
CESNET technical report number 1/2003

Packet header matching in Combo6 IPv6
router

David Antoš, Jan Kořenek, Kateřina Minaříková,
Vojtěch Řehák1

9/1/2003

1 Abstract

The report describes current proposal and arising implementation of header
matching engine in the Combo6 IPv6 router accelerator card.

2 Introduction

Combo6 is a PCI acceleration card for IPv6 (and IPv4) packet filtering and for-
warding. This report covers header matching performed by the card. We divide
the problem into two separate parts; the hardware processor that performs fast
header matching, and the software support, preparing contents of processor’s
tables. From another point of view, the software’s task is to compute the look-up
program performed by the hardware processor.

The paper also shows the main principle we decided to follow, interconnecting
the accelerator into the Un*x environment in the most standard way as possible.
It means that the card should behave as usual network adapters, it only increases
the performance in case of packets that can be forwarded by it. It allows
incremental development and adding features in the future. It also does not
force us to change standard tools for routing and network configuration, making
us independent on the development of those tools.

The report is organized as follows. Section 3 describes hardware aspects of the
look-up machine. Part 3.1 shows the blocks surrounding the look-up machine
and part 3.2 describes the processor itself. Special interest should be given to
part 3.3 where the group of formal verifications colaborating with the hardware
team has shown their power. Finally, section 3.4 describes the reasons and
methods why we chose to simulate the machine in software first.

1This work has been partially supported by the GACR grant No. 201/03/0509.



Section 4 describes interconnection of the accelerator card into the operating
system environment. We start describing system interfaces. Part 4.2 shows the
concept of routing/firewalling table that should allow routing and packet filtering
in the only look-up structure traversal. Part 4.3 discusses problems of the
computation of effective version of routing/firewalling tables for the hardware
look-up processor.

3 Hardware

Look-up operations (together with nearly all processes in the router) are per-
formed by programmable hardware, Field Programmable Gate Arrays (FPGA).
We use two types of memories to store the look-up program. We have a Content
Addressable Memory2 (CAM from now on). We use Micron MT75W16Y136HBB.
This type allows configuring as 4K words having 272 bits (it is one of the widest
available CAMs). Moreover, it lets us specify “don’t care” bits. Typical access
time is about 80 ns. The other type of memory is an ordinary static RAM (SRAM)
with typical access time about 10 ns.

3.1 Inputs and outputs

The input of the header matching engine comes in a structure called Unified-
header, physically stored as a set of registers. The Unified-header is a fixed
structure keeping the relevant information extracted from the packet’s header.
The content of Unified-header was proposed by Ivo Hažmuk. For detailed
description, see the report of his group (to appear soon). For illustration, we
give a short summary of main fields:

� L2 and L3 status flags

� Source and Destination MAC

� VLAN id

� Source and Destination IP address and port

� . . .

The structure comes over 440 bits in length.

There are four header extracting machines, one for each interface. Each machine
has (at least) four sets of registers to store Unified-headers. Whole packets are

2CAM gets a (wide) word of bits and answers with the address, where the input data is kept
in it.

CESNET technical report number 1/2003 2



stored into the main dynamic RAM, therefore the only part of the packet the
header extractor must pass through is an identification of the packet (memory
allocation block number). Each engine reads the Unified-header and computes
a pointer to an editing program. The editing program denotes how the packet
should be changed and which interfaces the packet should be sent out. Note
that there may be more interfaces the packet must be replicated to. The Unified-
header is destroyed after processing.

One of the output interfaces is software. This interface behaves like a normal
network adapter from the operation system’s point of view. This way we can

1. answer to erroneous packets,

2. receive packets sent to the host computer,

3. trace the network traffic using usual system tools,

4. process unusual packets we do not understand.

Of course, packets coming through the operating system are slowed down, there-
fore we plan to move some error handling to the hardware in future versions.

3.1.1 Hardware realization

Unified-header is physically stored in a buffer. The buffer is filled by the header
field extractor and read by the look-up processor. The read and write operations
have to be fully independent. Therefore the buffer is stored in dual port Block
SelectRAM in the FPGA chip.

Each buffer consists of four sets of registers, each containing a Unified-header.
The buffer is controlled by a status register; one bit for one set of registers. The
bit signalizes whether the set of registers is free or contains a Unified-header.
Header field extractor can write a Unified-header to the set only if the bit is zero.
When the Unified-header is fully written to the buffer, the bit is set. The buffer
is read by the look-up processor. It can start handling the Unified-header only if
the bit is set. When it finishes the work it resets the bit. This way we guarantee
that the header field extractor never rewrites any stored Unified-header and the
look-up processor never processes the Unified-header that has not been fully
stored.

