
Packet Filtering for FPGA-Based Routing
Accelerator

David Antoš1,2, Vojtěch Řehák1, and Petr Holub2,3

1 Faculty of Informatics,
Masaryk University Brno,

Botanická 68a, Brno 602 00, Czech Republic
2 CESNET, z. s. p. o.,

Zikova 4, Praha 160 00, Czech Republic
3 Institute of Computer Science,

Masaryk University Brno,
Botanická 68a, Brno 602 00, Czech Republic

(antos|hopet)@ics.muni.cz, rehak@fi.muni.cz

Abstract. In this paper, we present a novel approach for Binary Deci-
sion Diagram based semantically extended representation of packet filters
called Filter Decision Diagrams (FDD), used for efficient filter process-
ing and lookup in a hardware accelerator that uses a lookup engine em-
ploying CAM and comparison instructions kept in SRAM. We present
the most important operations for FDDs and also give some complexity
estimate. We also analyze and compare expressing power of the most
commonly available packet filters.

Keywords. Packet filtering, hardware accelerated routing, filtering rules
transformation, filter decision diagrams, binary decision diagrams.

1 Introduction

PC platform has shown its suitability as mid-sized routing platform [19], its
performance is however limited by bandwidth of internal PC architecture. This
bottleneck can be mitigated if routing can be at least partially off-loaded to an
acceleration card, so that substantial part of the traffic is confined to the card
and avoids common buses inside the PC.

Such routing hardware accelerator based on programmable hardware (Field
Programmable Gate Arrays, FPGA) has to perform two basic operations: packet
classification and filtering. In this paper, we examine the most common packet
filters and analyze them with respect to their expressive power. Then we present
a novel approach to packet filter data structure representation called Filter De-
cision Diagrams (FDD), that is an efficient representation for deciding based on
packet information and which is an important step toward building an approach
which integrates routing, filtering, and MAC address lookup into a single op-
eration suitable for hardware implementation for an engine that uses content
addressable memory (CAM) combined with static RAM.



The paper is structured as follows: Section 2 summarizes related work, Sec-
tion 3 presents analysis of expressive power of the most commonly available
packet filters, Section 4 details the proposed data structure for packet filter rep-
resentation and the basic operations on it, and Section 5 summarizes the work
and gives the concluding remarks.

2 Related Work

Various attempts to find representations of packet filters can be found in the
literature. Taking packets as points in k-dimensional space, algorithms based
on decision trees can be understood as “cutting” the space. Grid-of-tries [9],
Hierarchical Intelligent Cuttings [10], Fat Inverted Segment trees [8], and Hy-
perCuts [22] are typical examples of cutting algorithms.

Decision diagrams are graphs that search through a series of tests resulting in
a terminal node containing the result. Binary decision diagrams (BDD) [4] take a
single boolean variable at each node. Hazelhurst et al. [12, 11] propose a method
to convert a filtering rule set into a BDD. They represent numbers as bit vectors
and convert range queries using equivalence p ≤ n ⇔ ∨n

i=0 p = i. Sinnappan
and Hazelhurst [23] describe an approach to convert BDD representation onto
an FPGA creating directly a circuit design.

Interval Decision Diagrams (IDD) [24] have integer variables in their nodes.
Each node divides possible values of the variable into intervals. Each interval
directs the search to a successor node. Christiansen and Fleury [6] convert filters
onto IDDs. They also give a Linux prototype implementation Compact Filter [7]
that can be used as kernel module. In this approach, prefix tests are converted
into ranges. No concept of filter order is introduced—rules are converted to a
partitioning of packet header space in a similar manner as indicated above for
BDDs.

3 Expressiveness of Existing Filters

As a preliminary step for proposing the FDD structure, we study several ba-
sic questions related to packet filtering: (1) how the filters used in operating
systems can be transformed for the target device, (2) whether there are differ-
ences in their “expression abilities”. We analyze a set of commonly used packet
filters based on the standard way to compare expression power of formalisms—
expressing one filter by the means of another filter and vice versa. We take the
following filters into consideration: open source BSD filters (pf packet filter [20],
IP Filter [14], and IPFIREWALL (IPFW) [16]), Linux filters (ipchains [21] and
iptables/netfilter [18]), and Juniper Networks Inc. routers [15] as a sample of
commercial filters.

