
Verifying VHDL Designs with Multiple Clocks in SMV⋆

A. Smrčka1, V. Řehák2, T. Vojnar1, D. Šafránek2, P. Matoušek1, and Z. Řehák2

1 FIT BUT, Brno, Czech Republic

{matousp,smrcka,vojnar}@fit.vutbr.cz
2 FI MU, Brno, Czech Republic

{xsafran1,xrehak,xrehak5}@fi.muni.cz

Abstract. The paper considers the problem of model checking real-life VHDL-

based hardware designs via their automated transformation to a model verifiable

using the SMV model checker. In particular, model checking of asynchronous

designs, i.e., designs driven by multiple clocks, is discussed. Two original ap-

proaches to compiling asynchronous VHDL designs to the SMV language such

that errors possibly arising from the asynchronicity are preserved are proposed.

The paper also presents results of experiments with using the proposed methods

for verification of several real-life asynchronous components of an FPGA-based

router being developed within the Liberouter project.

1 Introduction

The most recent verification technologies for design of hard-wired ASIC-based hard-

ware or FPGA firmware offer highly developed industrial verification tools which give

hardware designers a good support to minimise errors in the design of hardware synthe-

sised from high-level descriptions usually written in languages like VHDL or Verilog.

Such tools can be basically divided into two groups—simulation and testing, and for-

mal verification tools. Tools of the first group are focused on simulation of gate-level

signal behaviour and are commonly used, according to our experience, by hardware

designers as a necessary support of hardware development. Tools of the second group

augment the non-exhaustive simulation approach by model checking (formal assertion-

based verification) of entire Register Transfer Level (RTL) hardware description [13, 4],

or checking of equivalence between an RTL description and the respective behavioural

description [5, 2]. However, because of limitations caused by the state explosion prob-

lem, these tools still lack the property of being usable by verification non-experts. In the

case of, otherwise highly automated, model checking tools, the reason is that intricate

abstraction methods are needed to fight the state explosion. Especially, such abstraction

methods must be employed carefully to avoid any critical underapproximation poten-

tially introduced in the model being verified.

The most fundamental abstraction used in verification of hardware is the abstrac-

tion of the physical latency of a signal value change, the so-called zero-delay. Our re-

cent experience gained during verification of an FPGA-based design in the Liberouter

⋆ This research has been supported by the CESNET activity “Programmable hardware”. Zdeněk

Řehák has been partially supported by the Academy of Sciences of the Czech Republic grant

No. 1ET408050503. Vojtěch Řehák has been partially supported by the research centre “In-

stitute for Theoretical Computer Science (ITI)”, project No. 1M0021620808. David Šafránek

has been supported by the Grant Agency of Czech republic (GA CR) grant No. 201/06/1338,

Aleš Smrčka and Tomáš Vojnar have been supported by the GA CR No. 102/04/0780, and Petr

Matoušek by the grant GA CR No. 102/05/0723.

project [10] shows that such abstraction cannot be used for verification of some typical

parts of common FPGA hardware designs. More specifically, the zero-delay abstraction

is inadequate for designs controlled by clocks of two or more mutually asynchronous

clock domains. Especially, functional verification of clock domain crossing (CDC) sig-

nals behaviour requires a special care. At the same time, even though hardware design-

ers typically use some standard constructions to deal with CDC, they may be omitted by

mistake or a wrong mechanism wrt. the assumptions used in the rest of the design may

be used, and so there is a real need to check for possible errors related to asynchronicity.

Moreover, errors introduced due to an unexpected behaviour of CDC signals cannot be

easily found by standard simulation and testing tools.

The Liberouter project is aimed at the development of a high-speed network mon-

itoring and routing hardware [8, 7] in the form of add-on cards for standard PCs. The

design of these cards is based on FPGA technology. We have been employing various

formal methods for verification of the design since the beginning of the project [12, 9].

In this paper, we generalise our approach [6] of a direct temporal logic-based formal

verification of VHDL hardware description using Cadence SMV [13] for the case of

asynchronous hardware. Moreover, although we present our approach in a framework

specific for our project, we believe that it offers a general idea of how verification of

asynchronous hardware can be done even in different settings.

1.1 Related Work

There are simulation and testing approaches [1] which deal with transient behaviour

of designs. However, all these methods are incomplete because of the non-exhaustive

nature of design behaviour analysis.

The approach of [11] requires the design with CDC signals to be transformed into

a design extended with additional combinational logic which models the potential mis-

behaviour of CDC signals. Assertion-based verification is then applied to the resulting

design. The number of combinational logic elements added in this transformation in-

creases exponentially with the number of asynchronous clocks, thus the state explosion

of the resulting design complicates the verification. Moreover, there is no simplification

in the sense of automated detection of those parts of the design for which the discussed

transformation is necessary for a correct verification. Detection of CDC signals is re-

alised at the verification phase itself, hence the state explosion cannot be overcome

anyway in this method. Moreover, there are no arguments showing the generality of

the approach. The approach is illustrated on a simple example only and no discussion

of its efficiency is given.

Our approach offers a solution based on an extension of every critical gate to incor-

porate the delayed behaviour. Additionally, we also introduce an approximate solution

which suffers much less from the state explosion. In contrast to the work mentioned

in the previous paragraph, we focus on generality of our approach. Moreover, we also

evaluate the efficiency of our approach on a real case study.

1.2 Our Contribution

In this paper, the problem of the above mentioned inadequacy of the zero-delay abstrac-

tion for multi-clock designs is carefully discussed and a general verification solution for

dealing with such designs is established. The proposed solution comprises a detection of

the relevant parts of the design for which the zero-delay abstraction cannot be employed

and furthermore defines a way of how such design parts are transformed and verified

using Cadence SMV. Besides the accurate solution, we also propose a solution based on

a safe overapproximation of the reachable states. According to our practical experience,

this solution is precise enough to handle various non-trivial real-life case studies while

offering much better performance results. The proposed methods are demonstrated and

compared on a real verification case study taken from the Liberouter project.