3.2 Look-up processor

The processor performs a traversal through a tree structure (or finite automaton
from other point of view), the program is started from the beginning for each
incoming header. Instruction set was proposed by Pavel Zemčík.

CESNET technical report number 1/2003 3



There are three kinds of instructions:

� CAM Step, List instruction matches a subset of registers against CAM mem-
ory. We can choose part of the Unified-header with a bit mask List. The
resulting address returned by CAM serves as the pointer to the continua-
tion of the look-up program.

� Comparison instructions contain a set of instructions for comparing reg-
isters from Unified-header (or even upper and lower parts of them) to
constants. The tests include equality, bigger, lower and so on.

� EXE Queue stops processing of the header and places the identification of
the packet together with the Queue parameter into the output queue. The
parameter is a pointer to the editing program.

Instructions of the first two sorts are relative conditional jumps. The length of
the jump is driven by their parameter Step. For implementation reasons, we
must restrict ourselves to a discrete set of possible steps, partly because of
dearth of space in the binary encoding of instructions and also because of time
complexity of general adder in hardware.

Instructions are encoded into 36-bit words. This is not a typo, we need to keep
up to 32 bits of arguments in the instruction code, therefore we shall use parity
bits of SRAM, too.

It is worth noting that erroneous packets are detected by the header extractor.
It sets a flag in the L2 or L3 register. We must match the bit (most probably
with CAM instruction) and mark the packet with the editing program that sends
the packet to the operating system. In future versions, we plan generating
ICMP messages for common errors in the editing engine. We also have a
“trash” interface that only frees the dynamic memory, the memory is physically
deallocated by the editing engine.

Once more, the look-up program acts as a traversal of a tree (trie) structure.
CAM represents first levels, other instructions the rest. Important observation
is that various levels of the tree have “distinct abilities,” for example CAM is
able to specify “don’t care” bits but cannot do a less-or-equal comparison. The
opposite is true for the rest of the tree, for other instructions.

3.2.1 Hardware level

Look-up processor is a hardware entity. Figure 1 shows supposed interfaces of
the entity. The interface consists of signals connecting the look-up processor
with neighboring components–buffer, CAM, SRAM, and replicator.

CESNET technical report number 1/2003 4



Figure 1: Look-up processor interface

Execution of an instruction starts by loading it from SRAM. Look-up processor
decodes the instruction and parameters from its operating code. This step is
the same for all instructions. The rest of processing differs according to the
classification of instructions given above.

CAM instruction, the only instruction belonging to the first kind, is performed
by the content addressable memory (CAM) connected to the FPGA chip. The
look-up processor only has to load subset of registers from a buffer to CAM.
Registers are specified by List parameter obtained from the instruction word.
The parameter is organized as bit map and the look-up processor has to convert
the bit map to a sequence of register addresses. The registers are loaded into
CAM. After the look-up operation (consuming latency about 80 ns) CAM fetches
the next instruction from SRAM.

Branching instructions compare registers to constants. This operation is done
fully by the look-up processor. In the first step the parameters from the in-
struction word we obtained are Address, Step, Mask, and Constant. The register
specified by Address is loaded from the buffer, masked with Mask and compared
to the Constant. The type of the comparison depends on the instruction code.
When the instruction succeeds we jump relatively the current address incre-
mented by Step. Otherwise we go to the following instruction. It is worth noting
that both the addresses are computed concurrently with the comparison and
the desired address is copied to program counter.

Finally, EXE instruction finishes the processor’s run and contains information
for the packet replicator in its operation code. When processing reaches EXE

the look-up machine copies the instruction’s argument together with an iden-
tification of the packet to the output queue. Then it checks whether there is
another Unified-header in the buffer and if so, it starts processing over.

CESNET technical report number 1/2003 5



3.2.2 Sharing CAM and SRAM

Let us recall that each interface has its own look-up processor. The processors
share one CAM and one SRAM. Therefore it is necessary to ensure fair mutual
exclusion of accesses to those resources among the processors. The mutual ex-
clusion is an obvious must, moreover we want the accesses to be fair, protecting
the interfaces from starving and blocking.

