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Abstract
We propose an algorithm for constructing efficient
patrolling strategies in the Internet environment,
where the protected targets are nodes connected to
the network and the patrollers are software agents
capable of detecting/preventing undesirable activ-
ities on the nodes. The algorithm is based on a
novel compositional principle designed for a spe-
cial class of strategies, and it can quickly construct
(sub)optimal solutions even if the number of targets
reaches hundreds of millions.

1 Introduction
A security game is a non-cooperative game where the De-
fender (leader) commits to some strategy and the Attacker
(follower) first observes this strategy and then selects a best
response. In adversarial security games, it is assumed that
the Attacker not only knows the Defender’s strategy, but
can also observe the current positions and moves of the pa-
trollers. This worst-case assumption is adequate also in sit-
uations when the actual Attacker’s abilities are unknown and
robust defending strategies are required.

In this paper, we concentrate on adversarial patrolling in
the Internet environment, where the protected targets are fully
connected by a network, and the patrollers are software agents
freely moving among the targets trying to discover/prevent
dangerous ongoing activities. We start by presenting two con-
crete scenarios1 illustrating the considered class of security
problems.
1. Large-scale surveillance systems. Contemporary surveil-
lance systems may comprise thousands (or even millions2) of
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1These scenarios should be seen just as examples of possible ap-
plication areas for our results, not as an exhaustive list.

2According to IHS, there were 245 million professionally in-
stalled video surveillance cameras active and operational globally
in 2014.

cameras watching complex scenes where real-time detection
and alert are crucial. For example, crime detection systems
assume fast response in case of crime or suspect detected.
Also, they typically need sophisticated and computation in-
tensive analytics (see, e.g., [Cotton, 2015]) such as object
detection, database retrieval of image data, etc. Simple ob-
ject detection tools running on high-end GPUs are capable
of processing hundreds full scale images per second [Red-
mon et al., 2016]. More detailed analysis, such as search of
a detected face in a large database of suspects, causes even
smaller number of processed images per second. This means
that the delay caused by the analytics may prevent simulta-
neous real-time analysis of all video streams in a large-scale
surveillance system, and the system must intelligently switch
among the streams in real-time. Since the image processing
time is substantially shorter than the intrusion time, there is a
chance of achieving a good level of protection even if the sys-
tem runs only a limited number of analytical processes con-
currently. The crucial question is how to schedule the “visits”
of these processes (patrollers) to the individual cameras (tar-
gets) so that the chance of discovering an ongoing intrusion
is maximized. Since the analytics is not perfect, a patroller
detects an ongoing intrusion in a currently visited target only
with certain probability. Hence, the chance of successful in-
trusion detection increases if the target under attack is visited
repeatedly before completing the attack.

2. Remote software protection. Protecting software from
man-at-the-end (MATE) tampering is a hard problem in gen-
eral. In client-server systems, where the server part is con-
sidered trusted, continuous software updates of the client
software have been proposed as a promising technique for
achieving the protection [Ceccato and Tonella, 2011; Coll-
berg et al., 2012]. Since completing a MATE attack requires
a substantial amount of time and effort, the idea is to up-
date some crucial components of the client software regularly
(by the trusted server) so that the malicious ongoing anal-
ysis becomes useless and it must be restarted. If these up-
dates are performed frequently enough, a MATE attack can-
not be completed. However, the server’s capacity is limited
and the number of clients is typically very large (especially
when the clients are split into independent submodules to de-
crease the update overhead). The question is how to design a
suitable update policy for the server achieving a good protec-
tion against a MATE actively seeking for a weakly protected
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client. A detailed discussion of all relevant aspects can be
found in [Basilico et al., 2016a] where a security game model
of the problem is designed. The patrollers are the update pro-
cesses managed by the server, and the targets are the client
software modules. Each target is assigned the time needed to
complete a MATE attack and another natural number speci-
fying its importance. It is assumed that performing an update
takes a constant time. Although the patrollers cannot detect
an ongoing MATE attack at the currently updated target, it is
assumed that a possible ongoing attack is always interrupted
by the update. Furthermore, it is shown how to compute a
positional Defender’s strategy for updating the targets, where
the Defender’s decisions depend only on the current positions
(i.e., the tuple of currently visited modules) of the patrollers.
In [Basilico et al., 2016a], it is explicitly mentioned3 that po-
sitional strategies are weaker than general history-dependent
strategies taking into account the whole history of previous
updates. Hence, positional strategies are generally not op-
timal, and the computational framework of [Basilico et al.,
2016a] does not allow for efficient construction of history-
dependent strategies. This limitation is overcome in the pre-
sented work (see below).