To the best of our knowledge, in the literature there is currently no general fully au-

tomated model checking solution for formal verification of designs controlled by asyn-

chronous clocks. Moreover, our approach employs the Cadence SMV model checking

tool which supports temporal logics (LTL, CTL). These logics are more expressive then

traditional assertion languages used in many industrial verification tools.

The structure of the paper is the following. Section 2 brings a brief introduction

to digital elements in digital hardware design, explains the case of situations when the

synchronisation problem occurs, and presents a way of formalising elementary hard-

ware entities in SMV. Section 3 describes precisely our methods how to find critical

signal paths in the design and how to verify the system with respect to the considered

properties. Section 4 illustrates our solution on a real example.

2 Formalising a Hardware Design

In this section, we shortly introduce elementary digital circuits and present our approach

to their formalisation in SMV. We are mainly concerned about precise modelling which

considers timing delays and unstable behaviour of the circuits. The issue is the most

critical for design and verification of synchronous digital circuits. In order to prove that

the design is correct using verification techniques, we have to (1) build a formal model

of the circuit that reflects the examined properties including the timing behaviour, and

(2) successfully verify the model using a model checker.

2.1 Preliminaries

In our work, we deal with logical circuits—discrete electronic circuits composed of ba-

sic entities like gates, flip-flops, and latches. A gate is a logical circuit with one or more

inputs that produces an output based on the current input values. The most well-known

are AND-, OR-, NOT-gates (or NAND-, NOR-gates) that are fundamental elements of

every logical circuit. A gate is usually called a combinational circuit, or a combinational

logic, as its output depends only on the current input combination [14].

Logical circuits that are able to store a value (they work like a register) are called

sequential logical circuits. An output of a sequential circuit depends not only on its

current inputs, but also on the past sequences of inputs. Formally, we can describe

the behaviour of a sequential logical circuit using a finite-state machine.

We distinguish two basic kinds of sequential logical circuits—latches and flip-flops.

A latch is a sequential circuit that continuously watches all of its inputs and changes its

outputs at any time, independently of a clock signal. A flip-flop is a sequential circuit

that normally samples its inputs and changes its outputs only at the instants determined

by a clock tick. Common sequential circuits are D-latch, S-R latch, J-K flip-flop, etc.

2.2 Transient Behaviour

When dealing with the transient behaviour, we have to take into account what happens

when the signal changes between two adjacent states, e.g., on a falling edge (the signal

changes from a low level to a high level), or on a rising edge (from a high level to a low

level). In real circuits, changes of a signal take a nonzero time. The amount of time that

the output of a logical circuit requires to change its state is called the transition time.

HIGH

LOW

IDEAL:

REAL:

VILmax

VIHmin

tr t f

(a)

VIN

VOUT

VIN

VOUT

tpHL tpLH

tpLHtpHL

(b)

Fig. 1. (a) Transition times, (b) propagation delays

Fig. 1(a) shows the rise time tr and the fall time t f of a signal in a logical circuit.

This time information indicates how long an output voltage takes to pass through the

“undefined” region between the LOW and HIGH levels of signal.

The initial part of a transition before reaching the value VILmax , resp. VIHmin
, is not in-

cluded in the rise- or fall-time value. Instead, it forms another parameter called a prop-

agation delay tp. The propagation delays tpHL and tpLH represent the amount of time

that it takes for a change of the input signal to produce a change of the output signal,

see Fig. 1(b). Finally, tpHL is the time between an input change and the corresponding

output change when the output is changing from HIGH to LOW, and tpLH is the time

between an input change and the output change when the output is changing from LOW

to HIGH (cf. Fig. 1(a).

2.3 Synchronisation between Two Clock Domains

The transient behaviour described above is usually not considered in an abstract model

obtained when a hardware design specified by VHDL is transformed into an input lan-

guage of a verification tool. We call this kind of abstraction the zero delay abstraction.

In general, omitting the transient behaviour in the abstract model can lead to incorrect

results. In this section, we explain the synchronisation problem that may cause the zero

delay abstraction to produce incorrect results in cases of asynchronous designs. In the

next section, we propose a precise way of modelling the transient behaviour.

If there is only one clock signal in the design, we do not need to care about propa-

gation delays and transition times. In such a case, the transient behaviour of any circuit

has no influence on the other parts of the design because every signal becomes stable

after the same period, and we may assure the period to be long enough for the signals

to stabilise—this issue is ensured by common hardware development tools. A synchro-

nisation problem occurs if two or more communicating circuits are controlled by dif-

ferent clocks. Fig. 2 demonstrates the synchronisation problem between two directly

connected gates X and Y. Gate X is controlled by clock C1, gate Y by C2, X has two

output signals A and B, B is a negated version of A. When clock C2 is enabled at time

terr, both signals A and B are in the process of changing. At this moment, their state is

C2

B

A

C1

A

B

C2C1

X Y

terr

Fig. 2. The synchronisation problem between two clock domains

undefined—both signals can be read out by gate Y either as 1 or 0 because their values

are not stable yet. This is the critical moment for the circuit behaviour and its modelling.

In our work, we propose a technique how to model this behaviour in order to verify

properties on a real-world design. In the analysis, we use a notion of a clock domain. A

clock domain is a part of the circuit. It is the maximal set of gates that are enabled by

the same clock signal. From the point of view of synchronisation, critical gates are the

gates on a signal path connecting different clock domains. A non-consistent behaviour

can appear while reading data transferred from gate X in domain D1 (enabled by signal

C1) at gate Y in domain D2 (controlled by signal C2), see Fig. 2.