The analysis is split into three parts: (1) “inputs,” i.e., on what fields filtering
can be done, (2) “outputs,” results of the process, and (3) the “way” how filters
work.



3.1 Inputs, Outputs

All of the filtering schemes can use fields from packet headers and other “observ-
able properties” (“observables”) of packets, like source and destination interface.

Resulting actions can be divided into basic actions and action modifiers.
Basic actions typically determine whether the packet is accepted or not; a single
action is mandatory for a rule. Action modifiers add extra processing and a rule
may contain zero or more of them, e.g., log, count. For the accelerator, we focus
on actions that can be performed by hardware, as otherwise the packet has to
be sent for processing to the host operating system.

3.2 Processing of Filters

Execution Order Filters differ in rule evaluation order. IP Filter and pf are
last-match filters, i.e., the last matching rule is taken as the result. Moreover,
if a rule with keyword quick matches, it is considered the last matching. The
remaining filters in our survey are first-matching, i.e., the first matching rule
for a packet is applied. First-match filter can be converted to last-match one by
reversing the order of rules or marking all of them as quick. Last-match filter
containing quick rules can be converted to first-match based on analysing what
packets semantically match the i-th rule. They (i) match the i-th rule, (ii) do
not match any following rule, and (iii) do not match any preceding quick rule. It
can be shown that if the original filter is total (i.e., it has a rule for any possible
packet), the resulting filter is also total after applying rules (i–iii) and thus a
partitioning on packet header space is obtained. Because of this equivalence,
first-match semantics is used for the rest of the paper.

Blocks of rules can be named and used as subroutines (e.g., chains in ipta-
bles; similar functionality can be achieved with skipto in IPFW). The blocks
can be expanded (the expansion is finite or otherwise the original filter would
contain cycles). Similar approach can be taken for the class of “double match”
features, i.e., matching rules that do not terminate the search (like next term
statement in Juniper). The next term rule may be expanded into a sequence
of conjunctions of the rule with the subsequent ones, followed by the rest of the
filter.

Filter Position in the IP Stack Other differences can be found in position of
filtering in the IP stack. Typical variants are an input and an output filter
affecting all traffic (BSD style and Juniper). Other filters have INPUT chain
for host-destined traffic, FORWARD chain for forwarded (routed) traffic, and
OUTPUT chain for traffic generated by the host (Linux). Filters are either
bound to an interface or global—applied to all interfaces. Per-interface filters
can be joined to global filters just by adding “and interface i” to appropriate
rules. In the opposite direction, global filters can be expanded per-interface.
Similar conversion can be used for filters that consider input and output filters
separately and filters with optional direction specification.



To convert input/output filters into the Linux-style INPUT/FORWARD/
OUTPUT scheme, we put the input filter into INPUT and output filter into
OUTPUT. It ensures that locally destined and generated packets are correctly
filtered. The FORWARD chain can be built as a Cartesian product of input and
output filters. Considering only Accept and Deny actions, a resulting rule should
accept if both parts were accepting. For richer set of actions, all combinations
must be evaluated. In practice, we can obtain a more concise representation using
chains: we put the input filter into FORWARD and rewrite accepting actions to
calling a new FORWARD’ chain that contains the output filter.

To convert Linux scheme into input/output, we need a way to describe
addresses of the host machine. This may be supported by the filtering tool,
e.g., IPFW has keyword me that is moreover evaluated when the rule is ap-
plied. Building the list of host’s addresses by hand is not suitable; the addresses
may change especially if multicast is used—membership in multicast groups can
change quickly. Thus we propose using symbol me as the set of host’s addresses,
abstracting from how it is obtained.

Suppose that the output filter is able to test both input and output interfaces.
In that case, we create the input filter containing INPUT rules enriched with
“and destined to me,” the output filter containing OUTPUT with “and sent by
me” and followed by FORWARD rules enriched with “and not sent by me.” If
testing both interfaces is not possible in the output filter, another mechanism
is needed to simulate that, such as tagging. If no such approach is possible, the
input/output scheme would not be capable of processing FORWARD rules that
test both interfaces.