Our contribution. Before explaining our results, let us
briefly summarize the key assumptions about the considered
class of problems which are reflected in the adopted game
model (see Section 2):
1. The environment is fully connected. This is the basic prop-
erty of Internet underpinning our (novel) approach to strat-
egy synthesis based on game decomposition. The use of
(non)linear programming is completely avoided.
2. The patrollers are centrally coordinated. The patrollers
are software processes fully controlled by a server.
3. The probability p of recognizing an ongoing intrusion at
a currently visited target is not necessarily equal to 1. That
is, the intrusion detection is not fully accurate in general, as
in Scenario 1. Note that is Scenario 2, an intrusion (MATE
attack) is recognized (interrupted) with probability 1.
4. The time needed to complete an intrusion depends on a
concrete target, and targets may have varying importance.
5. The time needed to complete a patroller’s activity is almost
constant4. This is satisfied in both scenarios.
6. The number of targets is very large. This influences mainly
the methodology of algorithmic solutions. Algorithms for
solving security games are mostly based on mathematical
programming (see Related work). This approach becomes in-
feasible in our setting where the number of targets can easily
reach a billion.

3A rigorous proof revealing insufficiency of positional strategies
can be found in [Kučera and Lamser, 2016].

4Technically, this means that time is random but strongly con-
centrated around its expected value. Note that in Scenario 1, the
real-time detection consists of two phases where a given image is
first quickly classified as either harmless or potentially dangerous
(in almost constant time), and dangerous images are subsequently
enqueued for a more advanced analysis, such as face recognition in
a database of suspects. This queue is processed separately (possi-
bly using special hardware), and hence the second phase does not
influence the assignment of patrolling processes.

We adopt the adversarial setting, i.e., assume that the At-
tacker knows the Defender’s strategy (the server program as-
signing the patrolling processes to targets) and can also de-
termine the targets currently visited (e.g., by analyzing the
network traffic or deploying malware into the server). Since
there are no principal bounds on the duration of the patrolling
task, our games are of infinite horizon. The adopted so-
lution concept is Stackelberg equilibrium (see, e.g, [Yin et
al., 2010]) where the Defender/Attacker corresponds to the
leader/follower.
Our main results can be summarized as follows:
A. We give an upper bound on the level of protection achiev-
able for a given game structure and a given number of pa-
trollers. Consequently, we can also derive a lower bound on
the number of patrollers needed to achieve a given level of
protection. These bounds are valid for general (i.e., history-
dependent and randomized) strategies. They are generally not
tight, but good enough to serve as a “yardstick” for measuring
the quality of the constructed Defender’s strategies.
B. We develop a novel compositional approach to construct-
ing Defender’s strategies in Internet patrolling games. The
method is based on splitting a given game into disjoint sub-
games, solving them recursively, and then combining the ob-
tained solutions into a strategy for the original game. We
evaluate the quality of the constructed strategies against the
bounds described in A., and show that our algorithm pro-
duces provably (sub)optimal solutions. A precise formulation
is given in Section 5.1.

The running time of our algorithm is low. Instances with
millions of targets are processed in units of seconds (see Sec-
tion 5.1). The only potentially costly part is solving a certain
system of polynomial equations constructed by the algorithm,
but this was always achieved in less than a second for all in-
stances we analyzed (using Maple). The constructed strate-
gies are randomized and history-dependent. We call them
modular because they use a bounded counter to count the
units of elapsed time modulo certain constant. Hence, modu-
lar strategies are still easy to implement.

One may also ask whether some “naive” strategy synthe-
sis method can produce strategies of comparable quality (i.e.,
whether our decomposition method is really worth the in-
vested effort). Perhaps, the most straightforward way of con-
structing some reasonable Defender’s strategy is to compute a
positional strategy where the probability of selecting a given
vertex depends only on its importance and attack length, and
it is chosen so that all vertices are protected equally well. We
demonstrate that the strategies computed by our algorithm are
substantially better than these naively constructed ones.

Due to space constraints, we defer proofs, examples, and
some additional experimental results to the full version of this
paper [Brázdil et al., 2018].

