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krcal@fi.muni.cz
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ABSTRACT
We propose deterministic timed automata (DTA) as a
model-independent language for specifying performance and
dependability measures over continuous-time stochastic pro-
cesses. Technically, these measures are defined as limit fre-
quencies of locations (control states) of a DTA that observes
computations of a given stochastic process. Then, we study
the properties of DTA measures over semi-Markov processes
in greater detail. We show that DTA measures over semi-
Markov processes are well-defined with probability one, and
there are only finitely many values that can be assumed by
these measures with positive probability. We also give an al-
gorithm which approximates these values and the associated
probabilities up to an arbitrarily small given precision. Thus,
we obtain a general and effective framework for analysing
DTA measures over semi-Markov processes.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and
statistics—Stochastic processes

General Terms
Performance, Theory

Keywords
semi-Markov processes, timed automata, performance anal-
ysis, general state space Markov chains, stochastic stability

1. INTRODUCTION
Continuous-time stochastic processes, such as continuous-

time Markov chains, semi-Markov processes, or generalized
semi-Markov processes [21, 6, 19, 17], have been widely
used in practice to determine performance and dependability
characteristics of real-world systems. The desired behaviour
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of such systems is specified by various measures such as mean
response time, throughput, expected frequency of errors, etc.
These measures are often formulated just semi-formally and
chosen specifically for the system under study in a some-
what ad hoc manner. One example of a rigorous and model-
independent specification language for performance and de-
pendability properties is Continuous Stochastic Logic (CSL)
[3, 5] which allows to specify both steady state and tran-
sient measures over the underlying stochastic process. The
syntax and semantics of CSL is inspired by the well-known
non-probabilistic logic CTL [14]. The syntax of CSL defines
state and path formulae, interpreted over the states and runs
of a given stochastic processM. In particular, there are two
probabilistic operators, P1%(·) and S1%(·), which refer to
the transient and steady state behaviour ofM, respectively.
Here 1 is a numerical comparison (such as ≤) and % ∈ [0, 1]
is a rational constant. If ϕ is a path formula1 (which is either
valid or invalid for every run ofM), then P≥0.7(ϕ) is a state
formula which says “the probability of all runs satisfying ϕ is
at least 0.7”. If Φ is a state formula, i.e., Φ is either valid or
invalid in every state, then S≥0.5(Φ) is also a state formula
which says“the π-weighted sum over all states where Φ holds
is at least 0.5”. Here π is the steady-state distribution ofM.
The logic CSL can express quite complicated properties and
the corresponding model-checking problem over continuous-
time Markov chains is decidable. However, there are also
several disadvantages.

(a) The semantics of steady state probabilistic operator
S1%(·) assumes the existence of invariant distribution
which is not guaranteed to exist for all types of stochas-
tic processes with continuous time (the existing works
mainly consider CSL as a specification language for er-
godic continuous-time Markov chains).

(b) In CSL formulae, all measures are explicitly quantified,
and the model-checking algorithm just verifies con-
straints over these measures. Alternatively, we might
wish to compute certain measures up to a given preci-
sion.

In this paper, we propose deterministic timed automata
(DTA) [2] as a model-independent specification language

1In CSL, ϕ can be of the form XIΦ or Φ1UIΦ2 where
Φ,Φ1,Φ2 are state formulae, and XI ,UI are the modal con-
nectives of CTL parametrized by an interval I. Boolean
connectives can be used to combine just state formulae.



for performance and dependability measures of continuous-
time stochastic processes. The “language” of DTA can be
interpreted over arbitrary stochastic processes that gener-
ate timed words, and their expressive power appears suffi-
ciently rich to capture many interesting run-time properties
(although we do not relate the expressiveness of CSL and
DTA formally, they are surely incomparable because of dif-
ferent “nature” of the two formalisms). Roughly speaking, a
DTA A “observes” runs of a given stochastic processM and
“remembers” certain information in its control states (which
are called locations). Since A is deterministic, for every run
σ of M there is a unique computation A(σ) of A, which
determines a unique tuple of “frequencies” of visits to the
individual locations of A along σ. These frequencies are the
values of “performance measures” defined by A (in fact, we
consider discrete and timed frequencies which are based on
the same concept but defined somewhat differently).

Let us explain the idea in more detail. Consider some
stochastic process M whose computations (or runs) are in-
finite sequences of the form σ = s0 t0 s1 t1 · · · where all si
are “states” and ti is the time spent by performing the tran-
sition from si to si+1. Also assume a suitable probability
space defined over the runs ofM. Let Σ by a finite alphabet
and L a labelling which assigns a unique letter L(s) ∈ Σ to
every state s of M. Intuitively, the letters of Σ correspond
to collections of predicates that are valid in a given state.
Thus, every run σ = s0 t0 s1 t1 · · · ofM determines a unique
timed word wσ = L(s0) t0 L(s1) t1 · · · over Σ.

A DTA over Σ is a finite-state automaton A equipped with
finitely many internal clocks. Each control state (or location)
q of A has finitely many outgoing edges q−→ q′ labeled by
triples (a, g,X), where a ∈ Σ, g is a “guard” (a constraint on
the current clock values), and X is a subset of clocks that are
reset to zero after performing the edge. A configuration of
A is a pair (q, ν), where q and ν are the current location and
the current clock valuation, respectively. Every timed word
w = c0 c1 c2 c3 · · · over Σ (where ci ∈ Σ iff i is even) then
determines a unique run A(w) = (q0, ν0) (q1, ν1) (q2, ν2) · · ·
of A where q0 is an initial location, ν0 assigns zero to ev-
ery clock, and (qi+1, νi+1) is obtained from (qi, νi) either
by performing the only enabled edge qi−→ qi+1 labeled by
(ci, g,X) if i is even, or by simultaneously increasing all
clocks by ci if i is odd.

As a simple example, consider the following DTA Â over
the alphabet {a} with one clock x and the initial location q0:

q0 q1

q↑

q↓

a, true, x:=0

a, x ≤ 2, x:=0

a, x > 2, x:=0

a, x > 2, x:=0a, x ≤ 2, x:=0

a, x ≤ 2, x:=0

a, x > 2, x:=0

Intuitively, Â observes time stamps in a given timed word
and enters either q↑ or q↓ depending on whether a given
stamp is bounded by 2 or not, respectively. For example, a
word w = a 0.2 a 2.4 a 2.1 · · · determines the run Â(w) =
(q0, 0) (q1, 0) (q1, 0.2) (q↑, 0) (q↑, 2.4) (q↓, 0) (q↓, 2.1) · · ·

Let w = a0 t0 a1 t1 · · · be a timed word over Σ and q a
location of A. For every i ∈ N0, let T i(w) be the stamp ti
of w, and Qi(w) the location of A entered after reading the
finite prefix a0 t0 · · · ai of w. Further, let 1iq(w) be either 1 or

0 depending on whether Qi(w) = q or not, respectively. We
define the discrete and timed frequency of visits to q along