Each look-up machine has its time-slot to access SRAM. Sharing CAM gets more
difficult. CAM instruction processing ends with accessing SRAM, so the begins
of CAM instructions are driven by the finishing SRAM time-slot.

����� ��

��

��

��

����� ��

��

��

��

���� ��

��

��

��

��

��

���� ��

��

��

��

���	
��
� � � � � � � � � � � � � � � � � � � � � � � � � �

��	


��	


��
���
�


��	
��
�
����

����

����

����

����

����

����

����

��
���
�
 �
�����

��	


��	


��	


��	


��	


�
�����

��	


��
���
�
 �
�����

��	


��	


��	


��	


��	


���� ���� �������� ����

����

���� ���� ����

���� ��������

���

���� ����

Figure 2: Time diagram of sharing CAM and SRAM

Figure 2 shows an example of processor’s work. Small horizontal lines divide
the graph into 10 ns slots. LUP1 to LUP4 are look-up processors and horizontal
bars show what they do. Load data section means that registers are loaded into
CAM, this time CAM cannot do anything else. CAM performs the match in the
“latency time,” in this phase it can be loaded another data to match. A small
“SR” slot at the very end of CAM processing is getting the result of the match
out of SRAM. This time-slot must get just to the SRAM time-slot for that machine.
The machine gets an instruction to process, the instruction is decoded and
executed during COMP phase. Following SR slots are SRAM accesses, fetching
the following instruction.

At the figure bottom, there is an overview of SRAM slots with numbers of
machines that are allowed to access SRAM. Finally, “CAM slot” is a place where
particular machine may access CAM if and only if CAM is not in use by another
machine. More preciselly, if no machine uses CAM in the beginning of the

CESNET technical report number 1/2003 6



CAM slot, the machine owning the slot is allowed to start load data phase in the
beginning of the slot. For example, when LUP1 accesses CAM in the beginning
of the figure, it blocks LUP2, LUP3, and LUP4 from accessing CAM for the first
four time-slots. Even if LUP4 asked for CAM at the very beginning of the picture,
it would get it in the eighth time-slot (exactly as shown).

It is not obvious that this mechanism protects from blocking and provides fair
scheduling. It can be shown that there is an upper bound of waiting time.
Section 3.3 deeply discusses this topic.

3.3 Verification of Sharing CAM and SRAM

Decision on correctness of the arranged schedule is a feasible challenge to
verification section of our team. Demanded properties were verified by the
symbolic model checker NuSMV. Model checking3 is a formal method which
allows one to automatically prove whether a model of the system at the suitable
level of abstraction satisfies given specification.

Our model consists of five synchronous modules, timer and four look-up pro-
cessors (lups from now on). The timer counts 10 ns slots modulo 4 in variable
time. Lups lup0, lup1, lup2, and lup3 simulate four look-up processors shar-
ing CAM and SRAM. Each lup can be in one of six states, changing only when
the variable time is equal to its rank. Meaning and behaviour of each state is
as follows:

The sleep state simulates behaviour of processor that has empty input buffer.
Next state depends on whether any packet comes and whether CAM is not in use
by another machine. If no packet comes then the look-up processor remains in
sleep else look-up processor changes to wait or load data state. The choice
of wait or load data depends on whether CAM is in use by another machine
or not.

The processor is in wait state if it wants to start processing of a packet but CAM
is busy. Remaining in wait depends on availability of CAM. If CAM is free, the
next state is load data.

The load data state represents loading data into CAM–the critical section of
CAM sharing. The next state is latency1.

States latency1 and latency2 represent only waiting for result. In addition,
latency2 includes the finishing SRAM time-slot. Latency2 is followed by a
sequence of comp states.

The comp states simulate computation using SRAM. A comp state corresponds
to performing one instruction; in the end of the processing SRAM is accessed.

3For more information see [Bar02].

CESNET technical report number 1/2003 7



The number of instructions is not limited. It is obvious that the next states are
comp, sleep, wait, and load data.

We abstract away from the emptiness of the input buffer and the number of
instructions in computation using SRAM. It means that each decision based on
that features is replaced by a non-deterministic choice. The code below shows
the real implementation of described CAM and SRAM sharing algorithm.