Related work. Most of the existing works about secu-
rity games study either the problem of computing an op-
timal static allocation of available resources to the targets,
or the problem of computing an optimal movement strat-
egy for a mobile Defender. Security games with static
allocation have been studied in, e.g., [Jain et al., 2010;
Kiekintveld et al., 2009; Pita et al., 2008; Tsai et al., 2009].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

122



In patrolling games, the focus was primarily on finding lo-
cally optimal strategies for robotic patrolling units either
on restricted graphs such as circles [Agmon et al., 2008a;
2008b], or arbitrary graphs with weighted preference on
the targets [Basilico et al., 2009a; 2009b]. Alternatively,
the work focused on some novel aspects of the problem,
such as variants with moving targets [Bosansky et al., 2011;
Fang et al., 2013], multiple patrolling units [Basilico et al.,
2010], or movement of the Attacker on the graph [Basilico
et al., 2009b] and reaction to alarms [de Cote et al., 2013;
Basilico et al., 2016b]. Most of the existing literature as-
sumes that the Defender is following a positional strategy
that depends solely on the current position of the Defender
in the graph and they seek for a solution using mathemati-
cal programming [Basilico et al., 2012]. Few exceptions in-
clude duplicating each node of the graph to distinguish in-
ternal states of the Defender (e.g., in [Agmon et al., 2008a]
authors consider a direction of the patrolling robot as a spe-
cific state; in [Bosansky et al., 2012], this concept is further
generalized), or seeking for higher-order strategies in [Basil-
ico et al., 2009a]. In [Abaffy et al., 2014], an exponential-
time algorithm for computing an ε-optimal strategy for the
Defender is designed. The existing works on multi-agent pa-
trolling mostly assume autonomous patrollers without a cen-
tral supervision (see, e.g., [Almeida et al., 2004]).

A patrolling game model for remote software protection
has been proposed in [Basilico et al., 2016a]. The model is
similar to ours, but the probability of detecting (interrupting)
an ongoing intrusion is set to 1, which simplifies the strategy
synthesis (repeated visits to the same target during an ongoing
intrusion do not increase its protection). The constructed De-
fender’s strategies are positional and computed by standard
methods based on mathematical programming, which limits
their scalability and does not lead to optimal solutions.

Continuous-time adversarial patrolling games with one pa-
troller in fully connected environment have recently been
studied in [Kempe et al., 2018]. Based on the Defender’s
strategy, the Attacker selects which vertex to attack and for
how long. The Attacker expected utility grows linearly with
the time spent in the vertex but drops to 0 if being caught.
The Defender’s goal is to minimize the Attacker’s utility. This
setup is technically different from ours, although it is also mo-
tivated by possible applications in Internet security problems
(in [Kempe et al., 2018], no concrete scenarios illustrating the
applicability of the considered model are given).

2 The Game Model
In this section we present our game-theoretic model of ad-
versarial patrolling in the Internet environment reflecting As-
sumptions 1.-6. formulated in Section 1.

Preliminaries. We use N0 and N to denote the sets of
non-negative and positive integers, respectively. The set of
all probability distributions over a finite set M is denoted by
∆(M). The lower and upper integer approximations of a real
number a are written as bac and dae, respectively. The num-
ber of elements of a set A is denoted by |A|. A k-subset of A
is a subset of A with precisely k elements, and we use A〈k〉
to denote the set of all k-subsets of A. For f : A → B and

X ⊆ A, we use f |X to denote the restriction of f to X .
Game structures. A game structure is a tuple G =

(V, d, α, p), where V is a finite set of vertices (targets),
d : V → N specifies the number of time units needed to com-
plete an intrusion at a given vertex, α : V → N is a cost func-
tion specifying the importance of each vertex (a higher num-
ber means higher importance), and p ∈ (0, 1] is the probabil-
ity of discovering an ongoing intrusion by a patroller visiting
a vertex under attack. We assume that a patroller spends one
unit of time when moving from vertex to vertex, which corre-
sponds to performing the patroller’s activity at the previously
visited vertex.

Defeder’s strategy. Assume G is protected by k ∈ N pa-
trollers (where k ≤ |V |) centrally coordinated by the De-
fender who has a complete knowledge about the history of
previously visited vertices. Based on the history, the De-
fender selects a k-subset of vertices where the patrollers are
sent in the next round, and this decision can be randomized.