A(w), denoted by dAq (w) and cAq (w), in the following way
(the ‘A’ index is omitted when it is clear from the context):

dAq (w) = lim sup
n→∞

∑n
i=1 1iq(w)

n

cAq (w) = lim sup
n→∞

∑n
i=1 T

i(w) · 1iq(w)∑n
i=1 T

i(w)

Thus, every timed word w determines the tuple
dA(w) =

(
dAq (w)

)
q∈Q and the tuple cA(w) =

(
cAq (w)

)
q∈Q

of discrete and timed A-measures, respectively.
DTA measures can encode various performance and de-

pendability properties of stochastic systems with continuous
time. For example, consider again the DTA Â above and
assume that all states of a given stochastic process M are
labeled with a. Then, the fraction

dq↑(wσ)

dq↑(wσ) + dq↓(wσ)

corresponds to the percentage of transitions of M that are
performed within 2 seconds along a run σ. IfM is an ergodic
continuous-time Markov chain, then the above fraction takes
the same value for almost all runs σ ofM. However, it makes
sense to consider this fraction also for non-ergodic processes.
For example, we may be interested in the expected value of
dq↑/(dq↑+dq↓), or in the probability of all runs σ such that
the fraction is at least 0.5.

One general trouble with DTA measures is that dAq (w) and

cAq (w) faithfully capture the frequency of visits to q along w
only if the limits

lim
n→∞

∑n
i=1 1iq(w)

n
and lim

n→∞

∑n
i=1 T

i(w) · 1iq(w)∑n
i=1 T

i(w)

exist, in which case we say that dA and cA are well-defined
for w, respectively. So, one general question that should be
answered when analyzing the properties of DTA measures
over a particular class of stochastic processes is whether dA

and cA are well-defined for almost all runs. If the answer
is negative, we might either try to re-design our DTA or
accept the fact that the limit frequency of the considered
event simply does not exist (and stick to lim sup).

In this paper, we study DTA measures over semi-Markov
processes (SMPs). An SMP is essentially a discrete-time
Markov chain where each transition is assigned (apart of
its discrete probability) a delay density, which defines the
distribution of time needed to perform the transition. A
computation (run) of an SMP M is initiated in some state
s0, which is also chosen randomly according to a fixed initial
distribution over the state space of M. The next transition
is selected according to the fixed transition probabilities, and
the selected transition takes time chosen randomly according
to the density associated to the transition. Hence, each run
of M is an infinite sequence s0 t0 s1 t1 · · · , where all si are
states of M and ti are time stamps. The probability of
(certain) subsets of runs in M is measured in the standard
way (see Section 2).

The main contribution of this paper are general results
about DTA measures over semi-Markov processes, which are
valid for all SMPs where the employed density functions
are bounded from zero on every closed subinterval (see Sec-
tion 2). Under this assumption, we prove that for every SMP
M and every DTA A we have the following:

(1) Both discrete and timed A-measures are well defined
for almost all runs of M.



(2) Almost all runs ofM can be divided into finitely many
pairwise disjoint subsets R1, . . . ,Rk so that dA(w)
takes the same value for almost all w ∈ Rj , where
1 ≤ j ≤ k. The same result holds also for cA. (Let us
note that k can be larger than 1 even if M is strongly
connected.)

(3) The observations behind the results of (1) and (2) can
be used to compute the k and effectively approximate
the probability of all Rj together with the associated
values of discrete or timed A-measures up to an arbi-
trarily small given precision. More precisely, we show
that these quantities are expressible using the m-step
transition kernel Pm of the product process M×A
defined for M and A (see Section 3.2), and we give
generic bounds on the number of steps m that is suf-
ficient to achieve the required precision. The m-step
transition kernel is defined by nested integrals (see Sec-
tion 3.1) and can be approximated by numerical meth-
ods (see, e.g., [16, 9]). This makes the whole frame-
work effective. The design of more efficient algorithms
as well as more detailed analysis applicable to concrete
subclasses of SMP are left for future work.

To get some intuition about potential applicability of our
results (and about the actual power of DTA which is hid-
den mainly in their ability to accumulate the total time of
several transitions in internal clocks), let us start with a sim-
ple example. Consider the following itinerary for travelling
between Brno and Prague:

Brno Kuřim Tǐsnov Čáslav Prague

arrival 1:15 2:30 3:30 4:50
departure 0:00 1:20 2:40 3:35

A traveller has to change a train at each of the three interme-
diate stops, and she needs at least 3 minutes to walk between
the platforms. Assume that all trains depart on time, but can
be delayed. Further, assume that travelling time between X
and Y has density fX-Y. We wonder what is the chance
that a traveller reaches Prague from Brno without missing
any train and at most 5 minutes after the scheduled arrival.
Answering this question “by hand” is not simple (though
still possible). However, it is almost trivial to rephrase this
question in terms of DTA measures. The itinerary can be
modeled by the following semi-Markov process, where the
density f is irrelevant and Σ = {B,K,T,Č,P}.

B K T Č P
fB-K fK-T fT-Č fČ-P

f

The property of“reaching Prague from Brno without missing
any train and at most 5 minutes after the scheduled arrival”is
encoded by the DTA Ā of Figure 1. The automaton uses just
one clock x to measure the total elapsed time, and the guards
reflect the required timing constraints. Starting in location
init , the automaton eventually reaches either the location
p↑ or p↓, which corresponds to satisfaction or violation of
the above property, and then it is “restarted”. Hence, we
are interested in the relative frequency of visits to p↑ among
the visits to p↑ or p↓. Using our results, it follows that dA

is well-defined and takes the same value for almost all runs
ofM. Hence, the random variable dp↑/(dp↑+dp↓) also takes
the same value with probability one, and this (unique) value
is the quantity of our interest.

init

b k ↑

k ↓

t ↑

t ↓

č ↑

č ↓

p ↑

p ↓
true;
x:=0

B

true; x:=0

B

x≤1:17
K

x>1:17

K

x≤2:37
T

x>2:37

T

x≤3:32
Č

x>3:32

Č

x≤4:55
P

x>4:55

P

true

T

true

Č

true

P

Figure 1: A deterministic timed automaton Ā.

Now imagine we wish to model and analyse the flow of
passengers in London metro at rush hours. The SMP states
then correspond to stations, transition probabilities encode
the percentage of passengers traveling in a given direction,
and the densities encode the distribution of travelling time.
A DTA can be used to monitor a complex list of timing re-
strictions such as “there is enough time to change a train”,
“travelling between important stations does not take more
than 30 minutes if one the given routes is used”, “trains do
not arrive more than 2 minutes later than scheduled”, etc.
For this we already need several internal clocks. Apart of
some auxiliary locations, the constructed DTA would also
have special locations used to encode satisfaction/violation
of a given restriction (in the DTA Ā of Figure 1, (p, ↑) and
(p, ↓) are such special locations). Using the results presented
in this paper, one may not only study the overall satisfac-
tion of these restrictions, but also estimate the impact of
changes in the underlying model (for example, if a given line
becomes slower due to some repairs, one may evaluate the
decrease in various dependability measures without changing
the constructed DTA).

