LICS'95, pages 123{133. IEEE, 1995.

5

[2℄ J. R. B�uhi. Regular anonial systems. Arhiv fur Mathematishe Logik und Grund-

lagenforshung, 6:91{111, 1964.

[3℄ D. Dolev and A. Yao. On the seurity of publi key protools. IEEE Transations on

Information Theory, 29(2):198{208, 1983.

[4℄ H. H�uttel and J. Srba. Reursion vs. repliation in simple ryptographi protools. In

Proeedings of SOFSEM'05, 2005. To appear.

[5℄ P. Jan�ar. High Undeidability of Weak Bisimilarity for Petri Nets. In Proeedings of

TAPSOFT, volume 915 of LNCS, pages 349{363. Springer, 1995.

[6℄ P. Jan�ar, J. Esparza, and F. Moller. Petri nets and regular behaviours. Journal of

Computer and System Sienes, 59(3):476{503, 1999.

[7℄ P. Jan�ar, A. Ku�era, and R. Mayr. Deiding bisimulation-like equivalenes with

�nite-state proesses. TCS, 258:409{433, 2001.

[8℄ M. K�ret��nsk�y, V.

�

Reh�ak, and J. Strej�ek. Extended Proess Rewrite Systems: Ex-

pressiveness and Reahability. In CONCUR'04, volume 3170 of LNCS, pages 355{370.

Springer, 2004.

[9℄ M. K�ret��nsk�y, V.

�

Reh�ak, and J. Strej�ek. On Extensions of Proess Rewrite Systems:

Rewrite Systems withWeak Finite-State Unit. In INFINITY'03, volume 98 of ENTCS,

pages 75{88. Elsevier, 2004.

[10℄ D. Lugiez and Ph. Shnoebelen. The regular viewpoint on PA-proesses. In Proeedings

of CONCUR'98, volume 1466 of LNCS, pages 50{66, 1998.

[11℄ E. W. Mayr. An algorithm for the general Petri net reahability problem. In Proeed-

ings of 13th Symposium on Theory of Computing, pages 238{246. ACM, 1981.

[12℄ R. Mayr. Proess rewrite systems. Information and Computation, 156(1):264{286,

2000.

[13℄ F. Moller. In�nite results. In Proeedings of CONCUR'96, volume 1119 of LNCS,

pages 195{216. Springer, 1996.

[14℄ F. Moller. A Taxonomy of In�nite State Proesses, MFCS'98 Workshop on Conur-

reny. ENTCS, 18, 1998.

[15℄ D. Muller, A. Saoudi, and P. Shupp. Alternating automata, the weak monadi theory

of trees and its omplexity. TCS, 97(1{2):233{244, 1992.

[16℄ V. A. Saraswat and M. Rinard. Conurrent onstraint programming. In Proeedings

of 17th POPL, pages 232{245. ACM, 1990.

[17℄ J. Strej�ek. Rewrite systems with onstraints, EXPRESS'01. ENTCS, 52, 2002.

6