Formally, a Defender’s strategy is a function η assigning
to every history U1, . . . , U`, where ` ≥ 0 and Ui is the
k-subset of vertices visited in round i, a probability distri-
bution over V 〈k〉. Note that a k-subset of vertices visited in
the first round is determined by η(ε), where ε is the empty
history. A strategy η is positional if η(U1, . . . , U`) depends
only on U`.

Each strategy η determines a unique probability space over
all walks, i.e., infinite sequences U1, U2, . . . where Ui ∈ V 〈k〉
for all i ∈ N, in the standard way.

Attacker’s strategy. Depending on the observed history
of visited vertices, the Attacker may choose to attack some
vertex or wait. Formally, an Attacker’s strategy is a function
π assigning to every history an element of V ∪ {⊥} such that
whenever π(U1, . . . , U`) 6= ⊥, then for all j < ` we have
that π(U1, . . . , Uj) = ⊥, i.e., the Attacker may attack at most
once along a walk.

Level of protection. The aim of the Attacker is to max-
imize the expected damage, i.e., the expected cost of a suc-
cessfully attacked target, and the Defender aims at the op-
posite. Let us fix an Attacker’s strategy π, and let w =
U1, U2, . . . be a walk. The damage achieved by π in w, de-
noted by Damageπ(w), is defined as follows:

• If the Attacker does not attack along w, i.e.,
π(U1, . . . , U`) = ⊥ for all ` ∈ N0, then Damageπ(w)=0.

• Otherwise, there is ` ∈ N0 such that π(U1, . . . , U`) =
v, where v ∈ V is the attacked vertex. For a given i ∈
{1, . . . , d(v)}, we say that v is visited in round i (since
the moment of initiating the attack) if v ∈ U`+i. For each
such i, the probability of discovering the ongoing attack
is p. The attack is successful if it remains undiscovered
after all visits to v in the next d(v) rounds (the individual
trials are considered independent). That is, the probability
of performing the attack successfully is equal to (1 − p)c,
where c is the total number of all i ∈ {1, . . . , d(v)} such
that v is visited in round i. We put

Damageπ(w) = (1− p)c · α(v)

to reflect the importance of the attacked vertex v (if p = 1
and c = 0, we put Damageπ(w) = α(v)).
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Let η be a Defender’s strategy for k patrollers and π an At-
tacker’s strategy. The expected damage caused by π when
the Defender commits to η, denoted by Eη[Damageπ], is
the expected value of Damageπ in the probability space
over the walks determined by η (see above). Note that
Eη[Damageπ] ≤ αmax, where αmax is the maximal cost as-
signed to a vertex of G.

In Section 1, we used the term “protection” instead of
“damage”, and said that the Defender aims at maximizing
the protection rather than minimizing the damage. This orig-
inal terminology seems more intuitive, and it will be used
also in the rest of this paper. Formally, the level of protection
achieved by η against π is defined as

Lev(η, π) = αmax − Eη[Damageπ] .

Note that maximizing the level of protection is equivalent to
minimizing the expected damage.

Furthermore, the level of protection achieved by η (against
any π) is defined by Lev(η) = infπ Lev(η, π) . Finally, the
maximal level of protection achievable with k patrollers is
defined as Levk = supη Lev(η), where η ranges over all
Defender’s strategies for k patrollers. The underlying G will
always be clearly determined by the context. A Defender’s
strategy η for k patrollers is δ-optimal, where δ ≥ 0, if
Lev(η) ≥ Levk − δ. A 0-optimal strategy is called optimal.

3 The Bounds
In this section we give an upper bound on Levk and a lower
bound on the number of patrollers needed to achieve a given
level of protection. These bounds are not always tight,
but good enough for evaluating the efficiency of Defender’s
strategies computed by the algorithm of Section 5.

The bounds are obtained by solving a non-trivial system of
exponential equations constructed for a given game structure.
In general, the solution can only be computed by numerical
methods, which is fully sufficient for our purposes. Contem-
porary mathematical software such as Maple can perform the
required computations very efficiently even if for high param-
eter values.

Let G = (V, d, α, p) be a game structure, and αmax the
maximal cost assigned to a vertex of G. Furthermore, let % be
a fresh variable. For every v ∈ V , we construct the equation

% = αmax − α(v) · (1− p)bQvc · (1− p · (Qv − bQvc))

where Qv is a fresh variable (if p = 1, the equation is simpli-
fied into % = αmax − α(v) · (1−Qv)). Let LG be the result-
ing system of equations. Note that LG has |V | equations and
|V |+ 1 variables.

