
Refining the Undecidability Border
of Weak Bisimilarity

Mojmı́r Křet́ınský 1 Vojtěch Řehák 2 Jan Strejček 3

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract

Weak bisimilarity is one of the most studied behavioural equivalences. This equiva-
lence is undecidable for pushdown processes (PDA), process algebras (PA), and
multiset automata (MSA, also known as parallel pushdown processes, PPDA). Its
decidability is an open question for basic process algebras (BPA) and basic paral-
lel processes (BPP). We move the undecidability border towards these classes by
showing that the equivalence remains undecidable for weakly extended versions of
BPA and BPP.

Key words: weak bisimulation, infinite-state systems, decidability

1 Introduction

Equivalence checking is one of the main streams in verification of concurrent
systems. It aims at demonstrating some semantic equivalence between two
systems, one of which is usually considered as representing the specification,
the other its implementation or refinement. The semantic equivalences are
designed to correspond to the system behaviours at the desired level of ab-
straction; the most prominent ones being strong and weak bisimulations.

Current software systems often exhibit an evolving structure and/or oper-
ate on unbounded data types. Hence automatic verification of such systems
usually requires modeling them as infinite-state ones. Various specification
formalisms have been developed with their respective advantages and limita-
tions. Petri nets (PN), pushdown processes (PDA), and process algebras like
BPA, BPP, or PA all serve to exemplify this. Here we employ the classes

1 Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
2 Supported by the research centre “Institute for Theoretical Computer Science (ITI)”,
project No. 1M0021620808.
3 Supported by the Academy of Sciences of the Czech Republic, grant No. 1ET408050503.

Submitted to INFINITY 2005.

3

Křet́ınský et al.

of infinite-state systems defined by term rewrite systems and called Process
Rewrite Systems (PRS) as introduced by Mayr [13]. PRS subsume a variety
of the formalisms studied in the context of formal verification (e.g. all the
models mentioned above). The relevance of various subclasses of PRS for
modelling and analysing programs is shown, for example, in [5]; for automatic
verification we refer to surveys [2,22].

The relative expressive power of various process classes has been studied,
especially with respect to strong bisimulation; see [3,17], also [13] showing
the hierarchy of PRS classes. Adding a finite-state control unit to the PRS
rewriting mechanism results in so-called state-extended PRS (sePRS) classes,
see for example [8]. We have extended the PRS hierarchy by sePRS classes
and refined this extended hierarchy by introducing restricted state extensions
of two types: PRS equipped with a weak finite-state unit (wPRS, inspired by
weak automata [18]) [11,10] and PRS with finite constraint unit (fcPRS) [23].

Research on the expressive power of process classes has been accompanied
by exploring algorithmic boundaries of various verification problems. In this
paper we focus on the equivalence checking problem taking weak bisimilarity
as the notion of behavioral equivalence.

The state of the art: Regarding sequential systems, i.e. those without
parallel composition, the weak bisimilarity problem is undecidable for PDA
even for the normed case [19]. However, it is conjectured [14] that weak
bisimilarity is decidable for BPA; the best known lower bound is EXPTIME -
hardness [14].

Considering parallel systems, even strong bisimilarity is undecidable for
MSA [17] using the technique as introduced in [6]. However, it is conjectured
[7] that the weak bisimilarity problem is decidable for BPP; the best known
lower bound is PSPACE -hardness [20].

For the simplest systems combining both parallel and sequential operators,
called PA processes [1], the weak bisimilarity problem is undecidable [21].
It is an open question for the normed PA; the best known lower bound is
EXPTIME -hardness [14].

Our contribution: We move the undecidability border of the weak bisim-
ilarity problem towards the classes of BPA and BPP, where the problem is
conjectured to be decidable. We show that the problem remains undecidable
for the weakly extended versions of both BPA (wPBA) and BPP (wBPP).
In fact, the result is not new for wBPA: Mayr [14] has shown that adding a
finite-state unit of the minimal non-trivial size 2 to the BPA process already
makes weak bisimilarity undecidable. By inspection of his proof, we note that
the result is valid for wBPA as well - see Sections 2 and 3 for the definition of
wBPA and more detailed discussion.