3.3 Filtering in Hardware Accelerator

Taking into account the position of the accelerator in the system (accelerating
card in a host PC acting as a common network card from the operating system
point of view but switching packets by itself if possible), the card does not need
to apply output filters on packets generated by the host computer, as these are
filtered by the operating system (OS). Packets received by the accelerator may
be forwarded by it or passed to the host OS. In the latter case, the packets
are filtered by the operating system, so no hardware filtering is necessary but
it is helpful in case of attacks to decrease the load on the host computer. For
forwarded packets, an equivalent of the FORWARD filter must be performed by
the classification engine of the accelerator. Moreover, the input filter for host-
destined packets needs to be created.

We have shown that expression power of considered schemes is equal with the
exception that converting INPUT/FORWARD/OUTPUT scheme into input/
output requires a way to describe interfaces of the host machine, such as term
me. Transformations described in this paper have been employed in the Netopeer
system [13] which is a configuration system for routers keeping the configuration
in its repository and converting it into native languages of target devices.



4 FDD-Based Packet Filtering

The target architecture of this design is the hardware lookup engine of the hard-
ware accelerator as available e.g., in COMBO6 [19]. The lookup engine uses a
CAM for part of its search and the final resolution is finished with comparison
instructions stored in static RAM. Thus designs we described in Section 2 differ
from our approach in the following:

– lower granularity of data access which is more suitable for the logic of packet
filtering and can be handled by CAMs (bit-level choice of variables is prac-
tically unfeasible in CAM),

– two-way branching only compared to IDDs using multi-way branching (dif-
ficult to convert to lookup instructions),

– direct rule order encoding when creating the diagram structure, while other
approaches evaluate filters explicitly to the level of partitioning the header
space, creating very complex rules.

Based on these properties, we define a structure called Filtering Decision
Diagram (FDD). The first step for the definition is the formal description of
FDD variables and their classes.

Definition 1 By FDD variables we understand the set of all possible filtering
terms of the filtering language.

We will distinguish three types of FDD variables:

1. exact match checks for protocols and interfaces, e.g., proto tcp,
2. prefix match checks for addresses, e.g., saddr 147.251.54.0/24,
3. range checks for ports, e.g., dport 1024-65535.4

The filter grammar uses the following fields: source interface sif, destina-
tion interface dif, source address saddr, destination address daddr, source port
sport, destination port dport, and protocol proto. We assume that each filter
rule is in conjunctive form; this doesn’t limit generality as all “or” operations
may be rewritten into sequences of rules in the conjunctive form.

All variables testing a single field will be called a class of FDD variables.
E.g., all test of dport ranges belong to a single class which is distinguished from
a class of saddr tests. 2

Terminals of the diagram are actions (including modifiers) of the packet filter
as described in Sec. 3.1. Moreover, we need a special terminal symbol5 called HSL
(“hic sunt leones”). It denotes the position of the filter that corresponds to “the
remaining filter rules”. During the computation of the filter, it will be overwritten
step-by-step by representations of subsequent rules.
4 For handling range queries, it might be useful to allow variables of the form dport

>= 1024. Nevertheless, we can use tests with mandatory lower and upper bounds
as all the domains are finite. We prefer not to make the theory more complex than
necessary.

5 Although HSL is a terminal symbol from the decision diagram point of view, it can
be understood as a non-terminal symbol in the process of filter composition.



Definition 2 Multi-terminal Binary Decision Diagram (MTBDD) [2] is a
rooted directed acyclic graph with two types of vertices. A nonterminal vertex u
is labelled with a variable var(u) and has two successors, low(u) and high(u).
Terminal vertices are labelled with elements of a finite set. 2

Definition 3 A Filtering Decision Diagram (FDD) is a MTBDD over FDD
variables. Its terminals are filtering actions and HSL.

– We say that an FDD is finished if it does not contain the HSL terminal.
– We use term reduced FDD (RFDD) in the same sense as for BDD (i.e., no

distinct nodes with the same variable and high and low successors exist and
no node has identical low and high successors).

– An FDD is ordered (OFDD), if all paths of the FDD respect an order of
variables < (variables smaller in the < relation appear higher in the FDD).

2

Motivation for ordering the FDD is twofold:

– it may make processing of FDDs faster by allowing to stop searching earlier
in recursive procedures traversing the structure,

– it may help rewriting the structure into the format of the first-match CAM
where order of columns is prescribed.