MODULE timer_type(time)

ASSIGN

next(time) := (time+1) mod 4;

MODULE lup (me, time, CAM_busy)

VAR

state : {sleep, wait, load_data, latency1, latency2, comp};

ASSIGN

init(state) := sleep;

next(state) :=

case

!(time=me) : state;

state=sleep & ! CAM_busy : {sleep, load_data};

state=sleep : {sleep, wait};

state=wait & ! CAM_busy : load_data;

state=wait : wait;

state=load_data : latency1;

state=latency1 : latency2;

state=latency2 : comp;

state=comp & ! CAM_busy : {comp, sleep, load_data};

state=comp : {comp, sleep, wait};

esac;

DEFINE

SRAM_used := time=me & (state=latency2 | state=comp);

MODULE main

VAR

time : 0..3;

lup0 : lup(0,time,CAM_busy);

lup1 : lup(1,time,CAM_busy);

lup2 : lup(2,time,CAM_busy);

lup3 : lup(3,time,CAM_busy);

timer: timer_type(time);

ASSIGN

CESNET technical report number 1/2003 8



init(time) := 0;

DEFINE

CAM_busy := lup0.state = load_data |

lup1.state = load_data |

lup2.state = load_data |

lup3.state = load_data;

We checked all interesting properties of this model such as mutual exclusion
of access to SRAM, mutual exclusion of access to CAM, and fairness of using
CAM (no starving, no blocking). Additionally we computed that the maximal
length of waiting for CAM access is 120 ns. The verified formulas and results of
verification are presented below.

-- Mutual exclusion of accesses to SRAM

-- specification

AG (!(lup0.SRAM_used & lup1.SRAM_used |

lup0.SRAM_used & lup2.SRAM_used |

lup0.SRAM_used & lup3.SRAM_used |

lup1.SRAM_used & lup2.SRAM_used |

lup1.SRAM_used & lup3.SRAM_used |

lup2.SRAM_used & lup3.SRAM_used))

is true

-- Mutual exclusion of accesses to CAM

-- specification

AG (!(lup0.state = load_data & lup1.state = load_data |

lup0.state = load_data & lup2.state = load_data |

lup0.state = load_data & lup3.state = load_data |

lup1.state = load_data & lup2.state = load_data |

lup1.state = load_data & lup3.state = load_data |

lup2.state = load_data & lup3.state = load_data))

is true

-- Fairness of using CAM (no starving, no blocking)

-- LTL specification

G ((lup0.state = wait -> F lup0.state = load_data) &

(lup1.state = wait -> F lup1.state = load_data) &

(lup2.state = wait -> F lup2.state = load_data) &

(lup3.state = wait -> F lup3.state = load_data))

is true

-- The maximal length of waiting for the CAM access

CESNET technical report number 1/2003 9



-- MAX(lup0.state = wait, lup0.state = load_data) is 12

-- MAX(lup1.state = wait, lup1.state = load_data) is 12

-- MAX(lup2.state = wait, lup2.state = load_data) is 12

-- MAX(lup3.state = wait, lup3.state = load_data) is 12

3.4 Software simulation of the look-up engine

We have decided to do a prototype of the header matching engine in C before we
start coding in VHDL4. VHDL brings completely different approach in program-
ming compared to usual languages. VHDL is designed to describe hardware,
therefore it covers parallelism of processes and signals.

The main reason for the software simulation is that we want to test behavior of the
look-up machine and related software before we fix the structure of hardware.
Changes in the simulator are much cheaper and easier, moreover even a small
change in the instruction set can cause a complete hardware redesign.

We will simulate real behavior of the header matching engine by passing real
packet headers to its input. Collecting experience from those experiments, we
will be ready to fix the structure of the hardware.

3.4.1 Look-up processor simulator

The simulator simply interprets the look-up program (described above). First,
it reads contents of CAM and SRAM memories, parses them, and checks it
syntactically. We decided to store the memories as text files, it is less efficient
(it does not matter in the simulator), but it allows us to check (and even create)
them by hand.

The simulator is especially simple, it reads the content of the Unified-header
on the input and starts interpreting the look-up program. It processes the
instructions until it reaches EXE Queue. Then it writes its value to the output
queue.

3.4.2 Interfaces

The input of the simulator is generated by L2 striper and header field extractor;
those blocks prepare the Unified-header out of the real packet. There are
particular simulators of the blocks, too. Look-up processor receives Unified-
header stored in 32 16-bit registers from those engines. We also want to test
the behavior of the interfaces among the blocks. We have been working on so
called “parallel simulator” that performs simultaneous run of all blocks. The

4VHDL is a high level language for hardware programming; its syntax is similar to Ada.