Proof techniques. For a given SMP M and a given DTA
A we first construct their synchronized product M × A,
which is another stochastic process. In fact, it turns out
that M×A is a discrete-time Markov chain with uncount-
able state-space. Then, we apply a variant of the standard
region construction [2] and thus partition the state-space of
M×A into finitely many equivalence classes. At the very
core of our paper there are several non-trivial observations
about the structure ofM×A and its region graph which es-
tablish a powerful link to the well-developed ergodic theory
of Markov chains with general state-space (see, e.g., [18, 20]).
In this way, we obtain the results of items (1) and (2) men-
tioned above. Some additional work is required to analyze
the algorithm presented in Section 4 (whose properties are
summarized in item (3) above). Due to space constraints,
most of the proofs are omitted and can be found in [10].

Related work. There is a vast literature on continuous-time
Markov chains, semi-Markov processes, or even more general
stochastic models such as generalized semi-Markov processes
(we refer to, e.g., [21, 6, 19, 17]). In the computer science
context, most works on continuous-time stochastic models
concern model-checking against a given class of temporal
properties [3, 5]. The usefulness of CSL model-checking
for dependability analysis is advocated in [15]. Timed au-
tomata [2] have been originally used as a model of (non-
stochastic) real-time systems. Probabilistic semantics of



timed automata is proposed in [4, 7]. The idea of using
timed automata as a specification language for continuous-
time stochastic processes is relatively recent. In [13], the
model-checking problem for continuous-time Markov chains
and linear-time properties represented by timed automata
is considered (the task is to dermine the probability of all
timed words that are accepted by a given timed automaton).
A more general model of two-player games over generalized
semi-Markov processes with qualitative reachability objec-
tives specified by deterministic timed automata is studied in
[11].

2. PRELIMINARIES
In this paper, the sets of all positive integers, non-negative

integers, real numbers, positive real numbers, and non-
negative real numbers are denoted by N, N0, R, R>0, and
R≥0, respectively.

Let A be a finite or countably infinite set. A discrete prob-
ability distribution on A is a function α : A→ R≥0 such that∑
a∈A α(a) = 1. We say that α is rational if α(a) is rational

for every a ∈ A. The set of all distributions on A is denoted
by D(A). A σ-field over a set Ω is a set F ⊆ 2Ω that includes
Ω and is closed under complement and countable union. A
measurable space is a pair (Ω,F) where Ω is a set called sam-
ple space and F is a σ-field over Ω whose elements are called
measurable sets. A probability measure over a measurable
space (Ω,F) is a function P : F → R≥0 such that, for each
countable collection {Xi}i∈I of pairwise disjoint elements of
F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(Ω) = 1. A

probability space is a triple (Ω,F ,P), where (Ω,F) is a mea-
surable space and P is a probability measure over (Ω,F). We
say that a property A ⊆ Ω holds for almost all elements of a
measurable set Y if P(Y ) > 0, A∩Y ∈ F , and P(A | Y ) = 1.

All of the integrals used in this paper should be under-
stood as Lebesgue integrals, although we use Riemann-like
notation when appropriate.

2.1 Semi-Markov processes
A semi-Markov process (see, e.g., [21]) can be seen

as discrete-time Markov chains where each transition is
equipped with a density function specifying the distribu-
tion of time needed to perform the transition. Formally,
let D be a set of delay densities, i.e., measurable functions
f : R → R≥0 satisfying

∫∞
0
f(t) dt = 1 where f(t) = 0 for

every t < 0. Moreover, for technical reasons, we assume that
each f ∈ D satisfies the following: There is an interval I
either of the form [`, u] with `, u ∈ N0, ` < u, or [`,∞) with
` ∈ N0, such that

• for all t ∈ R \ I we have that f(t) = 0,

• for all [c, d] ⊆ I there is b > 0 such that for all t ∈ [c, d]
we have that f(t) ≥ b.

The assumption that `, u are natural numbers is adopted
only for the sake of simplicity. Our results can easily be
generalized to the setting where I is an interval with rational
bounds or even a finite union of such intervals.

Definition 2.1. A semi-Markov process (SMP) is a tuple
M = (S,P,D, α0), where S is a finite set of states, P : S →
D(S) is a transition probability function, D : S × S → D is
a delay function which to each transition assigns its delay
density, and α0 ∈ D(S) is an initial distribution.

A computation (run) of a SMPM is initiated in some state
s0, which is chosen randomly according to α0. In the cur-
rent state si, the next state si+1 is selected randomly ac-
cording to the distribution P(si), and the selected transition
(si, si+1) takes a random time ti chosen according to the den-
sity D(si, si+1). Hence, each run of M is an infinite timed
word s0 t0 s1 t1 · · · , where si ∈ S and ti ∈ R≥0 for all i ∈ N0.
We use RM to denote the set of all runs of M.

Now we define a probability space (RM,FM,PM) over
the runs ofM (we often omit the indexM if it is clear from
the context). A template is a finite sequence of the form
B = s0 I0 s1 I1 · · · sn+1 such that n ≥ 0 and Ii is an interval
in R≥0 for every 0 ≤ i ≤ n. Each such B determines the
corresponding cylinder R(B) ⊆ R consisting of all runs of
the form ŝ0 t0 ŝ1 t1 · · · , where ŝi = si for all 0 ≤ i ≤ n+1,
and ti ∈ Ii for all 0 ≤ i ≤ n. The σ-field F is the Borel
σ-field generated by all cylinders. For each template B =
s0 I0 s1 I1 · · · sn+1, let pi = P(si)(si+1) and fi = D(si, si+1)
for all 0 ≤ i ≤ n. The probability P(R(B)) is defined as
follows:

α0(s0) ·
n∏
i=0

pi ·
∫
ti∈Ii

fi(ti) dti

Then, P is extended to F (in the unique way) by applying
the extension theorem (see, e.g., [8]).

2.2 Deterministic timed automata
Let X be a finite set of clocks. A valuation is a function

ν : X → R≥0. For every valuation ν and every subset X ⊆ X
of clocks, we use ν[X := 0] to denote the unique valuation
such that ν[X := 0](x) is equal either to 0 or ν(x), depending
on whether x ∈ X or not, respectively. Further, for every
valuation ν and every δ ∈ R≥0, the symbol ν + δ denotes
the unique valuation such that (ν + δ)(x) = ν(x) + δ for all
x ∈ X . Sometimes we assume an implicite linear ordering
on clocks and slightly abuse our notation by identifying a
valuation ν with the associated vector of reals.

A clock constraint (or guard) is a finite conjunction of
basic constraints of the form x ./ c, where x ∈ X ,
./ ∈ {<,≤, >,≥}, and c ∈ N0. For every valuation ν and
every clock constraint g we have that ν either does or does
not satisfy g, written ν |= g or ν 6|= g, respectively (the satis-
faction relation is defined in the expected way). Sometimes
we identify a guard g with the set of all valuations that sat-
isfy g and write, e.g., g ∩ g′. The set of all guards over X is
denoted by B(X ).