2

4

Křet́ınský et al.

2 Preliminaries

We recall the definitions of labelled transition system and weak bisimilarity.
Then we define the syntax of process rewrite systems and (weak) finite-state
unit extensions of PRS. Their semantics is given in terms of labelled transition
systems.

Let Act = {a, b, . . .} be a set of actions such that Act contains a distin-
guished silent action τ . A labelled transition system is a pair (S,−→), where
S is a set of states and −→⊆ S × Act × S is a transition relation. We write
s1

a
−→ s2 instead of (s1, a, s2) ∈−→. The transition relation is extended to

finite words over Act in the standard way. Further, we extend the relation to

language L ⊆ Act∗ such that s1
L

−→ s2 if s1
w

−→ s2 for some w ∈ L. More-

over, we write s1 −→∗ s2 instead of s1
Act

∗

−→ s2. The weak transition relation

=⇒⊆ S × Act × S is defined as
τ

=⇒=
τ∗

−→ and
a

=⇒=
τ∗aτ∗

−→ for all a 6= τ .

A binary relation R on states of a labelled transition system is a weak
bisimulation iff whenever (s1, s2) ∈ R then for any a ∈ Act :

• if s1
a

−→ s′1 then s2
a

=⇒ s′2 for some s′2 such that (s′1, s
′
2) ∈ R and

• if s2
a

−→ s′2 then s1
a

=⇒ s′1 for some s′1 such that (s′1, s
′
2) ∈ R.

States s1 and s2 are weakly bisimilar, written s1 ≈ s2, iff (s1, s2) ∈ R for some
weak bisimulation R.

We use a characterization of weak bisimilarity in terms of a bisimulation
game. This is a two-player game between an attacker and a defender played
in rounds on pairs of states of a considered labelled transition system. In a
round starting at a pair of states (s1, s2), the attacker first chooses i ∈ {1, 2},
an action a ∈ Act , and a state s′i such that si

a
−→ s′i. The defender then has

to choose a state s′3−i such that s3−i
a

=⇒ s′3−i. The states s′1, s
′
2 form a pair of

starting states for the next round. A play is a maximal sequence of pairs of
states chosen by players in the given way. The defender is the winner of every
infinite play. A finite game is lost by the player who cannot make any choice
satisfying the given conditions. It can be shown that two states s1, s2 of a
labelled transition system are not weakly bisimilar if and only if the attacker
has a winning strategy for the bisimulation game starting in these states.

Let Const = {X, . . .} be a set of process constants. The set of process terms
(ranged over by t, . . .) is defined by the abstract syntax t ::= ε | X | t.t | t‖t,
where ε is the empty term, X ∈ Const is a process constant; and ’.’ and ’‖’
mean sequential and parallel composition respectively. We always work with
equivalence classes of terms modulo commutativity and associativity of ’‖’,
associativity of ’.’, and neutrality of ε, i.e. ε.t = t = t.ε and t‖ε = t. We
distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 6∈ 1,

S – sequential terms - terms without parallel composition, e.g. X.Y.Z,

3

5

Křet́ınský et al.

P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,

G – general terms - terms with arbitrarily nested sequential and parallel com-
positions, e.g. (X.(Y ‖Z))‖W .

Let α, β be classes of process terms α, β ∈ {1, S, P,G} such that α ⊆ β.
An (α, β)-PRS (process rewrite system) ∆ is a finite set of rewrite rules of the
form t1

a
−→ t2, where t1 ∈ α r {ε}, t2 ∈ β are process terms and a ∈ Act is an

action. Given a PRS ∆, let Const(∆) and Act(∆) be the respective (finite)
sets of all constants and all actions which occur in the rewrite rules of ∆.