CESNET technical report number 1/2003 10



simulators communicate using shared memory. The parallel simulator executes
four instances of header parsers and one look-up processor. (It is to be changed
according to the last changes in the proposal.) The main result of the simulation
is an analysis of time dependencies in the engine.

3.4.3 Future plans

We are about to finish interconnection of the header parser block and the look-
up processor. Simulation is very limited at this first stage–it is because of the fact
that today’s header parser simulator works just at the L2 level. This means that
Unified-header is not filled properly. L2 level related registers are the Source
and the Destination MAC addresses. But later on–when L3 level will be ready–
simulation may be very useful. We will be able to observe used instructions
according to the type of packet on the input by means of instruction counters.

4 Software

Let us recall that the final goal of the software proposal is to make it independent
on the tools used for routing and network setting in the operating system. There-
fore we will use standard operating system interfaces as widely as possible and
all exceptions must be discussed and judged well.

look−up procesor

CAM SRAM

unified headers (Sets of Registers)

scheduler

PCI

SW

HW

tcpdump, ...

driver HW pre−processed table

primary r/f table HW version of r/f generatorrouting algorithm

configurationfirewall rules

redirect, ...

Figure 3: Block structure of header matching engine and supporting software

We describe current proposal of software support. Let us start with interfaces
of the software support module.

CESNET technical report number 1/2003 11



4.1 Interfaces

In the lowest level, the module should produce programs for the look-up ma-
chine. It feeds the program to the memories through a driver. The driver exports
a usual Un*x device (/dev/combo) and has an API on that. The API covers low
level operations altering the contents of the memories. Typical operations of
the API are reading/writing 36 bit words from/into SRAM, the same for blocks
(for SRAM burst mode), reading/writing a line of CAM (it is 272 bits), the same
for blocks of lines. The driver serves to the needs of all supporting software; it
provides uploading firmware, reading status information, transferring packets,
etc. This kind of communication is beyond scope of this report. Probably, the
/dev/combo device will be split into several devices, according to the structure
of inner memories of the card.

Before we turn to the opposite interface, let us sum up what the operating system
does to enable packet forwarding and filtering. Kernel keeps its routing table.
The table is either configured statically or is maintained by a routing daemon
(this will be surely our case). Firewall rules are configured using some kind of
firewall description language, such as ipchains. When a packet arrives, kernel
compares its headers with the tables and decides what to do with that packet.

Simply, we want to override this mechanism and let the hardware accelerator
make the decision in case it knows how to treat the packet; for the most common
packets first, adding other types (in accordance with a priority list) in later stages
of development. Therefore we have to know the configuration of the interfaces,
and current routing and firewalling tables.

There are two ways to obtain the tables. We can either modify the routing
daemon (that tells the kernel what to do normally) to tell us the routing table,
too. This approach has the main disadvantage that it requires modifying code
out of our control, and maintaining changes in the process of development of the
daemon. It also restricts the users of the Combo6 router to the set of daemons
we support. The other way (we decided to follow) is to create a daemon that
listens the changes in the kernel’s routing table and lets us know about them.

The separate problem arises with packet filtering. Tools for firewalling provide
many different features and many mechanisms. There is no common standard in
one operating system kernel, and the situation gets much worse when thinking
about portability. This problem is being discussed and we plan to make a
study about abilities of firewalling mechanisms compared to the possibilities
and capabilities of the look-up program described above.

As we have said above, we have a daemon that watches changes in the kernel
routing table and announces the differences. The hardware table computation
mechanism is connected to it through so called RT-callback interface. The dae-
mon itself should be divided into a system independent part and a small system

CESNET technical report number 1/2003 12



dependent layer converting the data to a format suitable for our processing.
Something similar should be done with firewalling rules.

To enable network diagnostics, tools like tcpdump modify kernel tables to insert
filters that check for the desired information. The modification of this kind must
be propagated to the RT-callback interface. We suppose that packets that should
be checked by tcpdump will be routed by software. In order not to degrade the
performance too much, we nevertheless should use operating system to treat
as small superset of the affected packets as possible. This is left to thorough
discussion in future versions.

4.2 Routing/firewalling table

The RT-callback interface announces the changes of routing and firewalling
tables together with the settings of network diagnostics tools. Today we have a
very first draft of the interface suggested by Zdeněk Salvet. We shall probably
keep our internal copies of the tables for efficiency reasons.