Definition 2.2. A deterministic timed automaton
(DTA) is a tuple A = (Q,Σ,X ,−→, q0), where Q is a
nonempty finite set of locations, Σ is a finite alphabet, X
is a finite set of clocks, q0 ∈ Q is an initial location, and
−→ ⊆ Q×Σ×B(X )× 2X ×Q is an edge relation such that
for all q ∈ Q and a ∈ Σ we have the following:

1. the guards are deterministic, i.e., for all edges of the
form (q, a, g1, X1, q1) and (q, a, g2, X2, q2) such that
g1 ∩ g2 6= ∅ we have that g1 = g2, X1 = X2, and
q1 = q2;

2. the guards are total, i.e., for all q ∈ Q, a ∈ Σ, and
every valuation ν there is an edge (q, a, g,X, q′) such
that ν |= g.

A configuration of A is a pair (q, ν), where q ∈ Q and ν is
a valuation. An infinite timed word over Σ is an infinite se-
quence w = c0 c1 c2 c3 · · · , where ci ∈ Σ when i is even, and



ci ∈ R≥0 when i is odd. The run of A on w is the unique in-
finite sequence of configurations A(w) = (q0, ν0) (q1, ν1) · · ·
such that q0 is the initial location of A, ν0(x) = 0 for all
x ∈ X , and for each i ∈ N0 we have that

• if ci is a time stamp, then qi+1 = qi and νi+1 = νi+ ci;

• if ci is a letter of Σ, then there is a unique edge
(qi, ci, g,X, q) such that νi |= g, and we require that
qi+1 = q and νi+1 = νi[X := 0].

Notice that we do not define any acceptance condition for
DTA. Instead, we understand DTA as finite-state observers
that analyze timed words and report about certain events
by entering designated locations. The “frequency” of these
events is formally captured by the quantities dq and cq de-
fined below.

Let A = (Q,Σ,X ,−→, q0) be a DTA, q ∈ Q some lo-
cation, and w = a0 t0 a1 t1 · · · a timed word over Σ. For
every i ∈ N0, let T i(w) be the stamp ti of w, and Qi(w) the
unique location of A entered after reading the finite prefix
a0 t0 · · · ai of w. Further, let 1iq(w) be either 1 or 0 depend-

ing on whether Qi(w) = q or not, respectively. The discrete
and timed frequency of visits to q along A(w), denoted by
dAq (w) and cAq (w), are defined in the following way (if A is
clear, it is omitted):

dAq (w) = lim sup
n→∞

∑n
i=1 1iq(w)

n

cAq (w) = lim sup
n→∞

∑n
i=1 T

i(w) · 1iq(w)∑n
i=1 T

i(w)

Hence, every timed word w determines the tuple dA =(
dAq (w)

)
q∈Q and the tuple cA =

(
cAq (w)

)
q∈Q of discrete and

timed A-measures, respectively. The A-measures were de-
fined using lim sup, because the corresponding limits may
not exist in general. If limn→∞

∑n
i=1 1iq(w)/n exists for

all q ∈ Q, we say that dA is well-defined for w. Similarly, if
limn→∞(

∑n
i=1 T

i(w) · 1iq(w))/(
∑n
i=1 T

i(w)) exists for all q,

we say that cA is well-defined for w.
As we already noted in Section 1, a DTA A can be used to

observe runs in a given SMPM after labeling all states ofM
with the letters of Σ by a suitable L : S → Σ. Then, every
run σ = s0 t0 s1 t1 · · · ofM determines a unique timed word
wσ = L(s0) t0 L(s1) t1 · · · , and one can easily show that for
every timed word w, the set {σ ∈ R | wσ = w} is measurable
in (R,F ,P).

3. DTA MEASURES OVER SMPS
Throughout this section we fix an SMPM = (S,P,D, α0)

and a DTA A = (Q,Σ,X ,−→, q0) where X = {x1, . . . , xn}.
To simplify our notation, we assume that Σ = S, i.e., every
run σ of M is a timed word over Σ (hence, we do not need
to introduce any labeling L : S → Σ). This technical as-
sumption does not affect the generality of our results (all of
our arguments and proofs work exactly as they are, we only
need to rewrite them using less readable notation). Our goal
is to prove the following:

Theorem 3.1.

1. dA is well-defined for almost all runs of M.

2. There are pairwise disjoint sets R1, . . . ,Rk of runs
in M such that P(R1 ∪ · · · ∪ Rk) = 1, and for ev-
ery 1 ≤ j ≤ k there is a tuple Dj such that dA(σ) =

M : s0 s1 s2

A : q0, ν0 q1, ν1 q2, ν1

M×A : s0, q0, ν0 s1, q1, ν1 s2, q2, ν2

q1, ν̄0 q2, ν̄1

t0 t1

s0
t0

s1
t1

t0 t1

Figure 2: Synchronizing M and A in M×A. Notice
that ν0 = ν̄0 = 0 and νi+1 = ν̄i + ti.

Dj for almost all σ ∈ Rj (we use Dj,q to denote the
q-component of Dj).

In Section 4, we show how to compute the k and approximate
P(Rj) and Dj up to an arbitrarily small given precision.

An immediate corollary of Theorem 3.1 is an analogous
result for cA.

Corollary 3.2. cA is well-defined for almost all runs
of M. Further, there are pairwise disjoint sets R1, . . . ,RK
of runs in M such that P(R1 ∪ · · · ∪ RK) = 1, and for ev-
ery 1 ≤ j ≤ K there is a tuple Cj such that cA(σ) = Cj for
almost all σ ∈ Rj.

Corollary 3.2 follows from Theorem 3.1 simply by considering
the discrete dS×A measure, where the DTA S×A is obtained
from A in the following way: the set of locations of S×A is
{q0} ∪ (S ×Q), and for every transition (q0, s, g,X, q

′) of A
we add a transition (q0, s, g,X, (s, q

′)) to S×A and for every
transition (q, s, g,X, q′) and every s′ ∈ S we add a transition
((s′, q), s, g,X, (s, q′)) to S×A. The initial location of S×A
is q0. Intuitively, S × A is the same as A but it explicitly
“remembers” the letter which was used to enter the current
location. Let k and Dj be the constants of Theorem 3.1 con-
structed for M and S ×A. Observe that the expected time
of performing a transition from a given s ∈ S, denoted by
Es, is given by Es =

∑
s′∈S P(s)(s′)·Es,s′ , where Es,s′ is the

expectation of a random variable with the density D(s, s′).
From this we easily obtain that

Cj,q =

∑
s∈S Es ·Dj,(s,q)∑

p∈Q
∑
s∈S Es ·Dj,(s,p)

(1)

for all q ∈ Q and 1 ≤ j ≤ k. The details are given in [10].
Hence, we can also compute the constantK and approximate
P(Rj) and Cj for every 1 ≤ j ≤ K using Equation (1).