An (α, β)-PRS ∆ determines a labelled transition system where states are
process terms t ∈ β over Const(∆). The transition relation −→ is the least
relation satisfying the following inference rules (recall that ‘‖’ is commutative):

(t1
a

−→ t2) ∈ ∆

t1
a

−→ t2

t1
a

−→ t2

t1‖t′1
a

−→ t2‖t′1

t1
a

−→ t2

t1.t
′
1

a
−→ t2.t

′
1

The formalism of process rewrite systems can be extended to include
a finite-state control unit in the following way. Let M = {m,n, . . .} be a set of
control states. Let α, β ∈ {1, S, P, G}, α ⊆ β be the classes of process terms.
An (α, β)-sePRS (state extended process rewrite system) ∆ is a finite set of
rewrite rules of the form (m, t1)

a
−→ (n, t2), where t1 ∈ α r {ε}, t2 ∈ β,

m,n ∈ M , and a ∈ Act . M(∆) denotes the finite set of control states which
occur in ∆.

An (α, β)-sePRS ∆ determines a labelled transition system where states
are the pairs of the form (m, t) such that m ∈ M(∆) and t ∈ β is a process
term over Const(∆). The transition relation −→ is the least relation satisfying
the following inference rules:

((m, t1)
a

−→ (n, t2)) ∈ ∆

(m, t1)
a

−→ (n, t2)

(m, t1)
a

−→ (n, t2)

(m, t1‖t′1)
a

−→ (n, t2‖t′1)

(m, t1)
a

−→ (n, t2)

(m, t1.t
′
1)

a
−→ (n, t2.t

′
1)

To shorten our notation we write mt in lieu of (m, t).

An (α, β)-sePRS ∆ is called a process rewrite system with weak finite-
state control unit or just a weakly extended process rewrite system, written
(α, β)-wPRS, if there exists a partial order ≤ on M(∆) such that every rule
(m, t1)

a
−→ (n, t2) of ∆ satisfies m ≤ n.

Some classes of (α, β)-PRS correspond to widely known models as finite-
state systems (FS), basic process algebras (BPA), basic parallel processes
(BPP), process algebras (PA), pushdown processes (PDA, see [4] for justi-
fication), and Petri nets (PN). The other (α, β)-PRS classes were introduced
and named as PAD, PAN, and PRS by Mayr [13]. The correspondence be-
tween (α, β)-PRS classes and the acronyms is given in Figure 1. Instead of
(α, β)-sePRS or (α, β)-wPRS we use the prefixes ‘se-’ and ‘w-’ in connection
with the acronym for the corresponding (α, β)-PRS class. For example, we
use wBPA and wBPP rather than (1, S)-wPRS and (1, P)-wPRS, respectively.

4

6

Křet́ınský et al.

sePRS

wPRS

ppppppppppppppppppp

MMMMMMMMMMMMMMMMM

PRS
(G, G)-PRS

ppppppppppppppppp

MMMMMMMMMMMMMMMM

sePAD sePAN

wPAD

NNNNNNNNNNNNNNNNNNN
wPAN

qqqqqqqqqqqqqqqqq
PAD

(S, G)-PRS

NNNNNNNNNNNNNNNNNN

PAN
(P, G)-PRS

rrrrrrrrrrrrrrrr

sePA

jjjjjjjjjjjjjj

SSSSSSSSSSSSS

wPA

ppppppppppppppppppp

LLLLLLLLLLLLLLLLLL

{se,w}PDA=PDA=seBPA
(S, S)-PRS

PA
(1, G)-PRS

pppppppppppppppppp

LLLLLLLLLLLLLLLL

{se,w}PN=PN
(P, P)-PRS

seBPP=MSA
↑undecidable

\\\\\\\\\\

bbbbbbbbb
wBPA wBPP

BPA
(1, S)-PRS

RRRRRRRRRRRRRR
BPP

(1, P)-PRS

mmmmmmmmmmmmm

↓decidable
aaaaaaaa ____________________________

{se,w}FS=FS
(1, 1)-PRS

Fig. 1. The hierarchy with (un)decidability boundaries of ≈.

