
Distributed Synchronous Infrastructure for

Multimedia Streams Transmission and Processing

Tomáš Rebok and Petr Holub

December 5, 2007

Abstract

During 2007, CESNET has built a synchronous infrastructure for
multimedia streams transmission and processing, which is based on
the DiProNN nodes. The report presents both the DiProNN nodes
developed by CESNET and the infrastructure itself. We show a sample
scenario it might be used for and test the infrastructure’s behaviour
and performance limitations.

Keywords: distributed synchronous infrastructure, stream process-
ing, multimedia content distribution, DiProNN, virtualisation, virtual
machines.

1 Introduction

Nowadays, multimedia content has become the major content transferred
on computer networks. Since the distribution of non-realtime (so called
offline) multimedia content does not have special demands on the computer
network infrastructure used, the realtime multimedia streams requirements
differ from the offline ones’ requirements a lot. Realtime streams usually
require stable and sometimes quite significant network bandwidth and as
low end-to-end latency as possible.

However, mere content distribution itself may not be sufficient as pro-
cessing of a realtime stream inside the network is often very desirable. For
example, when streaming high-quality video stream using the HDV [1] for-
mat taking approximately 25 Mbps of network bandwidth, there might be
users not having sufficient network connection capacity and thus some real-
time transcoding to lower quality (which requires lower network bandwidth)
must be done.

During 2007, CESNET has built a synchronous infrastructure for multi-
media streams transmission and processing. The infrastructure is based on
the Distributed Programmable Network Nodes (DiProNN), that are devel-
oped by CESNET in cooperation with the Faculty of Informatics Masaryk
University in Brno. In the infrastructure presented, the DiProNNs can be

used both for simple content distribution and/or arbitrary content process-
ing.

In the first part, the report focuses on the architecture of the DiProNN
nodes itself, while the next one describes the synchronous infrastructure
built. Afterwards we describe a sample scenario the infrastructure might be
used for, and finally we test and analyse the infrastructure’s behaviour and
performance limitations.

2 DiProNN: Distributed Programmable
Network Node

2.1 Architecture

Single node DiProNN architecture, which has been proposed and discussed
in [2], [3], [4], [5], [6], assumes the underlying infrastructure as shown in Fig-
ure 1. In this report, we give only very brief description and the reader who
wants to find out more should look into the referenced papers. The DiProNN
units form a computer cluster with each unit having two interconnections,
at least on the conceptual level:

• one low-latency control connection used for internal communication
inside the DiProNN, and

• one data connection used for receiving and sending data.

low latency
interconnect switch

processing units

distribution
unit

aggregation
unit

data link low latency interconnect

network
(Internet) data flow data flow

control unit

network
(Internet)

data switch

Figure 1: DiProNN single node architecture.

The low latency interconnection is desirable since current common net-
work interfaces like Gigabit Ethernet provide large bandwidth, but the la-
tency of the transmission is still in order of tens to hundreds of µs, which

2

is not suitable for fast synchronisation of DiProNN units. Thus, the use of
specialised low-latency interconnects like Myrinet network providing as low
latency as 10µs (and even less, if you consider e.g., InfiniBand with 4 µs),
which is close to message passing between threads on a single computer, is
very suitable (however, the usage of single interconnection serving as data
and control interconnection simultaneously is also possible).

From the high-level perspective of operation, the incoming data are first
received by the DiProNN’s Distribution unit, where they are forwarded to
appropriate Processing unit(s) for processing. After the processing is com-
pleted, they are finally aggregated using the Aggregation unit and sent over
the network to the next DiProNN node (or to the receiver). As obvious from
the Figure 1, the DiProNN architecture comprises four major parts:

• Distribution unit—the Distribution unit takes care of ingress data
flow distribution to appropriate DiProNN Processing unit(s), which
are determined by the Control unit described later.

• Processing units—the Processing unit (described in detail in Sec-
tion 2.1.1 receives packets and forwards them to proper active pro-
grams for processing. The processed data are then forwarded to next
active programs for further processing or to the Aggregation unit to
be sent away.

Each Processing unit is also able to communicate with the other ones
using the low-latency interconnection. Besides the load balancing and
fail over purposes this interconnection is mainly used for sending con-
trol information of DiProNN sessions (e.g., state sharing, synchroni-
sation, processing control).

• Control unit—the Control unit is responsible for the whole DiProNN
management and communication with its neighbourhood including
communication with DiProNN users to negotiate new DiProNN ses-
sions (details about DiProNN sessions establishment are given in Sec-
tion 2.2) and, if requested, providing monitoring of their behaviour.

• Aggregation unit—the Aggregation unit collects the resulting traffic
and sends it to the output network line(s). It serves as a simple for-
warder forwarding incoming data from a DiProNN’s private network
segment to public Internet.