To eliminate inconsistencies caused by the transient behaviour, designers typically

use Gray code, mux-synchronised signals, handshake synchronizers, or asynchronous

queues. Gray code is useful to guarantee a correct transfer of an integer variable whose

next value differs only by one digit from the previous one. The method of multiplexer

synchronised signals ensures that in one moment in time only one signal value may

change. Handshake synchronizers, asynchronous queues, and other techniques not men-

tioned in this paper are more general. Here, our concern is how to properly model the

transient behaviour in order to verify circuits where it appears.

2.4 Digital Circuits Design in VHDL and SMV

For the model checking approach, we need to specify the model formally as a finite state

transition system where states represent the current signal values and transitions repre-

sent their discrete changes. For this purpose, we use the Cadence SMV language [13]

which allows us to encode such a model. Moreover, using the SMV tool, we can prove

the properties of the circuits that we are interested in. For specification of such proper-

ties, we use a temporal logic. In this section, we describe how this modelling is done.

In particular, we demonstrate our technique of formalising a hardware design described

by VHDL. However, the approach is not dependent on a certain language and can easily

be adapted to other specification languages, e.g., VERILOG.

Each state of a transition system can be expressed as a vector of current values of

signals at a particular discrete point of time. In the timing diagram depicted in Fig. 3,

states are represented as columns of 0s and 1s denoting the LOW and the HIGH level

of signals (HIGH corresponds to 1 and LOW to 0). For elementary circuits controlled

by only one clock, we assume the zero delay abstraction to be used, which means ab-

stracting from the transient behaviour. Each transition (verification step) models the in-

stantaneous change of some signals with respect to their current values contained in the

source state. The target state then contains the new values of the signals being changed.

A combinational logic is captured directly by the notion of states. Relations between

signal values in a particular state specify a logical function of some combinational logic

elements. As the transition time has no influence on the behaviour of a combinational

logic, the zero delay abstraction fits here well. The modelling of sequential logic ele-

ments is more involved. In particular, a change of an output signal value in a sequential

circuit is modelled by a transition between states.

VHDL: SMV:

0

0

00 0

000

001 1 1

1 111

1 1 1 1out

in

010

0 0 0

000

1 1

1

 next(out) <= next(in);

do {

 }

process (gate, in)

 if gate = ’1’ then

 end if;
end process;

 out <= in;

 begin
 if (next(gate) = 1)

gate

Fig. 3. Latch in Cadence SMV

In the case of a latch, any change of the out signal is guarded by a simple condition

which requires the gate signal to have the HIGH level value. Encoding of a latch in

SMV is showed in Fig. 3. An example of a trace of the respective transition system is

depicted in the right-hand part of the figure. In every state in which gate is 1, the signal

out has the same value as the signal in; otherwise, it keeps its previous value. Note

that this behaviour is independent of any clock signal. Due to this asynchrony, the zero

delay abstraction does not violate soundness of the model.

process (clk)

begin

 if clk’event and

 clk=’1’ then

 out <= in;

 end if;

end process;

do {

 }

 if (clk = 0 & next(clk) = 1)
 next(out) <= in;

0

0

0 0

0

001 1 1

1 111

1 1 1 1

clk

out

in

1

1

00

0

0 0 01

1 1 1

111

VHDL: SMV:

Fig. 4. Flip-Flop in Cadence SMV

In contrary to the latch case, modelling of a flip-flop is more complicated. More

specifically, in the case of a flip-flop circuit, whenever the current value of the clock

signal is LOW and the next value is HIGH, the next value of the output signal is set to

the current value of input. In Fig. 4 there is an SMV encoding of this behaviour and an

example of its trace.

Above, we have shown how we encode elementary design entities in SMV. Below,

we describe our general approach of modelling compositions of these elementary en-

tities with correct treating of the transient behaviour whenever it cannot be abstracted.

3 Modelling Asynchronous Behaviour

In this section, we propose two ways of modelling asynchronous VHDL designs in

SMV which preserve errors possibly caused by the asynchronicity. In particular, we are

interested in preserving reachability of stable input and output values and state signals

combinations of the circuits. By stable signal values, we understand the values that are

obtained after a circuit is given a sufficient time to stabilise, i.e., values that one can

eventually observe when there is no change in clock signals. Moreover, the reasoning

can be generalised to preservation of sequences of stable signal values allowing one to

verify complex temporal properties.

An undesirable state can happen if a sequential gate reads an unstable signal value

and then it changes to a stable value. As we have already indicated, common VHDL

development tools (e.g., Leonardo [3]) check that signal paths within the same clock

domain are not too long wrt. the used clock frequency, and thus that the signals are

given sufficient time to stabilise. If the verified system has to be connected to systems

such that some input/output signal goes from one clock domain to another domain,

the entire combined system should be re-checked using the methods we propose here.

Thus, we ignore the possibility of obtaining unstable signal values within one clock

domain.

We further suppose that the only asynchronicity in the circuits we consider is due

to the clock signals. This corresponds to the assumption that the set and reset signals

which may also be used to control sequential circuits are all connected together (i.e.,

there is just one set and/or reset signal for the whole design).

Both of the approaches we propose are based on modifying the behaviour of the

so-called critical signal paths between two clock domains. In the first approach, we

modify every gate on a critical path to make its output undefined (arbitrarily zero or

one) for a single verification step whenever a change occurs. In the second approach,

we introduce a special component called a destabilizer at the end of every critical path.

This component produces an undefined output for a number of verification steps corre-

sponding to the accumulated delay of the critical path.

We argue that the first mentioned approach enables us to detect all the possible er-

roneous signal combinations as described above, and at the same time, no overapproxi-

mation is (in most usual practical cases) involved. However, there is a price to be payed

for this due to an increased number of state variables contributing to the state explosion

problem. On the other hand, the second approach is a safe overapproximation that may

work in a number of practically interesting situations in a much faster way than the first

approach, but it may sometimes raise false alarms. Note that we suffice with focusing

on only the critical paths as we suppose the design to be already checked by the above

mentioned common VHDL development tools which assure us that within a particular

clock domain, all the signals always stabilise before they are sensed by sequential gates.