Theorem 1. Let G = (V, d, α, p) be a game structure.

a) The level of protection achievable with a given number
of patrollers k is bounded from above by % obtained by
solving the system LG extended with the equation k =∑
v∈V,Q(v)>0Qv/d(v).

b) Let τ ≥ 0 be a desired level of protection. Consider
the system of equations obtained by extending LG with
the equation τ = %. If this system has no solution such

that Qv ≤ d(v) for all v ∈ V , then the level of pro-
tection τ is not achievable for an arbitrarily large num-
ber of patrollers (if p = 1, the condition is restricted to
Qv ≤ 1). Otherwise, the number of patrollers needed to
achieve the level of protection τ is bounded from below by⌈∑

v∈V,Q(v)>0Qv/d(v)
⌉

, where the value of each Qv is
obtained by solving the system.

A proof of Theorem 1 is non-trivial and it is based on a
careful analysis of “uniform coverage” of all vertices with
k-patrollers reflecting the importance of individual vertices.
The details are omitted due to the lack of space. Let us note
that when solving the systems considered in Theorem 1, it
may happen that some Qv’s become negative. This happens
if (and only if) the importance of some vertices is so low that
even if the patrollers do not visit them at all, they are still pro-
tected better than the other vertices (this also explains why
the sum

∑
v∈V,Q(v)>0Qv/d(v) is taken only over positive

Q(v)’s). The system of Theorem 1(b) may have no eligible
solution in situations when p is so small that the protection τ
is not achievable even if each v is visited with probability one
in every step. If p = 1, no eligible solution is induced only
by τ > αmax.

4 Modular Strategies
In this section, we introduce modular strategies and the asso-
ciated compositional principle which are the cornerstones of
our strategy synthesis algorithm.
Definition 1. Let G = (V, d, α, p) be a game structure,
and cG the least common multiple of all d(v) where v ∈ V .
A Defender’s strategy η for G is modular if for every h ∈ H,
the distribution η(h) depends only on ` mod cG , where ` is
the length of h.
Hence, a modular strategy “ignores” the precise structure of
a history and takes into account only ` mod cG . At first
glance, this looks like a severe restriction substantially lim-
iting the efficiency of modular strategies. Surprisingly, this
intuition turns out to be largely incorrect. As we shall see
in Section 5.1, the level of protection achievable by modular
strategies approaches and in some cases even matches the up-
per bound of Theorem 1 which proves their (sub)optimality
among general strategies. Also note that modular strate-
gies require only a bounded counter as auxiliary memory,
which makes them easy to implement. To simplify our no-
tation, we formally consider modular strategies as functions
η : N0 → ∆(V 〈k〉), where η(`) depends just on ` mod cG .

The main advantage of modular strategies is their compo-
sitionality. A modular strategy for a given game structure G
can be constructed by decomposing G into pairwise disjoint
substructures G1, . . . ,Gm, computing modular strategies for
these substructures recursively, and then combining them into
a modular strategy for G. The algorithm presented in Sec-
tion 5 works in this way. Now we describe the composition
step in greater detail.

Let G = (V, d, α, p), and let k be the number of patrollers
protecting G. Assume that we already managed to decom-
pose G into smaller disjoint substructures G1, . . . ,Gm, where
Gi = (Vi, d|Vi , α|Vi , p), so that, for all n ≤ k and i ≤ m,
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an efficient modular strategy ηi[n] for Gi and n patrollers to-
gether with Lev(ηi[n]) can already be efficiently computed.
In order to combine the constructed strategies into a strategy
for G, we need to solve the following problems:
• How to assign the k available patrollers to G1, . . . ,Gm ?
• How to compose the modular strategies constructed for
G1, . . . ,Gm into a modular strategy η for G?