As we have the only machine for routing and firewalling in hardware, we must
combine the information from the tables and we must perform the decision
where to send the packet and whether to send it in the only look-up operation.

We created a concept of routing/firewalling table (r/f table from now on). The
r/f table is the routing table with firewalling rules applied on each of its lines.
In general, a routing rule may be spread into a number of r/f table entries. This
structure must be analysed well, especially compared to the expression power
of other “firewall describing” languages like ipchains.

When a change of input tables occurs, in the first development iteration we plan
only recomputing the whole r/f table. Later we want to study how to make local
changes only. Nevertheless, as we will see later, recomputation on this stage is
not the critical part of the system.

Note that the r/f table also provides a connection to the editing program5. We
expect the set of editing programs to be fixed, therefore the actions coming from
the tables together with type of the packet denote the editing program.

It is worth saying that the r/f table is hardware independent. We also want to
keep it as system independent as possible, but we may sacrifice some small part
of this quality for efficiency reasons.

5Editing program describes what should be done with the packet, where to send it and how
to change it.

CESNET technical report number 1/2003 13



4.3 Look-up program computation

Look-up program is physically stored as the contents of CAM and SRAM. It is
computed out of the r/f table. The reader should keep in mind that the hardware
form of the look-up structure does not have to allow reconstruction of the original
r/f table for various reasons, e.g., it may contain expanded strings. We suppose
that the hardware look-up program will be strongly optimised.

In the first development iteration, we plan that the update of CAM and SRAM is
possible for the whole structure at once. The generator takes the whole r/f table,
“thinks up” the optimization, and computes the look-up program in terms of the
instructions described above. Then it asks the driver to upload the table into the
memories. An easy way to update CAM is to divide it into halves, one is used for
production work, the other serves for uploading new strings. When the upload
is finished, the parts are atomically switched. It reduces the problem of updates
only to timing of the CAM accesses. Note that SRAM is “magically” switched
too, the uploadable part is not accessible from the production part of CAM and
vice versa. The software driver must also keep an allocation information about
the memories.

For future versions we want to enable updating only parts of the structure.
Then, the look-up program generator would get an instruction “changed from-to,
upload it.” To demonstrate problems of this approach, we show the following.
CAM, when more rows match the query, returns the very first matching row6.
It means that more special cases must be located closer to the address zero in
CAM. How do we add a more special rule, when CAM happens to be full in the
location we have to use?

Overwriting of data brings also problems with validity of records. A change of
look-up program in the memories must be atomic in the sense that we cannot
use new data for production work until it is fully uploaded. (It is better to use
obsolete routing table for a second or two than to make a complete mess.)

We suppose that a good response time for propagating changes through the
whole structure should be in order of seconds. The time complexity will prob-
ably depend on the optimization technique used. In fact, the problem could be
formulated as minimization of a special finite automaton with strong bounding
conditions. This problem is one of the (several tens of) biggest challenges in the
whole project.

6It is possible not only because of duplicated strings, but due to don’t care bits.

CESNET technical report number 1/2003 14



5 Conclusion

As the reader surely noticed, “level of abstraction” increases with the chapter
number in this report. This tracks the state of the project well.

We have created an implementation plan. Now (December 2002) we have a
simulation of the look-up processor. Hardware part is specified in blocks and
the blocks are being refined. Currently, the most of the effort is routed to the
specification of interfaces. Then we plan to take care of r/f table and look-up
program computation. In this state it can be tested on the card prototype where
the headers are completely treated by the software simulator. Concurrently,
hardware programming will take place.

The stages described above run more or less concurrently. The main point is
that we want to hold up the hardware programming until we are really sure
about the detailed structure of the instructions.

We have described proposed structure of the Combo6 IPv6 card. We covered
both hardware and software aspects of the design. We have shown the power
of model-checking methods to make hardware design easier. We have found
common language with the group of formal verification, reaching the desired
point where theory meets practice.

References

[Ant02] Antoš D.: Overview of Data Structures in IP Lookups

CESNET technical report 9/2002

[Bar02] Barnat J., Brázdil T., Krčál P., Řehák V., and Šafránek D.: Model

checking in IPv6 Hardware Router Design

CESNET technical report 8/2002

[Nov02] Novotný J., Fučík O., Kokotek R.: Schematics and PCB of COMBO6

card

CESNET technical report 14/2002

[WWW] WWW pages http://www.openrouter.net/

CESNET technical report number 1/2003 15