It remains to prove Theorem 3.1. Let us start by
sketching the overall structure of our proof. First, we
construct a synchronous product M×A of M and A,
which is a Markov chain with an uncountable state space
ΓM×A = S ×Q× (R≥0)n. Intuitively, M×A behaves in
the same way as M and simulates the computation of A
on-the-fly (see Figure 2). Then, we construct a finite region
graph GM×A over the productM×A. The nodes of GM×A
are the sets of states that, roughly speaking, satisfy the same
guards of A. Edges are induced by transitions of the prod-
uct (note that if two states satisfy the same guards, the sets
of enabled outgoing transitions are the same). By relying
on arguments presented in [1, 11], we show that almost all
runs reach a node of a bottom strongly connected component
(BSCC) C of GM×A (by definition, each run which enters C
remains in C). This gives us the partition of the set of runs



of M into the sets R1, . . . ,Rk (each Rj corresponds to one
of the BSCCs of GM×A).

Subsequently, we concentrate on a fixed BSCC C, and
prove that almost all runs that reach C have the same fre-
quency of visits to a given q ∈ Q (this gives us the constant
Dj,q). Here we employ several deep results from the theory
of general state space Markov chains (see Theorem 3.6). To
apply these results, we prove that assuming aperiodicity of
GM×A (see Definition 3.10), the state space of the prod-
uctM×A is small (see Definition 3.5 and Lemma 3.11 be-
low). This is perhaps the most demanding part of our proof.
Roughly speaking, we show that there is a distinguished sub-
set of states reachable from each state in a fixed number of
steps with probability bounded from 0. By applying Theo-
rem 3.6, we obtain a complete invariant distribution on the
product, i.e., in principle, we obtain a constant frequency of
any non-trivial subset of states. From this we derive our re-
sults in a straightforward way. If GM×A is periodic, we use
standard techniques for removing periodicity and then basi-
cally follow the same stream of arguments as in the aperiodic
case.

3.1 General state space Markov chains
We start by recalling the definition of “ordinary” discrete-

time Markov chains with discrete state space (DTMC). A
DTMC is given by a finite or countably infinite state space
S, an initial probability distribution over S, and a one-step
transition matrix P which defines the probability P (s, s′) of
every transion (s, s′) ∈ S × S so that

∑
s′∈S P (s, s′) = 1

for every s ∈ S. In the setting of uncountable state spaces,
transition probabilities cannot be specified by a transition
matrix. Instead, one defines the probabilities of moving from
a given state s to a given measurable subset X of states.
Hence, the concept of transition matrix is replaced with a
more general notion of transition kernel defined below.

Definition 3.3. A transition kernel over a measurable
space (Γ,G) is a function P : Γ× G → [0, 1] such that

1. P (z, ·) is a probability measure over (Γ,G) for each z ∈
Γ;

2. P (·, A) is a measurable function for each A ∈ G (i.e.,
for every c ∈ R, the set of all z ∈ Γ satisfying
P (z,A) ≥ c belongs to G).

A transition kernel is the core of the following definition.

Definition 3.4. A general state space Markov chain
(GSSMC) with a state space (Γ,G), a transition kernel P
and an initial probability measure µ is a stochastic process
Φ = Φ1,Φ2, . . . such that each Φi is a random variable over
a probability space (ΩΦ,FΦ,PΦ) where

• ΩΦ is a set of runs, i.e., infinite words over Γ.

• FΦ is the product σ-field
⊗∞

i=0 G.

• PΦ is the unique probability measure over (ΩΦ,FΦ)
such that for every finite sequence A0, · · · , An ∈ FΦ

we have that PΦ(Φ0∈A0, · · · ,Φn∈An) is equal to∫
y0∈A0

· · ·
∫

yn−1∈An−1

µ(dy0 ) · P (y0, dy1 ) · · ·P (yn−1, An).

(2)

• Each Φi is the projection of elements of ΩΦ onto the
i-th component.

A path is a finite sequence z1 · · · zn of states from Γ. From
Equation (2) we get that Φ also satisfies the following prop-
erties which will be used to show several results about the
chain Φ by working with the transition kernel only.

1. PΦ(Φ0 ∈ A0) = µ(A0),

2. PΦ(Φn+1 ∈ A | Φn, . . . ,Φ0) = PΦ(Φn+1 ∈ A | Φn) =
P (Φn, A) almost surely,

3. PΦ(Φn+m ∈ A | Φn) = Pm(Φn, A) almost surely,

where the m-step transition kernel Pm is defined as follows:

P 1(z,A) = P (z,A)

P i+1(z,A) =

∫
Γ

P (z, dy) · P i(y,A).

Notice that the transition kernel and the m-step transition
kernel are analogous counterparts to the transition matrix
and the k-step transition matrix of a DTMC.

As we mentioned above, our proof of Theorem 3.1 employs
several results of GSSMC theory. In particular, we make
use of the notion of smallness of the state space defined as
follows.

Definition 3.5. Let m ∈ N, ε > 0, and ν be a probability
measure on G. A set C ∈ G is (m, ε, ν)-small if for all x ∈ C
and B ∈ G we have that Pm(x,B) ≥ ε · ν(B).

GSSMCs where the whole state space is small have many
nice properties, and the relevant ones are summarized in the
following theorem.

Theorem 3.6. If Γ is (m, ε, ν)-small, then

1. [Existence of invariant measure] There exists a
unique probability measure π such that for all A ∈ G
we have that

π(A) =

∫
Γ

π(dx)P (x,A)

2. [Strong law of large numbers] If h : Γ→ R satisfies∫
Γ
h(x)π(dx) <∞, then almost surely

lim
n→∞

∑n
i=1 h(Φi)

n
=

∫
Γ

h(x)π(dx)

3. [Uniform ergodicity] For all x ∈ Γ, A ∈ G, and all
n ∈ N,

sup
A∈G
|Pn(x,A)− π(A)| ≤ (1− ε)bn/mc

Proof. The theorem is a consequence of stadard results
for GSSMCs. Since Γ is (m, ε, ν)-small, we have

(i) Φ is by definition ϕ-irreducible for ϕ = ν, and thus also
ψ-irreducible by [18, Proposition 4.2.2];

(ii) Γ is by definition also (a, ε, ν)-petite (see [18, Section
5.5.2]), where a is the Dirac distribution on N0 with
a(m) = 1, a(n) = 0 for n 6= m;

(iii) the first return time to Γ is trivially 1.

ad 1. By (iii), Γ is not uniformly transient, hence by (i), (ii)
and [18, Theorem 8.0.2], Φ is recurrent. Thus by [18,
Theorem 10.0.1], there exists a unique invariant prob-
ability measure π.

ad 2. By (i)-(iii) and [18, Theorem 10.4.10 (ii)], Φ is positive
Harris. Therefore, we may apply [18, Theorem 17.0.1
(i)] and obtain the desired result.

ad 3. This follows immediately from [20, Theorem 8].



3.2 The product process
The product process of M and A, denoted by M×A, is

a GSSMC with the state space ΓM×A = S × Q × (R≥0)n,
where n = |X | is the number of clocks of A. The σ-field
over ΓM×A is the product σ-field GM×A = 2S ⊗ 2Q ⊗Bn

where Bn is the Borel σ-field over the set (R≥0)n. For each
A ∈ GM×A, the initial probability µM×A(A) is equal to∑

(s,q0,0)∈A α0(s) (recall that α0 is the initial distribution of

M).
The behavior of M×A is depicted in Figure 2. Each

step of the product process corresponds to one step of M
and two steps of A. The step of the product starts by sim-
ulating the discrete step of A that reads the current state
of M and possibly resets some clocks, followed by simulat-
ing simultaneously the step of M that takes time t and the
corresponding step of A which reads the time stamp t.