The DiProNN architecture presented represents the most general archi-
tecture possible. In fact, some DiProNN units might merge with the others
(for example, the Distribution unit or one of the Processing units might
perform as the Control unit). The most minimalistic DiProNN architecture
consists of just single Processing unit which serves as all the DiProNN units
simultaneously.

3

2.1.1 DiProNN Processing Unit Architecture

DiProNN and Virtual Machines
The usage of virtual machines enhance the execution environment flexi-

bility of the DiProNN node—they enable DiProNN users not only to upload
active programs, which run inside some virtual machine, but they are also
allowed to upload a whole virtual machine with its operating system and
let their passing data being processed by their own set of active programs
running inside uploaded VM(s). Similarly, the DiProNN administrator is
able to run his own set of fixed virtual machines, each one with differ-
ent operating system, and generally with completely different functionality.
Furthermore, the VM approach ensures strict separation of different virtual
machines enhancing their security and also provides strong isolation among
virtual machines, and thus allows strict scheduling of resources to individual
VMs, e.g., CPU, memory, and storage subsystem access.

Nevertheless, the VMs also bring some performance overhead necessary
for their management [7]. This overhead is especially visible for I/O virtu-
alization, where the Virtual Machine Monitor (VMM) or a privileged host
OS has to intervene every I/O operation. We are aware of this performance
issues, but we decided to propose a VM-based programmable network node
architecture not being limited by current performance restrictions.

Processing Unit Architecture
The architecture of the DiProNN Processing unit is shown in Figure 2.

The privileged service domain (dom0 in the picture) has to manage the whole
Processing unit functionality including uploading, starting and destroying
of the Virtual Machines (VMs) [8], communication with the Control unit,
and a session accounting and management.

The virtual machines managed by the session management module could
be either fixed, providing functionality given by a system administrator, or
user-loadable. The example of the fixed virtual machine could be a virtual
machine providing classical routing as shown in Figure 2. Besides that, the
set of another fixed virtual machines could be started as an active program
execution environment where the active programs uploaded by users are ex-
ecuted (those not having their own virtual machine defined). This approach
does not force users to upload the whole virtual machine in the case where
active program uploading is sufficient.

2.1.2 Communication Protocol

For data transmission, the DiProNN users may use one of three transport
protocols supported by DiProNN: the User Datagram Protocol (UDP) [9],
the Datagram Congestion Control Protocol (DCCP) [10] and the transmis-
sion protocol called Active Router Transmission Protocol (ARTP, [11]) we

4

Figure 2: DiProNN Processing Unit Architecture.

originally designed and implemented for the generic active router architec-
ture described in [12]. Depending on applications demands, the users choose
the transmission protocol they want to use—whether they want or have to
use ARTP’s extended functionality (the ARTP is in fact an extension of the
UDP protocol like e.g. Real-time Transport Protocol (RTP) is) or not.

2.2 Programming Model

In this section we depict a programming model we propose for DiProNN
programming. The DiProNN programming model is based on the workflow
principles [13], and uses the idea of independent simple processing blocks,
that composed into a processing graph constitute required complex process-
ing. In DiProNN, the processing block is an active program and the commu-
nication among such active programs is thanks to the virtualisation mecha-
nisms provided by machine hypervisor using common network services (de-
tails about DiProNN internal communication are provided in Section 2.2.1).
The interconnected active programs then compose the “DiProNN session”
described by its “DiProNN session graph”, which is a graphical representa-
tion of an “DiProNN program” (for example the ones used later, see Figure 5
and Figure 4). Furthermore, to make DiProNN programming easier all the
active programs as well as the input/output data/communication interfaces
are referred by their hierarchical names.

The DiProNN program defines active programs optionally with virtual
machines they run in1, which are necessary for DiProNN session processing,
and defines both data and control communication among them. Besides
that, the DiProNN program may also define other parameters (e.g., re-
sources required) of active programs as well as the parameters for the whole

1In DiProNN, each active program may run in completely distinct execution environ-
ment (e.g., different OS) from the others. However, it is also possible that single VM may
contain several active programs running inside.

5

DiProNN session.
The main benefit of the DiProNN programming model being described

is, that the complex functionality required to be done on the programmable
node can be separated into several single-purpose active programs with the
data flow among them defined. Furthermore, the usage of symbolic names
doesn’t force active programs to be aware of their neighbourhood—the active
programs processing given DiProNN session before and after them—they
are completely independent of each other so that they just have to know the
symbolic names of ports they want to communicate with and register them
(as sketched in the next section) at the control module of the Processing
unit they run in.