Assigning patrollers to substructures. Clearly, the number
of patrollers assigned to Gi should not exceed |Vi|. It is also
clear that if k is smaller than m, the assignment cannot be
deterministic, because otherwise some substructures would
remain completely unprotected, and the Attacker could at-
tack them without any risk (recall the Attacker knows the De-
fender’s strategy). So, we need to assign the k patrollers to
G1, . . . ,Gm randomly in general. Formally, an assignment
for k patrollers and G1, . . . ,Gm is a probability distribution
β over the set of all eligible allocations ~κ ∈ Nm0 , where the
components of ~κ sum up to k and ~κi ≤ |Vi| for all i ≤ m.
Composing strategies constructed for substructures. As-
sume we already constructed a suitable assignment β for k
patrollers and G1, . . . ,Gm. By our assumption, for all n ≤ k
and i ≤ m, an efficient modular strategy ηi[n] for Gi and
n patrollers can already by constructed. Our task is to con-
struct a suitable modular strategy η for G and k patrollers. For
every ` ∈ N0, the outcome of η(`) is determined as follows:
• First, some eligible allocation ~κ ∈ Nm0 is selected ran-

domly according to β (independently of `).
• Then, for each i ∈ {1, . . . ,m}, we independently select

a ~κi-subset Ui of Vi according to ηi[~κi](`). Thus, we ob-
tain a k-subset U1 ∪ · · · ∪ Um of V , which is the (random)
outcome of η(`).

Observe that the above definition makes a good sense because
all ηi[~κi] are modular strategies5.

Hence, a concrete strategy synthesis algorithm based on
the introduced decomposition principle (such as the one pre-
sented in Section 5) must implement the following:
• a decomposition procedure which, for given k and G, ei-

ther decomposes G into disjoint substructures to be solved
recursively, or computes a suitable modular strategy for G
and k patrollers;

• an assignment procedure which, for given k and
G1, . . . ,Gm, computes an assignment for k patrollers and
G1, . . . ,Gm.

These procedures may reflect different decomposition tactics
apt for specific classes of instances.

5 A Strategy Synthesis Algorithm
In this section we design and evaluate a concrete strategy
synthesis algorithm based on the compositional method pre-
sented in Section 4. This algorithm is particularly apt for

5If ηi[~κi] were general strategies, they could not be combined
in such a simple way, because in each step, a different number of
patrollers (including zero) can be assigned to a given Gi, and hence
the history produced by η would not have to contain a valid history
of ηi[~κi]. So, it would not be clear how to simulate ηi[~κi].

game structures where large subsets of vertices share the same
attack length and the same importance weight. This applies
to, e.g., surveillance systems and remote software protection
systems6 discussed in Section 1.
Decomposition procedure. For a given G = (V, d, α, p),
the decomposition starts by splitting the vertices of V into
pairwise disjoint subsets UD,τ consisting of all v ∈ V such
that d(v) = D and α(v) = τ (for all D’s and τ ’s in the
range of d and α, respectively). Then, each UD,τ is further
split into d|UD,τ |/De pairwise disjoint subsets of size pre-
cisely D (these are called full), and possibly one extra set
with (UD,τ mod D) elements (if D does not divide |UD,τ |).
These sets, constructed for all eligible D’s and τ ’s, are called
the basic sets of G, and they are not decomposed any further.
Note that the decomposition of G into basic sets is indepen-
dent of the number of patrollers assigned to protect G.

For every basic set U = {v0, . . . , vq−1} and every k, we
need to compute a modular strategy µ for U and k patrollers.
Recall that all vertices of U have the same importance τ and
the same attack length D, where q ≤ D. Let us first consider
the simpler case when q divides D. Imagine there are k to-
kens, initially put on the vertices v0, . . . , vk−1, which are then
moved simultaneously around a circle formed by the vertices
of U , where the successor of vi is v(i+1) mod D. That is, after `
steps, the first token resides at v` mod D, and the other tokens
reside at the next k − 1 vertices of the circle. The strategy
µ(`) deterministically selects the k-tuple of vertices occupied
by the tokens after ` steps. Note that each token visits each
vertex precisely D/q times in D consecutive steps.

Now consider the general case when q does not necessarily
divide D. In the first bD/qc · q steps, µ simulates k tokens
moving simultaneously around a circle similarly as above. In
the remaining (D mod q) steps, a k-subset of U is chosen
uniformly at random (independently in each step). Formally,
for every ` ∈ {0, . . . , D−1}, we have the following:
• if ` < bD/qc · q, then µ(`) returns {vj0 , . . . , vjk−1

} with
probability one, where jn = (` + n) mod q for all n ∈
{0, . . . , k−1};

• otherwise, µ(`) returns a k-subset of U chosen uniformly
at random.