We define the functions on FDDs as order-independent as possible and the
differences are commented. Three types of ordering are considered:

1. Total order. Relation < is a linear order over FDD variables.
2. Class order. We prescribe the order of variable classes, e.g., we require that all

dport tests precede saddr etc. The variables inside a class are incomparable.
3. No order at all, all the variables are incomparable. For the purposes of the

algorithms we present, we define the < relation to never hold. It allows to
write the algorithms in a uniform manner. Such an FDD may not be call
ordered.

The basic functions on FDDs are derived directly from standard BDD op-
erations [1] extended with semantic improvements. Valuable notes on efficient
BDD implementation can be found in [3]. The FDD procedures have been im-
plemented by Minař́ıková [17].

4.1 Creating and Testing FDD Nodes

Function FDDCreate(n, l, h) is a standard procedure for creating nodes in re-
stricted BDD. It returns a node u with var(u) = n, low(u) = l, and high(u) = h.
The nodes are stored in a hash table and provided a suitable hashing scheme is
employed, the complexity of this function is constant on average [1].

The function first tests if l = h. In that case, l is returned immediately
in order to preserve non-redundancy. Otherwise, if the desired node is already
present in the hash table, it is returned; if not, it is newly created ensuring the



uniqueness property. Using FDDCreate(n, l, h) in all cases when new nodes are
created guarantees that the structure remains reduced.

When total variable ordering is used, using FDDCreate(n, l, h) ensures that
the FDD representation is canonical [5]. When we relax such a strict require-
ment, we can obtain a pair of semantically equivalent structures that cannot be
unified because of they are not equal syntactically, so their equivalence cannot
be recognised. This behaviour is completely identical to BDDs.

We define function FDDIsTerminal(n) that returns true if and only if the
FDD rooted by node n is terminal.

4.2 Restriction

Given an FDD u (i.e., the root of an FDD) and a variable j (e.g., saddr
147.251.54.0/0) assigned to v (high or low), restriction FDDRestrict(u, j,
v) computes an FDD based on that assignment. Intuitively, the result of the
restriction function is as follows: requiring v = high, variable j is assumed to be
satisfied and the FDD is modified so that j is replaced by its high-successor; all
further tests their result follows from j assignment are eliminated. Vice versa, if
v = low, then the FDD is modified based on j not being satisfied. The algorithm
pseudocode is shown in Fig. 1.

In a standard BDD, no relationship among variables exists. This is not the
case of FDDs. Knowledge about a variable may also allow restricting other vari-
ables belonging to the same class. E.g., if we know that dport 1024-65535
condition holds, we may also restrict a condition dport 0-25 as it is obviously
false. This principle is expressed in lines 4–18 of the algorithm and illustrated in
Fig. 2 where a case of interval comparison is shown.

We understand the set relations and operations as performed over sets of
packets matching appropriate FDD variables. If the variable j is assigned to
hold (i.e., v = high) and if condition j ⊆ var(u) holds then testing var(u) is not
necessary, e.g., for j = dport 25-80 and var(u) = dport 0-1023. In that case,
the node is restricted to its high value (Fig. 2a).

If variables j and var(u) are disjoint and test j holds, var(u) does not need
to be tested as it does not hold. Thus node u is restricted to low (Fig. 2b). In
other cases, no restriction can be performed—the relationship of the variables
can not be determined.

The other possibility is that v = low, i.e., variable j is not satisfied. Then,
tests on variables represented by j may be satisfied only in the complement of j.
E.g., if j = dport 0-1023, the dport test may hold for values 1024-65535.
Therefore, if var(u) covers the whole complement of j, which is expressed as
“j ∪ var(u) = the whole domain of the variable,” then u may be restricted to
the high value as it brings no new information (Fig. 2c).

In the final case j does not hold, therefore its subset cannot hold either, so
it can be restricted to low(u) (Fig. 2d).

The function restricts all occurrences of variables that can be restricted under
the assignment. This is the reason why we continue the recursion (returning re-



function FDDRestrict(u, j, v)
if FDDIsTerminal(u) then return u
fi

if v = high then /* j holds */
if j ⊆ var(u) then

return FDDRestrict(high(u), j, v)
fi

if j ∩ var(u) = ∅ then

return FDDRestrict(low(u), j, v)
fi

else /* v is low, we know j does not hold */
if j ∪ var(u) = whole domain of variable var(u) then

return FDDRestrict(high(u), j, v)
fi

if var(u) ⊆ j then

return FDDRestrict(low(u), j, v)
fi

fi

if var(u) < j then /* the variable is surely not present any more */
return u

else

return FDDCreate(var(u),
FDDRestrict(high(u), j, v), FDDRestrict(low(u), j, v))

fi

end function

Fig. 1. FDDRestrict(u, j, v)

sults of the FDDRestrict(high(u) or low(u), j, v)) in the 4–18 block. Successors
of the node can contain a variable that can be further restricted.

