
CESNET technical report number 4/2004

How to Formalize FPGA Hardware Design 1

Jan Holeček, Tomáš Kratochvíla, Vojtěch Řehák,
David Šafránek, and Pavel Šimeček

October 6, 2004

1 Abstract

In this report, a formal view of an FPGA hardware design is presented. An
approach of how elementary FPGA design entities can be modeled in terms of
Kripke structures is presented here. The report is also focused on capturing the
problems of modeling synchronous parts of hardware design together with its
asynchronous parts.

2 Introduction

In formal verification, abstraction plays a crucial role due to the state explosion

problem [Bar02]. Abstraction is related mostly to simplification of specification
of complex system behavior. The most crucial fact concerning abstraction is
that of ensuring the abstraction to be correct and still containing the critical
parts of the system under verification.

In the following sections, ways of how to abstract away from complex physical
properties of an FPGA hardware design [FPGA] are discussed. We focus on
the approach of modeling basic elements of the FPGA-based hardware design
in the form of a Kripke structure [MC]. Moreover, the problems of capturing
both synchronous and asynchronous parts of a hardware design together in
one model are also solved.

3 Principal Entities of Hardware Design

The logical structure of a typical hardware design specified using the state-of-
the-art HDL languages such as VHDL [VHDL] or Verilog [Ver] is modular. It
is composed from small units (entities) interconnected together by wires along

1This work is supported by the FP5 project No. IST-2001-32603, the CESNET activity Pro-
grammable hardware, and the GACR grant No. 201/03/0509.

which events representing changes of logical values flow. Each entity has an
interface which is given by a set of input signals and output signals. Events
occurring in input signals control the behavior of the entity. Values of output
signals are combined from values of input signals with respect to the current
state of the entity.

Following the physical aspects of hardware, changes of values of signals occur
with some infinitesimal delay, so called delta delay [VHDL]. We have to point
out that we abstract from this delay whenever it does not affect the properties
we verify. We call this kind of abstraction the zero delay abstraction. This
abstraction relies on the same idea as the synchronous hypothesis known from
synchronous languages [Esterel]. As this abstraction is very strict and can hide
some very critical aspects of hardware design, we will discuss it in details later
on in this report.

From the behavioral point of view, we distinguish two basic elements of hardware
design – combinational logic elements (and-gates, or-gates,...) and sequential

logic elements (latches and flip-flops). Values of signals in combinational logic
elements can be sensed only in the moment in which they occur. In particular,
the combinational logic elements instantaneously transform values from input
signals to values of output signals. In contrary, the purpose of a sequential logic
element is to save a value of a signal over time. We call this kind of behavior
registered behavior with respect to the fact that the sequential logic is composed
from registers and other memory elements.

The crucial observation of the registered behavior is that an assignment of
a value to a registered signal is always put in the context of a conditional
specification. In other words, assignments to registered signals are guarded. If a
particular guarding condition does not hold, the value of the relevant registered
signal remains the same. This conservative behavior takes its place here even if
the value of the input signal, which has to be stored, has been possibly changed.
Moreover, assigning to a registered signal may be controlled also by events
occurring in some clock signal. Details of this behavior will be discussed later.

Here we would like to give examples of two most basic sequential logic elements
– a latch and a flip-flop circuits. We focus on highlighting differences in behavior
of these circuits. In Figure 1 there is an example of a level sensitive latch. The
VHDL process statement construction in this figure is the key part of definition
of the latches behavior. The circuit has two input signals – the data signal
in and the signal gate. There is also one output signal out. The circuit is
sensitive on changes occurring in both its input signals. The behavior is such
that whenever gate has high value then the output out changes asynchronously

(instantaneously) with any change of the signal in. In all situations in which
gate is low, out is constant and retains its current value. As the most significant
property, we highlight the asynchrony of the latch behavior. In other words, the

CESNET technical report number 4/2004 2

signal gate acts as a gate guarding a direct connection between the signal in
and the signal out. A sample timing diagram is depicted in the right part of the
figure.

process (gate, in)

 if gate = ’1’ then

 end if;
end process;

 out <= in;

 begin

in

out

gate

Figure 1: Latch

Another basic sequential logic elements are flip-flops. Their behavior is similar
to that of latches with one crucial difference. Unlike latches, a flip-flop is sensitive
only on the clock signal. Assigning a value to a flip-flop is synchronous with
ticks of the clock. An example of an edge sensitive flip-flop is in Figure 2.