Below, we first formalise the notion of critical paths and then explain both of the ap-

proaches we propose in detail.

3.1 Critical Signal Paths and Critical Gates

In order to precisely define the notion of critical gates, we view a particular VHDL

hardware design in an abstract way as a triple H = (S,C,G) where:

– S is a finite set of signals.

– C is a finite set of clock signals, C ∩ S = /0. In order to obtain a more regular de-

scription, we introduce a special clock signal ⊥ 6∈ C ∪ S that we associate with

combinational gates. We denote C⊥ = C∪{⊥}.

– G ⊆ C⊥ × 2S × 2S is a finite set of gates (combinational logic gates, flip-flops,

latches). A gate is represented as a tuple consisting of its clock signal (which is

⊥ for combinational gates), a set of input signals, and a set of output signals.

For a hardware design H = (S,C,G), a signal path π = 〈g1s1g2s2 . . .sn−1gn〉 of

length n > 1 is a connected sequence of gates and signals such that ∀ j ∈ {1, ...,n−

1} : g j = (c j, I j,O j) ∈ G∧ g j+1 = (c j+1, I j+1,O j+1) ∈ G∧ s j ∈ O j ∩ I j+1. We denote

Π(H) the set of all signal paths of H, and for a signal path π ∈ Π(H), we denote Γ(π)
the multiset of all the gates which appear in π and Σ(π) the set of all signals in π. For

a path π = 〈g1s1g2s2 . . . sn−1gn〉, we call γi(π) = g1 the input gate, γo(π) = gn the output

gate, σi(π) = s1 the input signal, and σo(π) = sn−1 the output signal.

We partition the set of gates G of a hardware design H = (S,C,G) into subsets called

clock domains that contain gates driven by the same clock signal. For c ∈C⊥, the clock

domain is Dc = G∩ ({c}×2S×2S).

The set Rc of gates critical wrt. a domain Dc, c ∈C, is the set of gates which occur

on signal paths leading to Dc and that are connected to the gates in Dc via combinational

gates only. Equivalently, for a domain Dc, critical gates are all the gates on the signal

paths that start by a sequential gate lying in a different clock domain (including this se-

quential gate) and lead via combinational gates to a sequential gate in Dc (excluding this

terminal gate). Formally, Rc = {g1 ∈ G\Dc | ∃n > 1 ∃s1, . . . ,sn−1 ∈ S ∃g2, . . . ,gn−1 ∈
D⊥ ∃gn ∈ Dc : 〈g1s1g2s2 . . . sn−1gn〉 ∈ Π(H)} for a hardware design H = (S,C,G).
The set R(H) of critical gates of H is then simply the union of all the gates critical

wrt. the particular domains of H, i.e., R(H) =
S

c∈C Rc.

Finally, a critical signal path of length n > 1 in a hardware design H = (S,C,G)
is a signal path ρ = 〈g1s1g2s2 . . .sn−1gn〉 ∈ Π(H) that consists of critical gates, i.e.,

∀i ∈ {1, ...,n− 1} : gi ∈ R(H), and goes from one clock domain to another one, i.e.,

g1 ∈ Dc1
,g2 . . .gn−1 ∈ D⊥,gn ∈ Dc2

,c1 6= c2,c1 6= ⊥,c2 6=⊥. We denote ρ(H) the set of

all critical signal paths in H.

3.2 Extending All Critical Gates

We now discuss in detail the approach when we extend the behaviour of every gate on

a critical path to make its output random whenever there is a change of the stable value

in its output. The fact that we make the output random stems from the reality where

a signal does not sharply change from 0 to 1 (or vice versa) but goes through some

rising (or falling) edge. When the signal is sensed by some sequential gate on such

an edge, one cannot predict its value. Note that when there is no change in the output,

no modification is necessary.

The basic principle of our transformation is the following. To model the impact of

rising and falling edges in the output of critical gates, we replace every output of every

critical gate by a new state signal—we call it a delayed output. The values of a delayed

output are given by the states of the finite automaton in Fig. 5(a). The arcs represent the

original (zero-delayed) output signal defined by a function f (i1, . . . , in) where i1, ..., in
are input signals of the gate. For example, when the delayed output is 0 and the original

output changes to 1, the automaton goes to R, and the delayed output becomes R (i.e.,

“rising”). Only then, provided the original output does not change, it transfers to 1.

Similarly, for a change of the original output from 1 to 0, the delayed output goes from

1 to F (“falling”) and then changes to 0.

As an example, let us consider an inverter (a NOT-gate with the function f (A) =¬A

where A is the only input signal) which is a critical gate. We extend this gate with

the delayed output as shown in the table in Fig. 5(c). In the table, Y ′ is the future value

of the delayed output. Note that a gate that was originally a combinational one becomes

a gate with a state now.

0 R

F 1

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 1
1 n

(a)

A Y = f (A)

0 1

1 0

(b)

A f (A) Y Y ′

0 1 0 R

0 1 R 1

0 1 1 1

0 1 F R

1 0 0 0

1 0 R F

1 0 1 F

1 0 F 0

(c)
Fig. 5. (a) The finite automaton implementing a delayed output with the rising and falling edges

of signals, (b) the transition table of the zero-delayed NOT-gate, (c) delayed extended NOT-gate

Further, as digital gates are designed to handle only 0 and 1 values, we model the R

and F values as a random choice between 0 and 1 in the final model (which we denote

as the so-called x-value in the following).