Finally, we note that seBPP are also known as multiset automata (MSA) or
parallel pushdown processes (PPDA).

Figure 1 depicts relations between the expressive power of the considered
classes. The expressive power of a class is measured by the set of labelled
transition systems that are definable (up to strong bisimulation equivalence)
by the class. A solid line between two classes means that the upper class is
strictly more expressive than the lower one. A dotted line means that the
upper class is at least as expressive as the lower class (and the strictness is
just our conjecture). Details can be found in [11,10].

3 Undecidability of weak bisimilarity

In this section we show that weak bisimilarity is undecidable for the classes
wBPA and wBPP. More precisely, we study the following two problems.

Problem: Weak bisimilarity problem for wBPA (or wBPP respectively)
Instance: A wBPA (or wBPP) system ∆ and two of its states mt,m′t′

Question: Are the two states weakly bisimilar?

3.1 wBPA

In [14] Mayr studied the question of how many control states are needed in
PDA to make weak bisimilarity undecidable.

5

7

Křet́ınský et al.

Theorem 3.1 ([14], Theorem 29) Weak bisimilarity is undecidable for push-
down automata with only 2 control states.

The proof is done by a reduction of Post’s correspondence problem to the
weak bisimilarity problem for PDA. The constructed PDA has only two control
states, p and q. Quick inspection of the construction shows that the resulting
pushdown automata are in fact wBPA systems as there is no transition rule
changing q to p and each rule has only one process constant on the left hand
side. Hence Mayr’s theorem can be reformulated as follows.

Theorem 3.2 Weak bisimilarity is undecidable for wBPA systems.

3.2 wBPP

We show that the non-halting problem for Minsky 2-counter machines can be
reduced to the weak bisimilarity problem for wBPP. First, let us recall the
notions of Minsky 2-counter machine and the non-halting problem.

A Minsky 2-counter machine, or a machine for short, is a finite sequence

N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt

where n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction for

• increment : ck:= ck+1; goto lr, or

• test-and-decrement : if ck>0 then ck:= ck-1; goto lr else goto ls

where k ∈ {1, 2} and 1 ≤ r, s ≤ n.

The semantics of a machine N is given by a labelled transition system the
states of which are configurations of the form (lj, v1, v2) where lj is a label of
an instruction to be executed and v1, v2 are nonnegative integers representing
current values of counters c1 and c2, respectively. The transition relation is
the smallest relation satisfying the following conditions: if ij is an instruction
of the form

• c1:= c1+1; goto lr, then (lj, v1, v2)
inc
−→ (lr, v1 + 1, v2) for all v1, v2 ≥ 0;

• if c1>0 then c1:= c1-1; goto lr else goto ls, then (lj, v1 + 1, v2)
dec
−→

(ls, v1, v2) and (lj, 0, v2)
zero
−→ (lr, 0, v2) for all v1, v2 ≥ 0;

and the analogous condition for instructions manipulating c2. We say that
the (computation of) machine N halts if there are numbers v1, v2 ≥ 0 such
that (l1, 0, 0) −→∗ (ln, v1, v2). Let us note that the system is deterministic,
i.e. for every configuration there is at most one transition leading from the
configuration.

The non-halting problem is to decide whether a given machine N does not
halt. The problem is undecidable [16].

Let us fix a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt. We
construct a wBPP system ∆ such that its states simL1 and simL′

1 are weakly
bisimilar if and only if N does not halt. Roughly speaking, we create a set

6

8

Křet́ınský et al.

of wBPP rules allowing us to simulate the computation of N by two separate
sets of terms. If the instruction halt is reached in the computation of N ,
the corresponding term from one set can perform the action halt , while the
corresponding term from the other set can perform the action halt ′. Therefore,
the starting terms are weakly bisimilar if and only if the machine does not
halt.