The expression of the if-statement requires not only clk to be high, but also the
rising edge in that signal. The output out signal will be updated to the value of
in just only in the moment when clk turns from low to high. Corresponding
timing diagram visualizing a typical flip-flop signal flow is depicted in Figure 2.

clk

in

process (clk)

 if clk’event and clk = ’1’ then

 end if;
end process;

 begin

 out <= in;

out

Figure 2: Flip-Flop

With respect to comparison of aspects of the circuits described above we dis-
tinguish two kinds of behavior of registered signals – the synchronous and the
asynchronous behavior. In the following two examples we show how the syn-

chronous and the asynchronous behavior can be combined. For the first example
(Figure 3) we use a flip-flop register with an asynchronous reset. In this case,
the signal out is reset to low value whenever the reset signal turns to high.
This behavior is absolutely independent of the clk signal. With respect to the
in signal the circuit behaves as a flip-flop.

CESNET technical report number 4/2004 3

process (clk, reset)

 if reset = ’1’ then

 elsif clk’event and clk = ’1’ then
 out <= in;
 end if;
end process;

 out <= ’0’;

 begin clk

reset

out

Figure 3: Flip-Flop with an Asynchronous Reset

In Figure 4 we present the second example, a flip-flop register with a synchronous
reset. In this case, the out signal is reset synchronously with the clock. Note
that the reset take its effect just with the raising edge of the clk signal.

process (clk)

 if clk’event and clk = ’1’ then

 out <= ’0’;
 else

 if reset = ’1’ then

 begin

end process;
 end if;
 end if;
 out <= in;

clk

reset

out

Figure 4: Flip-Flop with a Synchronous Reset

In the previous paragraphs we have mentioned that the zero delay abstraction
has to be done carefully in some cases; the following example of Figure 5
demonstrates such a case.

There are three flip-flop registers (FF0, FF1, and FF2) with synchronous gates.
All of them have the same structure. In their interfaces there are input signals
in, ce, and the registered output signal out. Each signal ce performs the
synchronous gate and guards synchronous change of the output signal out to
the actual value of the in signal. In the register FF0, there are both signals ce
and in constantly set to high value.

Hence, the gate is still opened and (each) rising edge of clock signal sets the
output signal out to high signal too. The input ce of the register FF1 is connected
to the output of FF0 and so the gate of FF1 is just opened in the first rising edge
of the clock. That is the place to be careful. As there is a short delay in the
signal transfer in the real hardware, we have to keep on mind that for the first
rising edge of the clock the gate of FF1 is closed. Similarly, at the second rising

CESNET technical report number 4/2004 4

 end if;
end process;

 begin
process (clk)

 if clk’event and clk = ’1’ then
 if ce = ’1’ then
 out <= in;
 end if;

clk

ce

in

out

FF

clk

ce

in

out

clk

ce

in

out

clk

ce

in

out

CLK

q0 = FF0.out = FF1.ce

q1 = FF1.out = FF2.in

OUT = FF2.out

CLK

q0 = FF0.out = FF1.ce

q1 = FF1.out = FF2.in

OUT = FF2.out

CLK

HIGH

OUT
q0 q1

FF0 FF1 FF2

Figure 5: Zero Delay Abstraction

CESNET technical report number 4/2004 5

edge of the clock the input signal in of the register FF2 is delayed and so the
output out is once more set to the low signal at the second rising edge of the
clock.

To sum up, whenever the setting to the registered signal is controlled by an edge
of a signal, the input values taken in to account during this setting are those
immediately before the controlling signal edge.