2.2.1 Session Establishment and Data Flow

When a new DiProNN session request arrives to the node, the Distribution
unit immediately forwards it to the Control unit. In the situation when the
receiver(s) of given DiProNN session is/are known, the Control unit contacts
all the DiProNN nodes operating on the path from it to the receiver(s), and
asks them for their actual usage. Using the information about their usage
the Control unit decides, whether the new DiProNN session request could
be satisfied by the first node alone or whether a part of requested DiProNN
session has to be (or should be because of resource optimalisation) performed
on another DiProNN node being on the path from the first DiProNN node
to the receiver(s).

When the request can be satisfied, the session establishment takes place.
It means, that each DiProNN node receives its relevant part of the whole
DiProNN session (including all the active programs and virtual machines
images) and the Control unit of each DiProNN node decides, which Pro-
cessing units each active program/virtual machine will run on. After that,
both the control modules (a part of each Processing unit) and the Distri-
bution units of all the DiProNN nodes used are set appropriately. Then all
the active programs and virtual machines are started, and moreover, all the
requested resources are reserved.

Since the DiProNN programming model uses symbolic names for com-
munication channels (both data and control channels) instead of port num-
bers, the names must be associated with appropriate port numbers during a
DiProNN session startup. This association is done using the control module
where each active program using simple text protocol registers the couple
(symbolic name, real port). Using the information about registered cou-
ples together with the virtual machine and port number a packet is coming
from, the control module properly sets the receiver of passing packets (using
kernel iptables and its DNAT target). The packets are then automatically
forwarded to proper active programs.

However, this approach does not enable active programs to know the

6

real data receiver (each packet is by VMM destined to given VM address
and given active program’s port). Nevertheless, the DiProNN users may
use the ARTP’s extended functionality to make their active programs being
aware of real data receiver. In this case, the Aggregation unit forwards these
packets to the destination given inside ARTP datagram instead of the one
given in DiProNN program.

3 Synchronous Infrastructure for Multimedia
Streams Transmission and Processing

3.1 Overview

During the year 2007, CESNET has built an infrastructure for synchronous
multimedia stream transmission and processing consisting of four DiProNN
nodes located in Brno, Liberec, Pilsen, and Prague depicted in the Figure 3.

Figure 3: DiProNN nodes used for synchronous infrastructure (red dots).

All the DiProNN nodes are currently implemented using XEN Virtual
Machine Monitor (VMM) [14]. The nodes are set using the DiProNN’s
minimal configuration possible—they consist of just single physical com-
puter serving as the DiProNN Processing Unit, DiProNN Distribution Unit,
DiProNN Aggregation Unit and DiProNN Control Unit simultaneously. All
the four physical machines used for synchronous infrastructure have exactly
identical hardware configuration given in Table 1.

The DiProNN nodes are interconnected with 1 GE network links using
CESNET’s public network infrastructure. In the future, we also plan to
equip the nodes with Myrinet 10 GE network cards and test the infras-

7

Configuration
Brand Supermicro
Model X7DBR-8
Processor 2× Core 2 Duo Intel Xeon 3.0 GHz
Front-side bus 533 MHz
Memory 4 GB DIMM DDR2
GE NIC 2× Intel PRO/1000 Network Adapter
Operating system Linux Ubuntu 7.04 (Feisty Fawn)

kernel 2.6.18-xen SMP

Table 1: Configuration of the DiProNN nodes used for synchronous infras-
tructure.

tructure behaviour when transmitting higher amounts of data, for example
1.5Gbps High Definition (HDTV) [15] video streams, and/or jumbo packets
much larger than current maximum of 1500 B.

3.2 Sample Scenario

To prove the infrastructure’s proper functionality we decided to test it in an
example realistic it might be used for.

Situation: Let’s have a presentation taking place in Brno. The presenta-
tion has to be available for clients not being able to attend the presentation
personally. For clients having high-bandwidth connection the presentation
should be available in high quality HDV stream (generated in Brno us-
ing HDV cameras2), and for clients not having necessary capacity of their
connections it should be transcoded in real-time and be available in lower
quality. Both high quality and low quality streams have to be saved for later
purposes, too.

However, since the video transcoding takes some time, at least the syn-
chronisation of audio (not necessarily transcoded since it does not take such
high network bandwidth as video does) and transcoded video streams must
be done. Nevertheless, the synchronisation of the high quality audio and
video streams is also highly desirable to prevent network fluctuations and
possible desynchronisation of them.

We should point out, that even the original audio and video streams
are also desynchronised because of the following reason: the HDV video
stream outgoing from the HD camera is delayed by approximately 1 second,
while the audio stream is captured by standalone audio grabber device with
latency in order of tens of ms. Both the audio and non-transcoded video

2For our experiments we used Sony HVR-Z1R camera.

8

streams thus need to be synchronised, even if the network itself would not
desynchronise them.