The important problem is when the search may be terminated. The com-
mands on lines 19–20 serve to optimise the run of the procedure using the
properties of variable order. The procedure works correctly even if no order
is defined—the < relation is defined to never hold then. If class order is used,
the recursion may stop when we leave the relevant class. When total order is de-
fined, this condition acts completely as used for ordered BDDs [1]. In all cases,
the order of variables is preserved as this procedure may only delete nodes and
it never creates new ones.

4.3 Converting a Filtering Rule to an FDD

Let us have packet filter F consisting of rules Fi for 1 ≤ i ≤ Size(F ). By
Action(Fi) we denote the action related with rule Fi.

Converting a filtering term from Fi into an FDD is straightforward. Each
term is rewritten from the rule into an FDD variable with the same test. The
high branch of the test leads to terminal Action(Fi), the low branch to HSL,
cf. Fig. 3. In its upper part, components of filtering rule “dport 0-1023 saddr
147.251.54.0/24 sif 1 accept” are shown.



Fig. 2. Principles of FDD Restriction

Fig. 3. Converting a filtering rule to FDD



function FDDAnd(u1, u2)

/* solve terminal cases */
if u1 = HSL or u2 = HSL then return HSL
fi

if FDDIsTerminal(u1) then return u2

fi

if FDDIsTerminal(u2) then return u1

fi

/* perform Shannon expansion on the smallest variable */
h = smallest of nodes u1, u2 in relation <
uh

1 = FDDRestrict(u1, var(h), high)
ul

1 = FDDRestrict(u1, var(h), low)

uh
2 = FDDRestrict(u2, var(h), high)

ul
2 = FDDRestrict(u2, var(h), low)

return FDDCreate(h, FDDAnd(uh
1 , uh

2), FDDAnd(u
l
1, ul

2))

end function

Fig. 4. FDDAnd(u1, u2)

The terms are combined together by FDD function FDDAnd(u1, u2) in Fig. 4.
It computes an FDD equivalent to the conjunction of the terms. This function is
based on standard “Apply” BDD procedure [5] for computing a logical function
of a BDD pair. Refinements to this function are related to the fact it is only
used to combine FDDs where all terminals are equal or HSL—the terminals are
taken from a single filtering rule. The advantage of this approach over using the
standard and more general Apply function is that relationship of all terminal
symbols does not need to be solved.

Note that supposing non-HSL terminals in u1 and u2 are identical, this func-
tion is commutative.

Terminal cases are tested first. If one of the terminals is HSL, the result
is HSL, too. If a terminal is reached, the remainder of the other structure may
be simply appended. If a variable order is prescribed and the parameters are
ordered, the order is preserved by this step.

We shall precise meaning of line 10 of the algorithm. If no variable order
is used, let us understand the choice as “choose the first available variable,
say, from u1.” For class variable order, a variable is chosen from the lowest
class available. For total variable order, the possibility of choice is abandoned
completely— the lowest available variable has to be taken. Moreover, as all new
nodes are created with the FDDCreate(n, l, h) function, the resulting structure is
reduced. Regardless of variable choice, Shannon expansion is used to propagate
the computation to child nodes.

In higher-level procedures, we will use notation FDDConvertRule(f) for the
function that converts a firewall rule f into an FDD by means of applying meth-
ods described above. It returns the root of the FDD representing rule f .



function FDDAppend(u1, u2)

if u1 = HSL then return u2

fi

if FDDIsTerminal(u1) then return u1

fi

/* perform Shannon expansion on the smallest variable */
h = smallest of nodes u1, u2 in relation <
uh

1 = FDDRestrict(u1, var(h), high)
ul

1 = FDDRestrict(u1, var(h), low)

uh
2 = FDDRestrict(u2, var(h), high)

ul
2 = FDDRestrict(u2, var(h), low)

return FDDCreate(h, FDDAppend(uh
1 , uh

2), FDDAppend(u
l
1, ul

2))

end function

Fig. 5. FDDAppend(u1, u2)

4.4 Converting a Rule Set to an FDD

Suppose we have an FDD representation of filtering rules from the first up to
rule i. Now, we present a procedure to add rule i + 1 to the FDD.