4 A Formal View of Basic Hardware Design Entities

For the model checking approach we need to specify the model formally as a
finite state transition system where states represent current signal values and
transitions represent their discrete changes. For this purpose we use Cadence

SMV language [SMV] which allows us to encode such a model. Moreover,
using the SMV tool we can prove the properties we claim about the model. For
specification of such properties we use a temporal logic. In this section we
describe how this modeling is done.

signal1

signal2

signal3

signal4

0 0 0

0

0

0

0

0 0 0

1

1 1 1 1

11

1

1

11

1

1

0

state1 state2 state3 state4 state5 state6

Figure 6: Timing Diagrams and SMV trace

Each state of a transition system can be expressed as a vector of current values
of signals in a particular discrete point of time. In the timing diagram depicted
in Figure 6 states are represented as columns of 0s and 1s. Assuming the zero
delay abstraction, two-value domain is used for modeling of signal values (high
– 1 and low – 0). Each transition models instantaneous change of some
signals with respect to their current values contained in the source state. The
target state then contains the new values of the signals being changed.

Now recall the two kinds of logic elements we have defined in the previous

CESNET technical report number 4/2004 6

section, the combinational logic and the sequential logic. In the following para-
graphs we focus on formal representation of both of them.

The combinational logic is captured by the notion of states. Relations between
signal values in a particular state originate just a model of some combinational
logic elements. As the delta delay has no influence on behavior of combinational
logic, the zero delay abstraction fits here well.

More difficult is to capture the behavior of sequential logic elements. Changes
of registered signals are modeled by transitions. A change of the value of a
specific registered signal is implied by some values in the preceding state.

 if (next(clk) = 1)
 next(out) <= next(in);

do {

 }

0

0

00 0

000

001 1 1

1 111

1 1 1 1

clk

out

in

010

0 0 0

000

1 1

1

Figure 7: Latch in Cadence SMV

In the case of a latch, any change of the out signal is guarded by a simple
condition which requires the clock signal to be high. The transition system
which models the behavior of the latch is encoded in SMV and showed in the
left-hand part of Figure 7. An example of a trace of this transition system is
depicted on the right-hand side of the figure. Note that any change of any signal,
even if it occurs asynchronously with the clock, defines a transition from the
current state to a new state. In every state in which clk is 1, the signal out
has the same value as the signal in; otherwise it keeps itself previous value.
This models the asynchronous behavior of the latch. Due to this asynchrony,
zero delay abstraction does not violate soundness of the model.

do {

 }

 if (clk = 0 & next(clk) = 1)
 next(out) <= in;

0

0

0 0

0

001 1 1

1 111

1 1 1 1

clk

out

in

1

1

00

0

0 0 01

1 1 1

111

Figure 8: Flip-Flop in Cadence SMV

CESNET technical report number 4/2004 7

In contrary to the latch case, the modeling of a flip-flop has to follow results of
the ”careful construction” at the end of the previous section. Hence, whenever
the current value of clock signal is zero and the next value is one, the next value
of the output signal is set to the current value of input. In Figure 8 there is a
SMV code of a flip-flop and an example of its trace.

 if asyn_reset = ’1’ then
 out <= ’0’;
 elsif clk’event and clk = ’1’ then
 if syn_gate = ’1’ then
 out <= in;
 end if;
 end if;
end process;

process (clk, asyn_reset)

 if (next(asyn_reset) = 1)
 next(out) := 0;
 else if (clk = 0 & next(clk) = 1)
 if (syn_gate = 1)
 next(out) := in;
 }

do {

out

clk

asyn_reset

sync_gate

in

NEXT CURRENT NEXT CURRENT NEXT

clk

in

out

asyn_reset

syn_gate

0

1

0

1

1

Figure 9: Register with an asynchronous reset and a synchronous gate

The Figure 9 illustrates an example where both synchronous and asynchronous
approaches are combined.

5 Two and more clocks

In this section, a situation where the zero-delay abstraction cannot be used is
discussed. In VHDL, whenever no delay time is specified for a signal assignment
statement, a so called delta-delay is assumed. The delta delay represents an

CESNET technical report number 4/2004 8

infinitesimal delay needed for signal distribution (as has been mentioned in the
Section 2). Besides of the light speed, the main delay contribution is caused
by combinational logic between registers. The more logical combinators are
sequentially connected, the longer the delay is. It is necessary to ensure the
longest delay between any two registers to be shorter than one period of the
clock signal which controls the registers. To solve this problem it is sufficient
to find the longest sequence of combinational logic (with respect to the caused
delay) and compare its delay with the period of the relevant clock signal. In
the case of single clock HW design, this problem is easy to solve. Zero-delay
abstraction can be used here without lost of generality.