The wBPP system ∆ we are going to construct uses five control states,
namely sim, check 1, check

′
1, check 2, check

′
2. We associate each label lj and

each counter ck with process constants Lj, L
′
j and Xk, Yk respectively. A

parallel composition of x copies of Xk and y copies of Yk, written Xx
k ‖Y

y
k ,

represents the fact that the counter ck has the value x − y. Hence, terms
simLj‖X

x1

1 ‖Y y1

1 ‖Xx2

2 ‖Y y2

2 and simL′
j‖X

x1

1 ‖Y y1

1 ‖Xx2

2 ‖Y y2

2 are associated with
a configuration (lj, x1 − y1, x2 − y2) of the machine N . Some rules contain
auxiliary process constants. In what follows, β stands for a term of the form
β = Xx1

1 ‖Y y1

1 ‖Xx2

2 ‖Y y2

2 . The control states checkk, check
′
k for k ∈ {1, 2} are

intended for testing emptiness of the counter ck. The only rules applicable in
these control states are:

check 1X1
chk1−→ check 1ε check 2X2

chk2−→ check 2ε

check ′
1Y1

chk1−→ check ′
1ε check ′

2Y2
chk2−→ check ′

2ε

One can readily confirm that checkkβ ≈ check ′
kβ if and only if the value of ck

represented by β equals zero.

In what follows we construct a set of wBPP rules for each instruction of the
machine N . At the same time we argue that the only chance for the attacker
to win is to simulate the machine without cheating as every cheating can be
punished by the defender’s victory. This attacker’s strategy is winning if and
only if the machine halts.

Halt: ln : halt

Halt instruction is translated into the following two rules:

simLn
halt
−→ simε simL′

n

halt
′

−→ simε

Clearly, the states simLn‖β and simL′
n‖β are not weakly bisimilar.

Increment: lj : ck:= ck+1; goto lr

For each such instruction of the machine N we add the following rules to ∆:

simLj
inc
−→ simLr‖Xk simL′

j

inc
−→ simL′

r‖Xk

Obviously, every round of the bisimulation game starting at states simLj‖β
and simL′

j‖β ends up in states simLr‖Xk‖β and simL′
r‖Xk‖β.

7

9

Křet́ınský et al.

Test-and-decrement: lj : if ck>0 then ck:= ck-1; goto lr else goto ls

For any such instruction of the machine N we add two sets of rules to ∆, one
for the ck > 0 case and the other for the ck = 0 case. The wBPP formalism
has no power to rewrite a process constant corresponding to a label lj and to
check whether ck > 0 at the same time. Therefore, in the bisimulation game it
is the attacker who has to decide whether ck > 0 holds or not, i.e. whether he
will play an action dec or an action zero. We show that whenever the attacker
tries to cheat, the defender can win the game.

At this point our construction of wBPP rules uses a variant of the technique
called defender’s choice [9]. In a round starting at the pair of states s1, s2,
the attacker is forced to choose one specific transition (indicated by a wavy
arrow henceforth). If he chooses a different transition, say sk

a
−→ s where

k ∈ {1, 2}, then there exists a transition s3−k
a

−→ s that enables the defender
to reach the same state and win the play. The name of this technique refers
to the fact that after the attacker chooses the specific transition, the defender
can choose an arbitrary transition with the same label. These transitions are
indicated by solid arrows. The dotted arrows stands for auxiliary transitions
which compel the attacker to play the specific transition.