Function FDDAppend(u1, u2) shown in Fig. 5 searches for the HSL terminal in
the u1 FDD and replaces it with u2. It is also the principle of handling terminal
cases in the algorithm. If HSL is found in u1, it is rewritten to u2. When another
terminal is reached, it is returned.

The propagation through the structure is again done using Shannon expan-
sion. Discussion of relationship of variable order to the expansion is completely
identical as for function FDDAnd(u1, u2) described in Section 4.3.

Converting a whole filter to its FDD representation is shown in Fig. 6. The
algorithm starts with the HSL terminal and rules are applied one by one. The
resulting FDD is finished (i.e., it does not contain the HSL terminal) since the
last filtering rule is the default rule. Adding the last filtering rule, the HSL
terminal of so-far-processed filters is rewritten into the default action (it may
have been rewritten earlier if some of the preceding rules was default—in that
case the computation could have been stopped at that point as all subsequent
rules are unreachable anyway).

u = HSL
for i = 1 to Size(F ) do

f = FDDConvertRule(Fi)

u = FDDAppend(u, f)
done

Fig. 6. Converting a filter to the FDD representation



4.5 Complexity of Operations on FDD

We supposed that the filter is a sequence of filters containing only conjuncts of
terms. Let m be the number of filters and n maximal number of terms in a rule.
Then evaluation of the filter in software needs O(mn) tests in the worst case.
The number of tests in the FDD is limited from above by the same expression.
We can easily see this if the FDD is not ordered nor reduced: then its structure
corresponds directly to lazy evaluation of packet filter in software. Properties of
reduction and ordering of nodes find identical nodes and unify them, decreasing
the number of tests needed.

4.6 Implementation Notes

In a practical implementation, the length of addresses is too large to treat the
addresses as single entities in hardware, mostly in case of IPv6. Therefore we
propose the addresses are split into sequences of registers and the registers to act
as FDD classes in FDD processing. It has no effect on the functions themselves so
we decided to hide this detail in the theory in order not to add extra complexity
to the text.

The structure can be rewritten into CAM and comparison instructions as fol-
lows. Each column of CAM can test a class of variables. The algorithm searches
for such a variable, restricts the FDD based on its value and fills it into CAM
row. It recurses until all columns of CAM are filled, creating first-match represen-
tation in CAM. The remainder of the structure is directly rewritten into SRAM
comparison instructions. The main advantage of this design is that searching
CAM and evaluating the instructions can be pipelined.

5 Conclusions

In this paper, we have presented an analysis of expressive power of various com-
monly available packet filtering systems and proposed a novel data structure for
packet filtering. The expression power of considered schemes has beed shown to
be equivalent with the exception that converting INPUT/FORWARD/OUTPUT
scheme into input/output requires features mentioned in Section 3. Based on this
knowledge, we have designed a semantically enriched BDD-based structure called
FDD, which allows efficient lookup of the packet filtering decision. The basic op-
erations have been described that are necessary for constructing the FDDs from
the common packet filtering systems. We also comment on implementing the
FDDs into the hardware implementation based on CAM and static RAM. We
consider the FDDs as a very important first step toward unified ARP-lookup/
routing/filtering operation to increase the performance of routing platforms that
support both packet routing and filtering.

Acknowledgements

This project has been kindly supported by a research intent “Optical Network
of National Research and Its New Applications” (MŠM 6383917201).



References

1. Henrik Reif Andersen. An Introduction to Binary Decision Diagrams, April 1998.
Department of Information Technology, Technical University of Denmark, Lyngby,
http://www.it.dtu.dk/tilde-hra/bdd97.ps.

2. C. Baier and E. Clarke. The Algebraic Mu-Calculus and MTBDDs. In 5th Work-
shop on Logic, Language, Information and Computation (WoLLIC’98), pages 27–
38, 1998.

3. Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation
of a BDD package. In Proceedings of the 27th ACM/IEEE conference on Design
autamation, pages 40–45, Orlando, Florida, USA, 1991. IEEE/ACM, ACM Press,
New York, NY, USA. ISBN 0-89791-363-9.

4. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, August 1986. ISSN 0018-9340.

5. Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

6. Mikkel Christiansen and Emmanuel Fleury. An Interval Decision Diagram Based
Firewall. In Proceedings of 3rd IEEE International Conference on Networking
(ICN ’04), Gosier, Guadeloupe, French Caribbean, 2004. University of Haute Al-
sace, Colmar, France. ISBN 0-86341-325-0.

7. Compact Filter: An IDD Based Packet Filter for Linux, August 2005. http://

www.cs.aau.dk/tilde-mixxel/cf/.

8. Anja Feldmann and S. Muthukrishnan. Tradeoffs for Packet Classification. In
Proceedings of INFOCOM, volume 3, pages 1193–1202. IEEE, 2000.

9. Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Pro-
ceedings of the conference on Applications, technologies, architectures, and protocols
for computer communication, pages 147–160, Cambridge, Massachusetts, United
States, 1999. ACM Press, New York, NY, USA. ISBN 1-58113-135-6.

10. Pankaj Gupta and Nick McKeown. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 20(1):34–41, January/February 2000.

11. Scott Hazelhurst, Adi Attar, and Raymond Sinnappan. Algorithms for Improv-
ing the Dependability of Firewall and Filter Rule Lists. In DSN ’00: Proceedings
of the 2000 International Conference on Dependable Systems and Networks (for-
merly FTCS-30 and DCCA-8), pages 576–585, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0707-7.

12. Scott Hazelhurst, Anton Fatti, and Andrew Henwood. Binary Decision Diagram
Representations of Firewall and Router Access Lists. Technical Report TR-Wits-
CS-1998-3, University of the Witwatersrand, Johannesburg, South Africa, October
1998.

13. Petr Holub. XML Router Configuration Specifications and Architecture Document.
Technical Report 7/2002, CESNET, 2002.

14. IP Filter, March 2005. http://coombs.anu.edu.au/∼avalon/.
15. Juniper Networks, Inc. JUNOS Internet Software for J-series, M-series, and T-

series Routing Platforms: Policy Framework Configuration Guide, February 2005.
http://www.juniper.net/techpubs/software/junos/junos71/index.html.

16. Kurt J. Lidl, Deborah G. Lidl, and Paul R. Borman. Flexible Packet Filtering:
Providing a Rich Toolbox. In Proceedings of the BSDCon ’02 Conference on File
and Storage Technologies, pages 99–110, Cathedral Hill Hotel, San Francisco, Cal-
ifornia, USA, February 11–14 2002. USENIX.



17. Kateřina Minař́ıková. Computing Look-up Programs of Routing Accelerator. Mas-
ter’s thesis, Faculty of Informatics, Masaryk University Brno, 2005.

18. The netfilter/iptables project, March 2005. http://www.netfilter.org/.
19. Jǐŕı Novotný, Otto Fuč́ık, and David Antoš. Project of IPv6 Router with FPGA

Hardware Accelerator. In Peter Y.K. Cheung, George A. Constantinides, and
Jose T. de Sousa, editors, Field-Programmable Logic and Applications, 13th In-
ternational Conference FPL 2003, volume 2778, pages 964–967. Springer Verlag,
September 2003.

20. PF: The OpenBSD Packet Filter, March 2005. http://www.openbsd.org/faq/pf/.
21. Rusty Russel. Linux IP Firewalling Chains, March 2005. http://people.

netfilter.org/∼rusty/ipchains/.
22. Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet Clas-

sification Using Multidimensional Cutting. In SIGCOMM’03: Proceedings of the
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation Conference, pages 213–224, Karlsruhe, Germany, 2003. ACM Press, New
York, NY, USA.

23. Raymond Sinnappan and Scott Hazelhurst. A Reconfigurable Approach to Packet
Filtering. In Gordon J. Brebner and Roger Woods, editors, Proceedings of the
11th International Conference on Field-Programmable Logic and Applications, vol-
ume 2147 of LNCS, pages 638–642, Belfast, Northern Ireland, UK, August 2001.
Springer Verlag. ISBN 3-540-42499-7.

24. Karsten Strehl and Lothar Thiele. Symbolic model checking of process networks
using interval diagram techniques. In Proceedings of the 1998 IEEE/ACM interna-
tional conference on Computer-aided design, pages 686–692, San Jose, California,
United States, 1998. ACM Press, New York, NY, USA. ISBN 1-58113-008-2.