Assignment procedure. This is the most advanced part of
our algorithm. We need to construct an assignment β for k
patrollers and the basic sets. We aim to construct β so that
the number of patrollers assigned to a given basic set U is ei-
ther KU or KU + 1, where KU ∈ N0 is a suitable constant
depending only on k, the attack length, importance level, and
the number of vertices of U . The reason is that a wider vari-
ability in the number of patrollers assigned to U would actu-
ally decrease7 the protection achieved for basic sets.

Now we explain how to compute the constant KU and the
probability λU of sending precisely KU + 1 patrollers to U .

6The number of IP camers or software modules can easily reach
hundreds of millions, while the time needed to complete an intru-
sion or a software update typically ranges over a small interval of
discretized time values. Similarly, the importance of a target usually
ranges over a small set of discrete levels.

7This claim follows from the structure of modular strategies con-
structed for basic sets, and it can be proven rigorously.
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Let us fix a basic set U = {v1, . . . , vq} where α(vi) = τ
and d(vi) = D for all vi ∈ U . If β sends KU patrollers
to U with probability (1 − λU ) and KU + 1 patrollers with
probability λU , then the expected number of patrollers sent to
U , denoted by EU , is equal to KU + λU . Furthermore, the
protection achieved for the vertices of U is given by:

αmax−τ ·(1−p)KU ·bD/qc ·(1−p·λU )
bD/qc ·(1−p·(KU+λU )/q)

(D mod q)

(1)

Expression (1) is obtained by a straightforward calculation
omitted in here (possible subexpressions of the form 00 are in-
terpreted as 1). Since we wish to protect all basic sets equally
well, the above expression should produce the same value for
all U ∈ W . Hence, we can consider a system of equations
stipulating that the above expressions are equal for all U , and
the sum of all positive EU ’s is equal to k. The values for KU

and λU are obtained by solving this system. Observe that (1)
is parameterized by two unknowns KU and λU , so we have
more unknowns than equations. This is overcome by observ-
ing that KU = bEUc and λU = EU − bEUc, which allows
to use just one variable EU instead of KU and λU . Further-
more, it may happen that a solution contains some negative
EU ’s, which indicates that the importance of the vertices in
U is so low that U is protected better than the other basic
sets even if zero patrollers are assigned to U . In this case, we
simply remove U from G and restart the algorithm.

5.1 Evaluating the Constructed Strategies
For every Defender’s strategy η for k patrollers, the relative
deviation of η from optimal strategy, denoted by Dev(η), is
defined by (Levk − Lev(η))/Lev(η).

First, let us note that when all basic sets of G are full,
then the achieved level of protection matches the upper bound
of Theorem 1, i.e., the strategy constructed by our algo-
rithm is provably optimal. For every game structure G, there
are two “surrounding” game structures obtained by decreas-
ing/increasing the number of vertices in each UD,τ to the
nearest multiple ofD, for which our algorithm produces opti-
mal strategies. With an increasing number of vertices, the lev-
els of protection achieved for the surrouding game structures
are closer and closer, which implies that Dev(η) approaches
zero. For a given δ > 0, one can easily compute a thresh-
old such that, for every game structure where the number of
vertices exceeds the threshold, the strategy η constructed by
our algorithm satisfies Dev(η) < δ. Hence, our algorithm
provably produces strategies which are either optimal or very
close to optimal, and this claim does not require further exper-
imental evidence. The aim of our experiments is to demon-
strate that the time needed to solve the constructed system of
equations is low (using Maple), and also to show that the pro-
tection achieved by our strategies is substantially better than
the protection achieved by naively constructed strategies.

More concretely, we consider a surveillance system with
three types of targets, where processing one image takes
0.1 sec, an on-going intrusion is detected with probabil-
ity 0.7, the time needed to complete an intrusion is ei-
ther 20 secs, 2 mins, or 15 mins, and the target values are
$100000, $130000, and $400000, respectively. We analyze
large instances where the number of targets of each type is
7000000 · x, 500000 · x, and 300000 · x, respectively, where
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Figure 1: Achieving a given level of protection.

the x ranges from 1 to 3 with a step 0.01. Hence, the total
number of analyzed game structures is 200 and the largest
one has more than 23 million vertices. The number of pa-
trollers is set to 6000. Since the time needed to compute
η was always negligible (the constructed systems of equa-
tions were solved by Maple in less than a second on an av-
erage PC), we do not report the running time details. The
levels of protection achieved by η strategies differ from the
theoretical upper bound by less than one dollar (for all in-
stances). When we compare these strategies against naively
constructed strategies σ, where in each round, the patrollers
are identically distributed among the vertices so that all ver-
tices are protected equally well, the difference between the
levels of protection achieved by σ strategies and the theoreti-
cal upper bound ranges between $157 and $740.