Now we define the transition kernel PM×A of the prod-
uct process. Let z = (s, q, ν) be a state of ΓM×A, and let
(q̄, ν̄) be the configuration of A entered from the configura-
tion (q, ν) after reading s (note that ν̄ is not necessarily the
same as ν because A may reset some clocks). It suffices to
define PM×A(z, ·) only for generators of GM×A and then ap-
ply the extension theorem (see, e.g., [8]) to obtain a unique
probability measure PM×A(z, ·) over (ΓM×A,GM×A). Gen-
erators of GM×A are sets of the form {s′} × {q′} × I where
s′ ∈ S, q′ ∈ Q and I is the product I1×· · ·×In of intervals Ii
in R≥0. If q′ 6= q̄, then we define PM×A(z, {s′}×{q′}×I) = 0.
Otherwise, we define

PM×A(z, {s′} × {q′} × I) = P(s)(s′) ·
∫ ∞

0

f(t) · 1I(ν̄ + t)dt

Here f = D(s, s′) and 1I is the indicator function of the
set I.

Since PM×A(z, ·) is by definition a probability measure
over (ΓM×A,GM×A), it remains to check the second condi-
tion of Definition 3.3.

Lemma 3.7. Let A ∈ GM×A. Then PM×A(·, A) is a mea-
surable function, i.e., M×A is a GSSMC.

A proof of this lemma can be found in [10]. Recall that by
Definition 3.4, PM×A is the unique probability measure on
the product σ-field FM×A =

⊗∞
i=0 GM×A induced by PM×A

and the initial probability measure µM×A.

3.2.1 The correspondence betweenM×A andM
In this subsection we show that M×A correctly reflects

the behaviour of M. First, we define the dA measure
for M×A. (As the DTA A is fixed, we omit them and
write d and dq instead of dA and dAq , respectively.) Let
σ = (s0, q0, ν0) (s1, q1, ν1) · · · be a run of M×A and q ∈ Q
a location. For every i ∈ N0, let 1iq(σ) be either 1 or 0
depending on whether if qi = q or not, respectively. We put

dq(σ) = lim sup
n→∞

∑n
i=1 1iq(σ)

n

Lemma 3.8. There is a measurable one-to-one mapping ξ
from the set of runs of M to the set of runs of M×A such
that

• ξ preserves measure, i.e., for every measurable set X
of runs ofM we have that ξ(X) is also measurable and
PM(X) = PM×A(ξ(X));

• ξ preserves d, i.e., for every run σ of M and every
q ∈ Q we have that dq(σ) is well-defined iff dq(ξ(σ))
is well-defined, and dq(σ) = dq(ξ(σ)).

A formal proof of Lemma 3.8 is given in [10].

3.2.2 The region graph ofM×A
Although the state-space ΓM×A is uncountable, we can

define the standard region relation ∼ [2] over ΓM×A with
finite index, and then work with finitely many regions. For
a given a ∈ R, we use frac(a) to denote the fractional part
of a, and int(a) to denote the integral part of a. For a, b ∈ R,
we say that a and b agree on integral part if int(a) = int(b)
and neither or both a, b are integers.

We denote by Bmax the maximal constant that appears in
the guards of A and say that a clock x ∈ X is relevant for ν
if ν(x) ≤ Bmax. Finally, we put (s1, q1, ν1) ∼ (s2, q2, ν2) if

• s1 = s2 and q1 = q2;

• for all relevant x ∈ X we have that ν1(x) and ν2(x)
agree on integral parts;

• for all relevant x, y ∈ X we have that
frac(ν1(x)) ≤ frac(ν1(y)) iff frac(ν2(x)) ≤ frac(ν2(y)).

Note that ∼ is an equivalence with finite index. The equiv-
alence classes of ∼ are called regions. Observe that states
in the same region have the same behavior with respect to
qualitative reachability. This is formalized in the following
lemma.

Lemma 3.9. Let R and T be regions and z, z′ ∈ R. Then
PM×A(z, T ) > 0 iff PM×A(z′, T ) > 0.

A proof of Lemma 3.9 can be found in [11]. Further, we
define a finite region graph GM×A = (V,E) where the set of
vertices V is the set of regions and for every pair of regions
R,R′ there is an edge (R,R′) ∈ E iff PM×A(z,R′) > 0 for
some z ∈ R (due to Lemma 3.9, the concrete choice of z is
irrelevant). For technical reasons, we assume that V contains
only regions reachable with positive probability in M×A.

3.3 Finishing the proof of Theorem 3.1
Our proof is divided into three parts. In the first part

we consider a general region graph which is not necessarily
strongly connected, and show that we can actually concen-
trate just on its BSCCs. In the second part we study a given
BSCC under the aperiodicity assumption. Finally, in the
last part we consider a general BSCC which may be peri-
odic. (The second part is included mainly for the sake of
readability.)

Non-strongly connected region graph
Let C1, . . . , Ck be the BSCCs of the region graph. The set Ri
consists of all runs σ ofM such that ξ(ω) visits (a configura-
tion in a region of) Ci, where ξ is the mapping of Lemma 3.8.
By applying the arguments of [1, 11], it follows that al-
most runs in M×A visit a configuration of a BSCC. By
Lemma 3.8, ξ preserves d and the probability PM(Ri) is
equal to the probability of visiting Ci in M×A. Further,
since the value of d does not depend on a finite prefix of a
run, we may safely assume thatM×A is initialized in Ci in
such a way that the initial distribution corresponds to the
conditional distribution of the first visit to Ci conditioned on
visiting Ci.



In a BSCC Ci, there may be some growing clocks that
are never reset. Since the values of growing clocks are just
constantly increasing, the product process never returns to
a state it has visited before. Therefore, there is no invariant
distribution. Observe that all runs initiated in Ci eventu-
ally reach a configuration where the values of all growing
clocks are larger than the maximal constant Bmax employed
in the guards of A. This means that Ci actually consists only
of regions where all growing clocks are irrelevant (see Sec-
tion 3.2.2), because Ci would not be strongly connected oth-
erwise. Hence, we can safely remove every growing clock x
from Ci, replacing all guards of the form x > c or x ≥ c with
true and all guards of the form x < c or x ≤ c with false.
So, from now on we assume that there are no growing clocks
in Ci.

Strongly connected & aperiodic region graph
In this part we consider a given BSCC Ci of the region
graph GM×A. This is equivalent to assuming that GM×A
is strongly connected and ΓM×A is equal to the union of
all regions of GM×A (recall that GM×A consists just of re-
gions reachable with positive probability in M×A). We
also assume that there are no growing clocks (see the previ-
ous part). Further, in this subsection we assume that GM×A
is aperiodic in the following sense.