In the case of two or more clocks in the design, the situation is more complicated.
The problem is that there could be some registers used by two (or more)
clocks, hence the value of such a register could be read at the same time when
another part of the design (i.e. controlled by different clock) might be writing
into this register. The situation is depicted in the Figure 10 showing two counter
counter1 and counter2 and their difference signal diff2. The counter1

register is driven by the clock clk1 and the registers counter2 and diff2 are
driven by the clock clk2. The timing diagram illustrates the situation when
the sub-design, which is responsible for counting of the new value of the diff2
register, is reading from counter1 just in the moment when its value is not
stabilized yet.

clk1

counter1

clk2

counter2

diff2

0

01111111

1

1

10000000

0

00011001 ????????

10011000

Figure 10: Two counters controlled by two different clocks. The difference
signal diff2 is driven by clock clk2.

To model this behavior of the design precisely, we cannot abstract away from
the delta-delay. Our approach how to capture this problem is based on the
idea of adding one ”chaotic” state to the model of the register. In this state, the
register returns an undefined value. In the next state, the register is stabilized

CESNET technical report number 4/2004 9

at the exact value. By that way, an instant of indeterminacy of the signal value
is modeled. Thus, the model representing the asynchronous part of the design
can then deal with this situation. It can be seen in Figure 11 how such a model
looks like for the case of the example given above.

clk1

counter1

clk2

counter2

diff2

0

01111111

0

10011000

00011001 00011001

10011000

0

????????

1 1

1

10000000

10011000

????????

1

10000000

1

10011000

????????

Figure 11: An approach to modeling two counters controlled by two different
clocks.

To ensure the correctness of the presented approach to modeling of designs
with more than one clocks, we have to evaluate consequences of addition of the
”chaotic” state to the synchronous subpart of the design. First of all it can be
easily seen that the earliest moment when the rising edge of the clock can arise
is the next state. With respect to this fact we can argue that the model of the
synchronous subpart of the design is untouched by this change. In Figure 12
there is a timing diagram of the common behavior of the synchronous subpart
of the design.

0

01111111 ????????

1 1

10000000

0

????????

0

10000001

clk1

counter1

Figure 12: Synchronous part of a HW design.

6 Conclusion

In this report, we have determined the basic elements of hardware design and
we have presented an approach how these entities can be modeled in terms
of Kripke structures. We have focused on the problematics of modeling syn-
chronous parts of the hardware design together with asynchronous parts. We

CESNET technical report number 4/2004 10

have successfully applied the techniques described here in formal verification
of the Liberouter hardware design, especially in the verification of the asyn-
chronous FIFO unit [LibWWW].

References

[Bar02] Barnat J., Brázdil T., Krčál P., Řehák V., and Šafránek D.: Model

checking in IPv6 Hardware Router Design.

CESNET technical report 8/2002.

[FPGA] Xilinx, Inc.: DS031-1 Virtex-II 1.5V Field Programmable Gate Arrays.

October 2001.

[LibWWW] Liberouter: Liberouter Project WWW Pages.

http://www.liberouter.org/

[SMV] Cadence SMV: Cadence SMV WWW Pages.

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

[Ver] Daniel C. Hyde: Handbook on Verilog HDL.

www.eg.bucknell.edu/~cs320/1995-fall/manual.pdf

[VHDL] Ashenden Peter J.: The VHDL Cookbook.

http://tech-www.informatik.uni-hamburg.de/

vhdl/doc/cookbook/VHDL-Cookbook.pdf

[MC] Edmund M. Clarke, Orna Grumberg and Doron A. Peled: Model

Checking.

Cambridge : MIT Press, 1999.

[Esterel] Gerard Berry: The Foundations of Esterel.

Cambridge : MIT Press, 1998.

CESNET technical report number 4/2004 11