First, we discuss the following rules designed for the ck > 0 case:

simLj
dec
−→ simAk,r simAk,r

dec
−→ checkkε simBk,r

dec
−→ simLr‖Yk

simLj
dec
−→ simBk,r simAk,r

dec
−→ simL′

r‖Yk simBk,r
dec
−→ simL′

r‖Yk

simL′
j

dec
−→ simAk,r simAk,r

dec
−→ check ′

kε simBk,r
dec
−→ check ′

kε

simL′
j

dec
−→ simBk,r simCk,r

dec
−→ simL′

r‖Yk

simL′
j

dec
−→ simCk,r simCk,r

dec
−→ check ′

kε

The situation can be depicted as follows.

simLj‖β

dec

����
��

��
��

��
�

dec

��
==

==
==

==
==

=
simL′

j‖β
dec

uu

dec

��

dec

��
�^

�^
�^

�^
�^

�^
�^

simAk,r‖β

dec

��
�C
�C
�C
�C
�C
�C

dec

))

dec

++

simBk,r‖β

dec

��
�@

�@
�@

�@
�@

�@
�@

dec

��

dec

))

simCk,r‖β
dec

����
��

��
��

��
�

dec

��
77

77
77

77
77

checkkβ simLr‖Yk‖β simL′
r‖Yk‖β check′

kβ

Let us assume that in a round starting at states simLj‖β, simL′
j‖β the attacker

decides to perform the action dec. Due to the principle of defender’s choice

employed here, the attacker has to play the transition simL′
j‖β

dec
−→ simCk,r‖β,

while the defender can choose between the transitions leading from simLj‖β
either to simAk,r‖β or to simBk,r‖β. Thus, the round will finish either in states

8

10

Křet́ınský et al.

simAk,r‖β, simCk,r‖β or in states simBk,r‖β, simCk,r‖β. Using the defender’s
choice again, one can easily see that the next round ends up in checkkβ or
simLr‖Yk‖β, and simL′

r‖Yk‖β or check ′
kβ. The exact combination is chosen

by the defender. The defender will not choose any pair of states where one
control state is sim and the other is not as such states are clearly not weakly
bisimilar. Hence, the two considered rounds of the bisimulation game end up
in a pair of states either simLr‖Yk‖β, simL′

r‖Yk‖β or checkkβ, check ′
kβ. The

latter pair is weakly bisimilar iff the value of ck represented by β is zero, i.e. iff
the attacker cheats when he decides to play an action dec. This means that
if the attacker cheats, the defender wins. If the attacker plays the action dec
correctly, the only chance for either player to force a win is to finish these
two rounds in states simLr‖Yk‖β, simL′

r‖Yk‖β corresponding to the correct
simulation of an test-and-decrement instruction with a label lj.

Now, we focus on the following rules designed for the ck = 0 case:

simLj
zero
−→ simDk,s simDk,s

zero
−→ checkkε simEk,s

zero
−→ simLs

simLj
zero
−→ simEk,s simDk,s

zero
−→ simL′

s simEk,s
zero
−→ simL′

s

simL′
j

zero
−→ simDk,s simDk,s

zero
−→ simGk simEk,s

zero
−→ simGk

simL′
j

zero
−→ simEk,s simFk,s

zero
−→ simL′

s simGk
τ

−→ simGk‖Yk

simL′
j

zero
−→ simFk,s simFk,s

zero
−→ simGk simGk

τ
−→ check ′

kYk

The situation can be depicted as follows.

simLj‖β

zero

����
��

��
��

��
zero

��
99

99
99

99
99

simL′
j‖β

zero

vv

zero

��

zero

��
�\

�\
�\

�\
�\

�\

simDk,s‖β

zero

��
�B
�B
�B
�B
�B
�B

zero

))

zero

++

simEk,s‖β
zero

��
�B
�B
�B
�B
�B
�B

zero

��

zero

))

simFk,s‖β
zero

����
��

��
��

�� zero

��
??

??
??

??
??