To continue with our example, suppose that the input of the inverter (NOT-gate)

is a signal controlled by a clock C1 and that both the input and the output are sensed

by some sequential gate controlled by a clock C2. When the gates are modelled as

zero-delayed, cf. Fig. 6(a), we will never see that the sequential gate can sense both

the signals as equal (which we may suppose to cause real erroneous situations). This

will become visible in our model as depicted in Fig. 6(b)—see x-values depicted as

crosses in the figure.

t_error t_error

C1

C2

10 0

00

0 0

0

0 0 0 0

0 0 0

0 0

0 0

1

1 1

1 1 1 1 1

1 1

1 1111111

11 1 11

C2

C1

a) b)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

1

1 1

1 1

1 1 1 1

1

1 1

1 1

1 1

111

1 1

A

f(A)

A

f(A)

1 10

Fig. 6. The input and output of the NOT-gate sensed as (a) zero-delayed and (b) delayed

A problem with the above extension of gates arises when there exist two paths

linking some sequential gates via combinational gates only such that one of them stays

within a single clock domain, the other one goes from one domain to a different one, and

the two paths intersect each other. More precisely, the problem arises when there exist

signal paths π1 = 〈g1,1s1,1 . . . s1,n1−1g1,n1
〉, π2 = 〈g2,1s2,1 . . . s2,n2−1g2,n2

〉 ∈ Π(H) of a

hardware design H = (S,C,G) for n1,n2 > 1 and some domains c1,c2,c3 ∈ C, c2 6= c3

such that g1,1,g1,n1
∈ Dc1

, g2,1 ∈ Dc2
, g2,n2

∈ Dc3
, ∀i ∈ {1,2} ∀ j ∈ {2, ...,ni−1} : gi, j ∈

D⊥, and Γ(π1)∩Γ(π2) 6= /0. In such a situation, we need to extend the gates in Γ(π1)∩
Γ(π2) for the path π2, but to keep their original function within π1. To achieve this,

before the above described extension, we pre-process the circuit by replacing every gate

g2,i = ({⊥}, I,O) ∈ Γ(π1)∩Γ(π2) within the path π2 by two gates g′2,i = ({⊥}, I,O \

σ(π2)) and g′′2,i = ({⊥}, I,O \σ(π1)) with the same behaviour. We call the new gate

g′′ a duplicate. For further analysis, let ndup denote the number of new output signals

produced by duplicates.

Extending Simple Combinational Logic Gates in SMV. So far, we have described

the main principle of our technique of modelling asynchronous VHDL designs such that

errors possibly arising due to the asynchronicity are preserved. We now have a look at

how to apply this principle on transforming concrete gates from VHDL to SMV. We

start with the simple case of combinational logic gates.

Recall the zero-delayed model of a given design described in Section 2.4. In such

a model, circuits of combinational logic gates (NOT, AND, OR, NAND, NOR) are

translated to SMV simply in the form of logic expressions. Now, we have to (1) de-

fine state-bearing delaying modules for every type of a critical combinational gate that

appears in our design, (2) instantiate these modules (one instance for each particular

critical combinational gate), and (3) change the interconnection of the original zero-

delayed model such that the delayed outputs are used instead of the zero-delayed ones

for every critical combinational gate.

A state-bearing delaying module for a given combinational gate has the same input

and output signals as the original gate, but the output is computed according to the way

described in the previous section. To implement the delaying functionality with the in-

terleaved random signals corresponding to the automaton from Fig. 5(a), the module

has an internal state variable in which we remember the output of the original gate

computed according to its function (NOT, OR, ...) and we send it to the new output with

a delay of one step (if there is no change in it). To detect the changes in signals, we

may conveniently use the possibility of referring to the next values of signals offered by

SMV. To illustrate this construction on a concrete example, we give below a delaying

module for a NAND gate (described in the SMV syntax).
module delayed_nand(out, in1, in2) {

input in1 : boolean;
input in2 : boolean;
output out : boolean;
orig_out : boolean;
-- the original NAND function
next(orig_out) := ˜(next(in1) & next(in2));
-- the delayed output
if (orig_out = next(orig_out)) next(out) := orig_out;
else next(out) := {0,1}; -- a random choice

}

Then, if there is used, e.g., an assignment z := w | ˜(x & y); somewhere, we de-

clare a new signal for the delayed output of the NAND over x and y, a new instance

of the delayed NAND computing this delayed signal, and we use this signal instead of

˜(x & y);. The construction is shown below with the delayed output of the NAND sent

to a delayed OR module whose implementation is very similar to the delayed NAND

and is not given here due to space limitations.
nand_output : boolean;
nand_module : delayed_nand(nand_output, x, y);
or_module : delayed_or(z, w, nand_output);

Extending More Complex Gates in SMV. More complex gates including flip-flops,

latches, and complex combinational gates like multiplexers are modelled as separate

SMV modules. We now have to create duplicates of such modules, extend them by new

internal signals to hold the original output, and define the outputs of these new modules

as delayed versions of the original outputs (interleaved with the random phases) much

like in the above case of simple combinational gates. For instance, a delayed D flip-flop

could then look as shown below.

module delayed_D(set, reset, in, clk, delayed_out) {
input set : boolean; input reset : boolean;
input in : boolean; input clk : boolean;
output delayed_out : boolean; -- the delayed output
orig_out : boolean; -- the original output
do { -- an initialisation phase

if (set) init(orig_out) := 1;
else if (reset) init(orig_out) := 0;
else if (clk) init(orig_out) := in;
init(delayed_out) := init(orig_out);

}
do { -- computing the original output

if (next(set)) next(orig_out) := 1;
else if (next(reset)) next(orig_out) := 0;
else if (˜clk & next(clk)) next(orig_out) := in;

}
------- the delay-based extension -- computing the delayed output -------
if (orig_out = next(orig_out)) next(delayed_out) := orig_out;
else next(delayed_out) := {0,1}; -- a random choice

}

A Justification of the Construction. The extension of only the critical gates is justi-

fied by our assumption that common VHDL development tools are used to check that

in all single clock domains, all signals have always enough time to stabilise before be-

ing sensed by sequential gates. Moreover, we suppose that input and output signals of

the entire checked design will be used within the same time domain as the gates which

consume these signals.