Definition 3.10. A period p of the region graph GM×A
is the greatest common divisor of lengths of all cycles in
GM×A. The region graph GM×A is aperiodic if p = 1.

The key to proving Theorem 3.1 in the current restricted
setting is to show that the state space ofM×A is small (re-
call Definition 3.5) and then apply Theorem 3.6 (1) and (2)
to obtain the required characterization of the long-run be-
havior of M×A.

Proposition 3.11. Assume that GM×A is strongly con-
nected and aperiodic. Then there exist a region R, a measur-
able subset S ⊆ R, n ∈ N, b > 0, and a probability measure
κ such that κ(S) = 1 and for all measurable T ⊆ S and
z ∈ ΓM×A we have that PnM×A(z, T ) > b · κ(T ). In other
words, the set ΓM×A of all states of the GSSMC M×A is
(n, b, κ)-small.

Proof Sketch. We show that there exist z∗ ∈ ΓM×A,
n ∈ N, and γ > 0 such that for an arbitrary starting state z ∈
ΓM×A there is a path from z to z∗ of length exactly n that
is γ-wide in the sense that the waiting time of any transition
in the path can be changed by ±γ without ending up in a
different region in the end. The target set S then corresponds
to a“neighbourhood”of z∗ within the region of z∗. Any small
enough sub-neighbourhood of z∗ is visited by a set of runs
that follow the γ-wide path closely enough. The probability
of this set of runs then depends linearly on the size of the sub-
neighbourhood when measured by κ, where κ is essentially
the Lebesgue measure restricted to S.

So, it remains to find suitable z∗, n, and γ. For a
given starting state z ∈ ΓM×A, we construct a path of fixed
length n (independent of z) that always ends in the same
state z∗. Further, the path is γ-wide for some γ > 0 indepen-
dent of z. Technically, the path is obtained by concatenating
five sub-paths each of which has a fixed length independent
of z. These sub-paths are described in greater detail below.

In the first sub-path, we move to a δ-separated state for
some fixed δ > 0 independent of z. A state is δ-separated if
the fractional parts of all relevant clocks are approximately

equally distributed on the [0, 1] line segment (each two of
them have distance at least δ). We can easily build the first
sub-path so that it is δ-wide.

For the second sub-path, we first fix some region R1. Since
GM×A is strongly connected and aperiodic, there is a fixed n′

such that R1 is reachable from an arbitrary state of ΓM×A
in exactly n′ transitions. The second sub-path is chosen as a
(δ/n′)-wide path of length n′ that leads to a (δ/n′)-separated
state of R1 (we show that such a sub-path is guaranteed to
exist; intuitively, the reason why the separation and wideness
may decrease proportionally to n′ is that the fractional parts
of relevant clock may be forced to move closer and closer to
each other by the resets performed along the sub-path).

In the third sub-path, we squeeze the fractional parts of
all relevant clocks close to 0. We go through a fixed region
path R1 · · ·Rk (independent of z) so that in each step we
shift the time by an integral value minus a small constant c
(note that the fractional parts of clocks reset during this
path have fixed relative distances). Thus, we reach a state
z′k that is “almost fixed” in the sense that the values of all
relevant clocks in z′k are the same for every starting state z.
Note that the third sub-path is c-wide. At this point, we
should note that if we defined the product process somewhat
differently by identifying all states differing only in the values
of irrelevant clocks (which does not lead to any technical
complications), we would be done, i.e., we could put z∗ = z′k.
We have neglected this possibility mainly for presentation
reasons. So, we need two more sub-paths to fix the values of
irrelevant clocks.

In the fourth sub-path, we act similarly as in the first
sub-path and prepare ourselves for the final sub-path. We
reach a δ-separated state that is almost equal to a fixed state
z` ∈ R`. Again, we do it by a δ-wide path of a fixed length.

In the fifth sub-path, we follow a fixed region path
R` · · ·R`+m such that each clock not relevant in R` is reset
along this path, and hence we reach a fixed state z∗ ∈ R`+m.
Here we use our assumption that every clock can be reset to
zero (i.e., there are no growing clocks).

Now we may finish the proof of Theorem 3.1. By The-
orem 3.6 (1), there is a unique invariant distribution π on
ΓM×A. For every q ∈ Q, we denote by Aq the set of all
states of M×A of the form (s, q, ν) ∈ ΓM×A. By Theo-
rem 3.6 (2), for almost all runs σ of M×A we have that
d(σ) is well-defined and dq(σ) =

∑
π(Aq). By Lemma 3.8,

we obtain the same for almost all runs of M.

Strongly connected & periodic region graph
Now we consider a general BSCC Ci of the region graph
GM×A. Technically, we adopt the same setup as the previ-
ous part but remove the aperiodicity condition. That is, we
assume that GM×A is strongly connected, ΓM×A is equal to
the union of all regions of GM×A, and there are no growing
clocks.

Let p be the period of GM×A. In this case, M×A is
not necessarily small in the sense of Definition 3.5. By em-
ploying standard methods for periodic Markov chains, we
decompose M×A into p stochastic processes Φ0, . . . ,Φp−1

where each Φk makes steps corresponding to p steps of the
original process M×A (except for the first step which cor-
responds just to k steps of M×A). Each Φk is aperiodic
and hence small (this follows by slightly generalizing the ar-
guments of the previous part; see Proposition 3.13). Thus,
we can apply Theorem 3.6 to each Φk separately and express
the frequency of visits to q in Φk in terms of a unique invari-



ant distribution πk for Φk. Finally, we obtain the frequency
of visits to q in M×A as an average of the corresponding
frequencies in Φk.

Let us start by decomposing the set of nodes V of GM×A
into p classes that constitute a cyclic structure (see e.g. [12,
Theorem 4.1]).

Lemma 3.12. There are disjoint sets V0, . . . , Vp−1 ⊆ V
such that V =

⋃p−1
k=0 Vk and for all u, v ∈ V we have that

(u, v) ∈ E iff there is k ∈ {0, . . . , p − 1} satisfying u ∈ Vk
and v ∈ Vj where j = (k + 1) mod p.

For each k ∈ {0, . . . , p− 1} we construct a GSSMC Φk with
state space ΓkM×A =

⋃
R∈Vk

R, a transition kernel P p(·, ·)
restricted to ΓkM×A, and an initial probability measure µk
defined by µk(A) =

∫
z∈ΓM×A

µ(dz) · P k(z,A). For each k,

we define the discrete frequency dkq of visits q in the process

Φk. Then we show that if dk is well-defined in Φk, we can
express the frequency dq in M×A.

Note that for every run z0 z1 · · · of M×A, the
word zk zp+k z2p+k is a run of Φk. For a run σ =
(s0, q0, ν0) (s1, q1, ν1) · · · , k ∈ {0, . . . , p − 1}, and a location
q ∈ Q, let define 1i,kq (σ) to be either 1 or 0 depending on
whether qip+k = q or not, respectively. Further, we put

dkq (σ) = lim sup
n→∞

∑n
i=1 1i,kq (σ)

n

Assuming that each dk is well-defined, for almost all runs σ
of M×A we have the following:

dq(σ) = lim
n→∞

∑n
i=1 1iq(σ)

n
= lim

n→∞

∑n
i=1

∑p−1
k=0 1i,kq (σ)

np

=
1

p

p−1∑
k=0

lim
n→∞

∑n
i=1 1i,kq (σ)

n
=

1

p

p−1∑
k=0

dkq (σ)

So, it suffices to concentrate on dkq . The following proposi-
tion is a generalization of Proposition 3.11 to periodic pro-
cesses.