In Fig. 1, we show the number of patrollers needed to
achieve a given level of protection bounded by 270000. Here
we assume a fixed game with the same parameters as above
where x = 1, i.e., we have 7000000, 500000, and 300000
vertices of the three types. The number of patrollers required
by η differs from the theoretical bound by at most one, while
the naive strategies σ need about 125% of this amount on av-
erage. In the plot of Fig. 1, the theoretical lower bound on the
number of patrollers and the number of patrollers required by
η are indistinguishable.

6 Conclusions
The presented method can also be extended to more general
models. For example, adapting our algorithm to a generalized
model where p is a function from V to (0, 1] is easy—the
compositional principle stays the same, and in the algorithm,
the equations used to compute an optimal assignment for the
patrollers are slightly adjusted. Another direction for future
research is to consider Attackers with limited capabilities.

The algorithm of Section 5 works well for game structures
where the range of d and α is relatively small compared to
the number of vertices. For other classes of game structures,
one may possibly develop other algorithms, but some decom-
position principle similar to ours seems unavoidable when
the number of vertices reaches a certain threshold. Hence,
we believe that the presented approach may trigger the devel-
opment of the whole spectrum of decomposition techniques
applicable to Internet security problems.
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patrolling games with bounded error. In Proceedings of
AAMAS 2014, pages 1617–1618, 2014.

[Agmon et al., 2008a] N. Agmon, S. Kraus, and
G. Kaminka. Multi-robot perimeter patrol in adver-
sarial settings. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA2008),
pages 2339–2345. IEEE, 2008.

[Agmon et al., 2008b] N. Agmon, V. Sadov, G. Kaminka,
and S. Kraus. The impact of adversarial knowledge on
adversarial planning in perimeter patrol. In Proceedings
of AAMAS 2008, pages 55–62, 2008.

[Almeida et al., 2004] A. Almeida, G. Ramalho, H. Santana,
P. Tedesco, T. Menezes, V. Corruble, and Y. Chevaleyre.
Recent advances on multi-agent patrolling. In Advances in
Artificial Intelligence – SBIA 2004, volume 3171 of LNCS,
pages 474–483. Springer, 2004.

[Basilico et al., 2009a] N. Basilico, N. Gatti, and
F. Amigoni. Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies. In
AAMAS, pages 57–64, 2009.

[Basilico et al., 2009b] N. Basilico, N. Gatti, T. Rossi,
S. Ceppi, and F. Amigoni. Extending algorithms for mo-
bile robot patrolling in the presence of adversaries to more
realistic settings. In WI-IAT, pages 557–564, 2009.

[Basilico et al., 2010] N. Basilico, N. Gatti, and F. Villa.
Asynchronous Multi-Robot Patrolling against Intrusion in
Arbitrary Topologies. In AAAI, 2010.

[Basilico et al., 2012] N. Basilico, N. Gatti, and F. Amigoni.
Patrolling security games: Definitions and algorithms for
solving large instances with single patroller and single in-
truder. AI, 184–185:78–123, 2012.

[Basilico et al., 2016a] N. Basilico, A. Lanzi, and
M. Monga. A security game model for remote soft-
ware protection. In Proceedings of ARES 2016, pages
437–443, 2016.

[Basilico et al., 2016b] N. Basilico, G. De Nittis, and
N. Gatti. A security game combining patrolling and alarm-
triggered responses under spatial and detection uncertain-
ties. In Proceedings of AAAI 2016, pages 404–410, 2016.

[Bosansky et al., 2011] B. Bosansky, V. Lisy, M. Jakob, and
M. Pechoucek. Computing Time-Dependent Policies for
Patrolling Games with Mobile Targets. In AAMAS, 2011.

[Bosansky et al., 2012] B. Bosansky, O. Vanek, and M. Pe-
choucek. Strategy Representation Analysis for Patrolling
Games. In AAAI Spring Symposium, 2012.

[Brázdil et al., 2018] T. Brázdil, A. Kučera, and V. Řehák.
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