As for the extension of critical gates, the modification makes their output non-

deterministic for a single verification step if the changed input would lead to a change

in the original output. If this change is permanent, the extension is clearly justified be-

cause when the signal is rising from 0 to 1 or falling from 1 to 0, it can be sensed in

an unpredictable way by the adjacent logic. On the other hand, when there is no change

in the output, no extension is needed. An interesting situation is when there is a change

in the output, but a temporary one only (the so-called hazard)—i.e., there is a rising and

immediately a falling edge (or vice versa). In such a case, our approach introduces two

random phases, which is again justified for most common-life cases as it is difficult to

guarantee that the generated peak or drop in the signal would never be sensed (in any

case, a design that would depend on this, would not be very clean).

The above justification is, however, valid only from the point of view of monitor-

ing a single signal. When we look at reachable combinations of multiple signal values,

the length of the random phase (the phase with x-value(s)) is also important. We make

it uniformly one verification step long which requires some further considerations. In

fact, in general, such an approach can introduce an underapproximation or overapprox-

imation though it does not happen in most practical situations (and it can be statically

checked whether such a situation arises or not). In particular, such cases can arise when

the involved gates significantly differ in their delays.

Let us first consider the case of two critical paths with a different length (a gen-

eralisation to more such paths is straightforward). Suppose we have two critical paths

ρ1,ρ2 of lengths n1,n2 such that n1 < n2. If the accumulated delay of the gates in ρ1 is

smaller than in ρ2, clearly the output of ρ1 will stabilise before the output of ρ2, which

corresponds to our model. On the other hand, if the accumulated delay of the gates in

ρ1 is equal or greater than in ρ2, we need to keep the random phase longer than one step

per gate in ρ1 in order to obtain the desirable combination of two x-values at the ends

of both paths. A similar reasoning can then be employed in the case of two equally long

paths. If the accumulated delay of one of the paths was longer than the other one, we

would need to exclude the possibility of obtaining two undefined results. However, we

suppose that such conditions do not arise (which is usually the case and which can be

checked statically given the design and the descriptions of the used gates).

3.3 Extending Signal Paths

The previous section provides a method of modelling the progressive delay of a critical

signal propagation (and of the associated random phases when its value is changing)

via an extension of every critical gate. This method is rather precise but may cause

a significant state-space explosion due to the number of the newly introduced state

signals. Below, we try to avoid this explosion by introducing a less precise, approximate

model that can, according to our experience, still be sufficient in many practical cases.

In this approach, we do not extend every single critical gate, but instead, we put a special

new gate called a destabilizer on every output of a critical signal path.

As a basis which we try to overapproximate in the new approach, let us summarise

how the process of stabilisation of a signal σo(ρ) in a critical signal path ρ looks like

in the previous approach when we extend every critical gate by the delaying and ran-

domising phase. In that case, a critical gate can be viewed as a generator of stable and

unstable values. If more critical gates are sequentially connected (they all appear in

the same critical signal path ρ), the unstable values are propagated through all critical

gates on the path, and every gate delays its new output value. The new defined value of

the signal σi(ρ) influences the signal σo(ρ) after the delay equal to the sum of delays

of all gates on ρ without the last gate γo(ρ). When σi(ρ) changes its value, it can cause

a temporary instability—the adjacent gates switch their output value through a rising or

falling edge when the value of the signal is not unambiguously defined, and the unde-

fined value is propagated to further gates. Due to modelling the delay of one gate as one

step, it takes L steps to influence σo(ρ) by σi(ρ) where L = |Γ(ρ)| − 1, i.e., unstable

values of the signal σo(ρ) can occur in at most L steps.

The principle of the approximate approach we propose is to replace the progressive

generation of unstable signals by having a single new gate called a destabilizer which

will generate all possible combinations of x-values of a signal for a period of L steps.

The destabilizer will be connected to the output signal of a critical signal path (σo(ρ))
where x-values can become visible. We create one destabilizer for every set of critical

signal paths having the same output signal. The destabilizer starts to generate x-values

if one of the input signals of these signal paths changes its value.

Formally, a destabilizer over a critical path ρ in a design H = (S,C,G) is a gate

δρ = (⊥, α(ρ)∪{σo(ρ)}, {ω}) to be added into G where α(ρ) = {σi(ρ′) | ρ′ ∈ ρ(H)∧
σo(ρ′) = σo(ρ)∧γo(ρ′) = γo(ρ)} is the set of input signals to be monitored (it is the set

of input signals of all critical signal paths sharing the output with ρ) and ω 6∈ S∪C∪{⊥}
is a new unique signal representing the output of δρ. The original output signal σo(ρ)
of the given critical path ρ (and of the adjoining paths) becomes an input of δρ and is

sent to the output of δρ after the phase of instability implemented by δρ is over. Apart

from introducing δρ, we have to change the gate originally connected to ρ, i.e., γo(ρ),
such that it senses the output of δρ. In particular, if γo(ρ) = (c, I,O), we replace it by

γ′o(ρ) = (c, (I \ {σo(ρ)})∪{ω}, O).
The behaviour of a destabilizer δρ is defined by the finite automaton shown in

Fig. 7—for brevity, the automaton is described with one bounded counter whose pos-

sible values are not included directly in the state-transition control. Let ν(α) 6= ν′(α)
for a set of monitored signals α denote that some signal in α is changing its value (i.e.,

its current value differs from the value in the next step). If the destabilizer is in the

D state—when it has a defined value (in particular, σo(ρ)) on its output—and one of

the monitored signals changes its value, the destabilizer switches to the X state and

produces on its output the x-value, i.e., randomly 0 or 1. The destabilizer will hold in

the X state for a period of L verification steps where L is the number of critical gates in

the longest critical signal path which the destabilizer is connected to, i.e., L is the max-

imum of |Γ(ρ′)|−1 for ρ′ ∈ ρ(H) : σo(ρ′) = σo(ρ)∧ γo(ρ′) = γo(ρ).