Proposition 3.13. Assume that GM×A is strongly con-
nected and has a period p. For every k ∈ {0, . . . , p − 1}
there exist a region Rk ∈ Vk, a measurable Sk ⊂ Rk,
nk ∈ N, bk > 0, and a probability measure κk such that
κk(Sk) = 1 and for every measurable T ⊆ Sk and z ∈ ΓkM×A
we have P

nk·p
M×A(z, T ) > bk · κk(T ). In other words, Φk is

(nk, bk, κk)-small.

By Theorem 3.6 (1), for every k ∈ {0, . . . , p − 1}, there is
a unique invariant distribution πk on ΓM×A for the process
Φk. By Theorem 3.6 (2), each dk is well-defined and for
almost all runs σ we have that dkq (σ) = πk(Aq). Thus, we
obtain

dq(σ) =
1

p

p−1∑
k=0

πk(Aq)

4. APPROXIMATING DTA MEASURES
In this section we show how to approximate the DTA mea-

sures for SMPs using the m-step transition kernel PmM×A of
M×A. The procedure for computing PmM×A up to a suffi-
cient precision is taken as a“black box”part of the algorithm,
we concentrate just on developing generic bounds on m that
are sufficient to achieve the required precision.

For simplicity, we assume that the initial distribution α0

ofM assigns 1 to some s0 ∈ S (all of the results presented in

this section can easily be generalized to an arbitrary initial
distribution). The initial state in M×A is z0 = (s0, q0,0).

As we already noted in the previous section, the constant k
of Theorem 3.1 is the number of BSCCs of GM×A. For
the rest of this section, we fix some 1 ≤ j ≤ k, and write
just C, R and D instead of Cj , Rj and Dj , respectively.
We slightly abuse our notation by using C to denote also
the set of configurations that belong to some region of C
(particularly in expressions such as PM×A(z, C)).

The probability PM(R) is equal to the probability of vis-
iting C in M×A. Observe that

PM(R) = lim
i→∞

P iM×A(z0, C)

Let us analyze the speed of this approximation. First, we
need to introduce several parameters. Let pmin be the small-
est transition probability in M, and D(M) the set of delay
densities used inM, i.e., D(M) = {D(s, s′) | s, s′ ∈ S}. Let
|V | be the number of vertices (regions) of GM×A. Due to
our assumptions imposed on delay densities, there is a fixed
bound cD > 0 such that, for all f ∈ D(M) and x ∈ [0, Bmax],
either f(x) > cD or f(x) = 0. Further,

∫∞
Bmax

f(x)dx is either
larger than cD or equal to 0.

Theorem 4.1. For every i ∈ N we have that

PM(R)− P iM×A(z0, C) ≤
(

1−
(pmin · cD

c

)c)bi/cc
where c = 4 · |V |.

Proof Sketch. We denote by B the union of all regions
that belong to BSCCs of GM×A. We show that for c = 4·|V |
there is a lower bound pbound = (pmin · cD · 1/c)c on the
probability of reaching B in at most c steps from any state
z ∈ ΓM×A. Note that then the probability of not hitting B
after i = m · c steps is at most (1− pbound)m. However, this
means that P iM×A(z, C) cannot differ from the probability
of reaching C (and thus also from PM(R)) by more than
(1−pbound)m because C ⊆ B and the probability of reaching
C from B r C is 0.

The bound pbound is provided by arguments similar to the
proof of Proposition 3.11. From any state z we build a δ-
wide path to a state in B that has length bounded by 4 · |V |
such that δ = pmin · cD · 1/c. The paths that follow this δ-
wide path closely enough (hence, reach B) have probability
pbound .

Now let us concentrate on approximating the tuple D.
This can be done by considering just the BSCC C. Similarly
as in Section 3, from now on we assume that C is the set of
nodes of GM×A (i.e., GM×A is strongly-connected) and that
ΓM×A is equal to the union of all regions of C.

As in Section 3, we start with the aperiodic case. Then,
Theorem 3.6 (3.) implies that each Dq can be approximated
using P iM×A(u,Aq) where u is an arbitrary state of ΓM×A
and Aq is the set of all states ofM×A of the form (s, q, ν).
More precisely, we obtain the following:

Theorem 4.2. Assume that GM×A is strongly connected
and aperiodic. Then for all i ∈ N, u ∈ ΓM×A, and q ∈ Q∣∣∣Dq − P iM×A(u,Aq)

∣∣∣ ≤ (
1−

(pmin · cD
r

)r)bi/rc
where r = b|V |4 ln |V |c.

Proof. From the proof of Proposition 3.13 (for details
see [10]), we obtain that ΓM×A is (m, ε, κ)-small with m ≤ r
and ε = ( pmincD

r
)r, and the result follows from Theo-

rem 3.6 (3.).



Now let us consider the general (periodic) case. We adopt
the same notation as in Section 3, i.e., the period of GM×A is
denoted by p, the decomposition of the set V by V0, . . . , Vp−1

(see Lemma 3.12), and ΓkM×A denotes the set
⋃
R∈Vk

R for

every k ∈ {0, . . . , p− 1}.

Theorem 4.3. For every i ∈ N we have that∣∣∣∣∣Dq − 1

p
·
p−1∑
k=0

P i·pM×A(uk, Aq)

∣∣∣∣∣ ≤ (
1−

(pmin · cD
r

)r)bi/rc
where uk ∈ ΓkM×A and r = b|V |4 ln |V |c.

Proof. Due to the results of Section 3 we have that
Dq = 1

p
·
∑p−1
k=0 πk(Aq), where πk is the invariant measure for

the k-th aperiodic decomposition Φk of the product process
M×A (i.e. πk is a measure over ΓkM×A). From the proof

of Proposition 3.13 (for details see [10]), ΓkM×A is (m, ε, κ)-
small with m ≤ r and ε = ( pmincD

r
)r, and the result follows

from Theorem 3.6 (3.) applied to each ΓkM×A separately.

5. CONCLUSIONS
We have shown that DTA measures over semi-Markov pro-

cesses are well-defined for almost all runs and assume only
finitely many values with positive probability. We also indi-
cated how to approximate DTA measures and the associated
probabilities up to an arbitrarily small given precision.

Our approximation algorithm is quite naive and there is
a lot of space for further improvement. An interesting open
question is whether one can design more efficient algorithms
with low complexity in the size of SMP (the size of DTA
specifications should stay relatively small in most applica-
tions, and hence the (inevitable) exponential blowup in the
size of DTA is actually not so problematic).

Another interesting question is whether the results pre-
sented in this paper can be extended to more general stochas-
tic models such as generalized semi-Markov processes.
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