?

checkkβ simLs‖β simL′
s‖β simGk‖β

τm

��

check′
kY

m
k ‖β

Let us assume that the attacker decides to play the action zero. The defender’s
choice technique allows the defender to control the two rounds of the bisimula-
tion game starting at states simLj‖β and simL′

j‖β. The two rounds end up in
a pair of states simLs‖β, simL′

s‖β or in a pair of the form checkkβ, check ′
kY

m
k ‖β

where m ≥ 1; all the other choices of the defender lead to his loss. As in the
previous case, the latter possibility is designed to punish any possible at-

9

11

Křet́ınský et al.

tacker’s cheating. The attacker is cheating if he plays the action zero and the
value of ck represented by β, say vk, is positive.4 In such a case, the defender
can control the two rounds to end up in states checkkβ, check ′

kY
vk

k ‖β which
are weakly bisimilar. If the attacker plays correctly, i.e. the value of ck repre-
sented by β is zero, then the defender has to control the two discussed rounds
to end up in states simLs‖β, simL′

s‖β as the states checkkβ, check ′
kY

m
k ‖β are

not weakly bisimilar for any m ≥ 1. To sum up, the attacker’s cheating can
be punished by defender’s victory. If the attacker plays correctly, the only
chance for both players to win is to end up after the two rounds in states
simLs‖β, simL′

s‖β corresponding to the correct simulation of the considered
instruction.

It has been argued that if each of the two players wants to win, then
both players will correctly simulate the computation of the machine N . The
computation is finite if and only if the machine halts. The states simL1 and
simL′

1 are not weakly bisimilar in this case. If the machine does not halt,
the play is infinite and the defender wins. Hence, the two states are weakly
bisimilar in this case. In other words, the states simL1 and simL′

1 of the
constructed wBPP ∆ are weakly bisimilar if and only if the Minsky 2-counter
machine N does not halt.

Theorem 3.3 Weak bisimilarity is undecidable for wBPP systems.

4 Conclusion

We have shown that the weak bisimilarity problem remains undecidable for
weakly extended versions of BPP (wBPP) and BPA (wBPA) process classes.

We note that the result for wBPA is just our interpretation (in terms
of weakly extended systems) of Mayr’s proof showing that the problem is
undecidable for PDA with two control states ([14], Theorem 29).

In terms of parallel systems, our technique used for wBPP is new. To
mimic the computation of a Minsky 2-counter machine, one has to be able
to maintain its state information – the label of a current instruction and the
values of the counters c1 and c2. As the finite-state unit of wBPP is weak,
it cannot be used to store even a part of such often changing information.
Hence, contrary to the constructions in more expressive systems (PN [6] and
MSA [17]) we have made the term part to manage it as follows. In a test-
and-decrement instruction the process constant Lj has to be changed and
moreover one of the counters has to be decreased at the same time. As two
process constants cannot be rewritten by one wBPP rewrite rule, we introduce
new process constants Y1 and Y2 to represent inverse elements to X1 and X2

respectively and we make a term Xx
k ‖Y

y
k to represent the counter ck the value

4 We do not have to consider the case when β represents a negative value of ck as such a
state is reachable in the game starting in states simL1, simL′

1
only by unpunished cheating.

10

12

Křet́ınský et al.

of which is x− y. We note that the weak state unit allows for controlling the
correct order of the successive stages in the progress of a bisimulation game.

In fact, our results hold for even a bit more restricted classes fcBPA and
fcBPP (see [23] for the definitions of fcBPA and fcBPP) and remain valid
for the normed subclasses of fcBPP and fcBPA [12]. Hence, they hold for
normed wBPP and normed wBPA as well. Due to the technical nature of
the presentation we have demonstrated the results for (unnormed) wBPP and
(unnormed) wBPA only.

We recall that the decidability of weak bisimilarity is an open question for
BPA and BPP. We note that these problems are conjectured to be decidable
(see [14] and [7] respectively) in which case our results would establish a fine
undecidability border of weak bisimilarity.

Acknowledgements. We would like to thank Jǐŕı Srba for valuable sugges-
tions and comments.