D X

cnt = L

cnt < L,

cnt := 1

cnt := 1
cnt := cnt +1

v(α) 6= v′(α),

v(α) = v′(α),

v(α) 6= v′(α),

v(α) = v′(α),

Fig. 7. The automaton describing the behaviour of a destabilizer

Destabilizers in SMV. Let us consider a general destabilizer for n critical signal paths

with L being the length of the longest of these paths. In SMV, we can implement

the destabilizer as the following module with input signals in 1,...,in n to be con-

nected to the monitored inputs of the covered critical paths, the input signal out (the orig-

inal output to be delayed), and the new output signal omega.

module Destabilizer(in_1, ..., in_n, out, omega) {
output omega : boolean;
input out : boolean;
input in_1 : boolean;
...
input in_n : boolean;

cnt : 0..L; -- L is a constant value L = |Γ(ρ)|−1

init(cnt) := 0;
init(omega) := init(out);
next(cnt) := case {
-- one of the monitored signals is changing
(in_1!=next(in_1)) |
... |
(in_n!=next(in_n)) : 1; -- to state X

-- the counter reaches the maximum and all monitored signals hold
cnt=L & (in_1=next(in_1)) &

... &
(in_n=next(in_n)) : 0; -- to state D (cnt=L-1)

-- the counter is in (0;L) and all monitored signals hold
cnt>0 & (in1=next(in_1)) &

... &
(in2=next(in_n)) : cnt+1; -- to state X

-- all signals are stable
1 : 0; -- to state D

}
next(omega) := case {

next(cnt)=0 : next(out); -- cnt==0: propagate a defined value
next(cnt)>0 : {0,1}; -- cnt>0: output x-value

}
}

To illustrate how a destabilizer is connected to the rest of a modelled design, let us

consider a signal o whose stable value is computed as a function comb implemented

by a combinational logic with inputs α = { s 1, . . . , s n } and which is at the end of

a critical path. Let Z be the output gate consuming o. Z is a sequential gate that is in

a different clock domain than the gates from which the inputs s 1, . . . , s n are taken. In

SMV, this would correspond to the code fragment below.

o := function_comb(s_1, ..., s_n);
Z_m : Z(..., o, ...);

To introduce a destabilizer, we define a new delayed output omega, instantiate a de-

stabilizer with delayed o as its output, connect the original output o as an input of

the destabilizer, and replace the original output at the input of Z with omega.

o := function_comb(s_1, ..., s_n);
omega : boolean;
destabil_m : Destabilizer(s_1, ..., s_n, o, omega);
Z_m : Z(..., omega, ...);

A Justification of the Construction. We are interested in proving that no dangerous

stable combination of signals is reachable even though there is a possibility that some

undefined signal values on critical signal paths will be sensed and registered. There-

fore a method which overapproximates the influence of working with undefined signal

values on the reachable stable combinations of signals is a sound solution.

A destabilizer is connected to the output of several critical paths. In the previously

described method based on extending all gates in critical signal paths, it takes at most

L = |Γ(ρ)|−1 steps to stabilise the output signal if the input signal of any critical path

changes (provided ρ is the longest path). A destabilizer produces x-values for L steps

if any of the input signals changes. Thus, the destabilizer method will generate all the

combinations of signals to be sensed and become stable as in the method based on

extending all gates in critical signal paths and may be even more. Therefore, it is a safe

overapproximation of the extension of all gates in critical signal paths.

However, if a model checker returns a counterexample in a model using destabiliz-

ers, we cannot be sure if it reflects a possible behaviour of the real system. In such a

case, we must use a more precise model based on the extension of all critical gates and

perform the verification once again. One could also think of performing the check only

on the given path and possibly using the extension of all critical gates only on this path.

A proper investigation of such an approach is a part of our future work.

We said that destabilizers often save a number of state variables compared to the

method of extending all critical gates. Let us examine when this approach is efficient

wrt. the number of state variables. The method based on extending all gates in a crit-

ical signal path creates one new binary state variable per a critical gate (for a criti-

cal signal path ρ ∈ Π(H), this means |Γ(ρ)| − 1 new variables) plus ndup state vari-

ables for duplicated state signals—we mean the duplication due to the case where

ρ∈ ρ(H),π ∈ Π(H),π /∈ ρ(H),Γ(ρ)∩Γ(π) 6= /0. One destabilizer can replace the exten-

sion of all critical gates that is needed in the first method on more than one critical signal

paths. The number of gates in these critical paths is λ = |Gd |− 1 for Gd =
Sn

i=1 Γ(ρi)
where σo(ρ1) = σo(ρ2) = · · · = σo(ρn), n ≥ 1. The method of signal path extension

adds to the system three types of variables: (a) a binary variable of the new output—

the ω signal, (b) a counter of unstable values of the range [0;λ] (i.e., the size of the

counter is ⌈log(λ + 1)⌉), and (c) ndiv duplicated state signals for the destabilizer due to

the division of input gates (which may appear when combining the method of destabi-

lizers with extending all critical gates as explained in the next paragraph). The method

using destabilizers pays off if λ + ndup > ⌈log(λ + 1)⌉+ 1 + ndiv, hence in the case of

ndup = ndiv = 0, we get λ ≥ 5.

Combining Both Methods. To achieve a satisfying ratio between a model accuracy

and its state space size, we are able to combine both proposed methods in one model.

We are interested in behaviours when an unstable value is registered and propagated

further to the design. Both methods are able to stabilise the signal with the same delay

(the delay of L steps). Therefore, we can apply both methods on different critical signal

paths. By selecting which of the methods should be used on a certain critical signal

path, we can fine-tune the verification process by trading the accuracy of the result (due

to the overapproximation by destabilizers) for the model complexity (the extension of

all critical gates). Such a combination is safe if we avoid the specific case when both

methods influence each other as discussed below.