References

[1] Baeten, J. and W. Weijland, “Process Algebra,” Number 18 in Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, 1990.

[2] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite
structures, in: Handbook of Process Algebra (2001), pp. 545–623.

[3] Burkart, O., D. Caucal and B. Steffen, Bisimulation collapse and the process
taxonomy, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp. 247–262.

[4] Caucal, D., On the regular structure of prefix rewriting, Theoretical Computer
Science 106 (1992), pp. 61–86.

[5] Esparza, J., Grammars as processes, in: Formal and Natural Computing, LNCS
2300 (2002).

[6] Jančar, P., Undecidability of bisimilarity for Petri nets and some related
problems, Theoretical Computer Science 148 (1995), pp. 281–301.

[7] Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete,
in: Proc. of 18th IEEE Symposium on Logic in Computer Science (LICS’03)
(2003), pp. 218–227.

[8] Jančar, P., A. Kučera and R. Mayr, Deciding bisimulation-like equivalences with
finite-state processes, Theoretical Computer Science 258 (2001), pp. 409–433.

[9] Jančar, P. and J. Srba, Highly undecidable questions for process algebras, in:
Proceedings of the 3rd IFIP International Conference on Theoretical Computer
Science (TCS’04), Exploring New Frontiers of Theoretical Informatics (2004),
pp. 507–520.

11

13

Křet́ınský et al.

[10] Křet́ınský, M., V. Řehák and J. Strejček, Extended process rewrite systems:
Expressiveness and reachability, in: P. Gardner and N. Yoshida, editors,
CONCUR 2004 - Concurrency Theory, LNCS 3170 (2004), pp. 355–370.

[11] Křet́ınský, M., V. Řehák and J. Strejček, On extensions of process rewrite
systems: Rewrite systems with weak finite-state unit, in: P. Schnoebelen, editor,
INFINITY 2003: 5th International Workshop on Verification of Infinite-State
Systems, Electronic Notes in Theoret. Computer Science 98 (2004), pp. 75–88.

[12] Křet́ınský, M., V. Řehák and J. Strejček, Refining the undecidability border of
weak bisimilarity, Technical Report FIMU-RS-2005-06, Faculty of Informatics,
Masaryk University (2005), a full version of this paper.

[13] Mayr, R., Process rewrite systems, Information and Computation 156 (2000),
pp. 264–286.

[14] Mayr, R., Weak bisimilarity and regularity of context-free processes is
EXPTIME-hard, Theoretical Computer Science 330 (2005), pp. 553–575.

[15] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[16] Minsky, M. L., “Computation: Finite and Infinite Machines,” Prentice-Hall,
1967.

[17] Moller, F., Infinite results, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp.
195–216.

[18] Muller, D., A. Saoudi and P. Schupp, Alternating automata, the weak monadic
theory of trees and its complexity, Theoret. Computer Science 97 (1992),
pp. 233–244.

[19] Srba, J., Undecidability of weak bisimilarity for pushdown processes,
in: Proceedings of 13th International Conference on Concurrency Theory
(CONCUR’02), LNCS 2421 (2002), pp. 579–593.

[20] Srba, J., Complexity of weak bisimilarity and regularity for BPA and BPP,
Mathematical Structures in Computer Science 13 (2003), pp. 567–587.

[21] Srba, J., Undecidability of weak bisimilarity for PA-processes, in: Proceedings
of the 6th International Conference on Developments in Laguage Theory
(DLT’02), LNCS 2450 (2003), pp. 197–208.

[22] Srba, J., Roadmap of infinite results, in: Current Trends In Theoretical
Computer Science, The Challenge of the New Century, Vol 2: Formal Models
and Semantics (2004), pp. 337–350, http://www.brics.dk/~srba/roadmap/.

[23] Strejček, J., Rewrite systems with constraints, EXPRESS’01, Electronic Notes
in Theoretical Computer Science 52 (2002).

12

14