Consider a circuit where two critical signal paths begin in the same gate and con-

tinue with a different signal, i.e., ρ1,ρ2 ∈ Π(H), ρ1 6= ρ2, g = γi(ρ1) = γi(ρ2), and

σi(ρ1) 6= σi(ρ2). When we use the extension of all critical gates on the first signal path

and the destabilizer on the second path, the first method extends the gate g = γi(ρ1)
with a delayed output. However, we must also preserve its zero-delayed behaviour

for the second method, and so the shared starting gate g must be divided into two

separate gates g1 and g2 such that if g = (c, I,O), then g1 = (c, I,O \ {σi(ρ2)}) and

g2 = (c, I,O \ {σi(ρ1)}). Let ndiv be the number of duplicated state signals caused by

the division of all such gates in the model.

A similar problem appears if two critical paths with an application of both meth-

ods share some of the intermediate gates. For every pair of the critical signal paths

ρ1,ρ2 ∈Π(H), ρ1 6= ρ2, and all shared gates Γ1,2 = (Γ(ρ1)\{γi(ρ1),γo(ρ1)})∩(Γ(ρ2)\
{γi(ρ2),γo(ρ2)}) 6= /0, we have to duplicate every shared gate ∀g ∈ Γ1,2 and every com-

mon signal ∀s ∈ Σ(ρ1)∩Σ(ρ2).

4 Experiments

We tested our approach on two asynchronous queues from the libraries of the Liber-

outer project—namely, asfifo-bram and asfifo-dist. Each of the components uses

a different type of memory and has a slightly different control part. For asfifo-bram,

we checked the property that the control part does not allow to rewrite unread data with

new data. For asfifo-dist, we checked that the component correctly sets the so-called

status data on its output which informs about the saturation of the queue.

Table 1. Verification results
case vars no. time mem

asfifo-bram-no-check 36 4.83 s 132607

asfifo-bram-all-gates 220 inf. inf.

asfifo-bram-destabil 44 37.52 s 2446796

asfifo-dist-no-check 44 4550.07 s 9861121

asfifo-dist-all-gates 48 30556.7 s 25878822

Table 1 shows results of

our experiments. Suffixes in

the first column mean the fol-

lowing: (i) no-check is the

case when no extension is per-

formed, (ii) all-gates is the

case when all critical gates are

extended, (iii) destabil means

that destabilizers are used instead of extending all the gates. Column vars no. gives the

number of binary state variables, time is the verification time, and mem is the number

of allocated BDD nodes.

There are eight critical signal paths in asfifo-bram and two critical paths in asfi-
fo-dist. We can see from the number of state variables in asfifo-bram that there are

many critical gates to extend when extending all critical gates (the number of state vari-

ables increases to 220) whereas the destabilizer-based approach found only two places

for a destabilizer (which rapidly decreases the extensions needed). For asfifo-dist,

we can see a big difference in time and the number of BDD nodes used for a slight dif-

ference in the number of state variables. Such a contrast is caused by the nondetermin-

ism in the model—one random value {0,1} divides the further state-space exploration

into two directions (the first for value 0, the second for 1).

5 Conclusion

We have introduced two original approaches to modelling asynchronous hardware de-

signs using the input language of the commonly employed Cadence SMV model checker.

One of these approaches is quite precise, but may contribute to the state explosion prob-

lem in a significant way. The other approach can be much more efficient as it is based

on an overapproximation of the reachable states. The approach is, however, still precise

enough to allow one to prove interesting properties on various real-life hardware designs

as we have illustrated by our experiments. Both of these methods may be modified to be

used together with a different model checker than Cadence SMV and represent a con-

tribution to the state-of-the-art in verifying hardware designs by allowing one to deal

with asynchronous circuits.

References

1. P. Rashinka et al. System-on-a-chip Verification. Methodology & Techniques. Kluwer, 2001.

2. R.K. Brayton et al. VIS: A System for Verification and Synthesis. In Proc. of CAV’96,

LNCS 1102, 1996. Springer.

3. Mentor Graphics. Leonardo Synthesis, 2005.

4. Mentor Graphics. 0-In Formal Verification Data Sheet, 2006.

5. Mentor Graphics. Formal Pro Data Sheet, 2006.

6. J. Holeček, T. Kratochvı́la, V. Řehák, D. Šafránek, and P. Simeček. Verification Process of

Hardware Design in Liberouter Project. Technical Report 5/2004, CESNET, 2004.

7. J. Kořenek, T. Pečenka, and M. Žádnı́k. NetFlow Probe Intended for High-Speed Networks.

In Proc. of FPL’05. IEEE Computer Society, 2005.

8. J. Kořenek, P. Zemčı́k, and T. Martı́nek. FPGA-Based Platform for Network Applications.

In Proc. of DDECS’05. University of West Hungary, 2005.

9. T. Kratochvı́la, V. Řehák, and D. Šafránek. Formal Verification of a FIFO Component in

Design of Network Monitoring Hardware. In Proc. of CESNET 2006 Conference, 2006.

10. Liberouter Project Homepage. http://www.liberouter.org.

11. T. Ly, N. Hand, and Ch. Ka kei Kwok. Formally Verifying Clock Domain Crossing Jitter

Using Assertion-Based Verification. In Proc of DVCon’04, 2004.

12. P. Matoušek, A. Smrčka, and T. Vojnar. Modeling, Analysis, and Verification of SCAMPI2.

Technical Report 8/2005, CESNET, 2005.

13. K.L. McMillan. Cadence SMV Manual, 2006.

14. J. F. Wakerly. Digital Design: Principles and Practices. Prentice-Hall, 3rd edition, 2001.