For the situation described we established3 the DiProNN session de-
scribed by its DiProNN session graph (Figure 4 and relevant DiProNN pro-
gram (Figure 5). Both audio and video streams coming from their grabber
devices were sent to the DiProNN node located in Brno (V in input for
video stream and A in input for audio stream), where they were duplicated
(Dup A active program (AP) for audio duplication and Dup V AP for video
duplication). One twinstream (audio and video) was sent to Prague (high-
quality stream), while the second one was forwarded to second VM running
in Brno for transcoding (Transcode AP), and afterwards sent to Liberec.
Both twinstreams (high-quality and low-quality) were then synchronised
(Sync high and Sync low APs) and duplicated once again (Dup high and
Dup low APs). One twinstream of each copy was sent to Pilsen and saved
for later purposes (Saver high and Saver low APs), and the other one was
sent to the reflector application [16], which served as the presentation content
provider (having input/output ports named in/out high and in/out low) for
all the connected clients (in fact, there were two reflectors—one for high-
quality audio and video data and the other one for low-quality video and
original audio data).

Figure 4: DiProNN session graph used in the example scenario.

3Since the DiProNN utilities serving for sessions’ establishment (uploading, starting,
and destroying) were not available at the moment, the whole DiProNN configuration was
done manually. However, since the whole configuration can be simply derived from the
DiProNN program, the utilities are quite simple and will be available during 2008.

9

The high-quality stream itself was transferred in HDV format and took
about 25 Mbps of network bandwidth. For duplications, stream synchronisa-
tions and storage we used active programs built to DiProNN. As mentioned
before, the content provider we used was our implementation of the reflector
program [16], which was uploaded to DiProNN. The video stream generat-
ing, listening, and transcoding itself was done by the VLC media player4—
the input HDV stream was transcoded into MP2V stream having variable
bitrate (set to 256 kbps) and scaled down to 25 % of its original size. For
audio capturing and listening the RAT application5 set to Linear-16 codec
in 16 kHz stereo mode was used. The audio stream thus took 512 kbps of
the network bandwidth.

The overall client setup (located in Brno) is captured in the picture 6,
and the detail of client’s screen is captured in the picture 7. The client
was connected to both high-quality and low-quality content providers, and
thus the picture shows overall high-quality stream bandwidth (including all
the IP and UDP headers it took about 30Mbps), overall low-quality stream
bandwidth (including headers it took about 820 kbps), and the latency taken
by the transcoding itself (visible on the clocks streamed—about 1 second).
The sizes of files containing saved 20 minutes streams6 were 3,2 GB for high-
quality video stream, 103 MB for transcoded video stream and 79MB for
each audio stream (saved twice—once as a high-quality twinstream and once
as a low-quality twinstream).

4 Infrastructure behaviour tests

To test the behaviour and performance limitations of the synchronous in-
frastructure presented we kept the setup used for previous experiments7 and
generated streams of UDP data of four different packet sizes (100 B, 500 B,
1000 B, and 1450 B). All the streams were sequentially sent from separate PC
having configuration given in Table 2 through the HP Procurve 6108 switch
to input video port of the DiProNN node located in Brno, while analysing
applications (running on the same machine as the stream generator) were
simultaneously connected to both content providers (Prague and Liberec).
Furthermore, two others analysing applications connected to both content
providers were also running in Pilsen (on the DiProNN node used for data
storage in previous experiment).

4http://www.videolan.org/vlc
5http://mediatools.cs.ucl.ac.uk/nets/mmedia
6The streams were saved in simple packet form—the whole UDP packet content and

its timestamp were saved in separate files for both audio and video streams. We have also
created the player that is able to read such file content and sent it to the network like it
would be sent in real-time.

7In fact, there were a few changes done—the transcoding and synchronising modules
were replaced by simple packet forwarders.

10

Configuration
Processor Intel Core 2 Duo CPU, 2.66GHz
Memory 2 GB DIMM DDR2
GE NIC Intel PRO/1000 Network Adapter
Operating system Linux Ubuntu 6.10 (Edgy Eft)

kernel 2.6.20 SMP

Table 2: Configuration of the tester machine generating the UDP test data.

All the DiProNN nodes were running two VMs (except the Pilsen node
which was running single VM) with exactly identical configuration given in
Table 3.

Virtual Machine
dom0 dom1 dom2

#CPU 2 1 1
Memory 1.5GB 1 GB 1 GB
OS Ubuntu 7.04 Ubuntu 7.04 Ubuntu 7.04
Kernel 2.6.18-xen SMP 2.6.18-xen SMP 2.6.18-xen SMP
Scheduler credit

Table 3: The configuration of DiProNN nodes used.

The bandwidth of generated UDP data stream of given packet size was
gradually incremented, and the analysers in Brno determined the packet
loss and delay, while the analysers in Pilsen determined the packet loss only.
The packet delay in Pilsen could not be easily determined since the sending
machine and Pilsen DiProNN node had their clocks desynchronised. The
graphs in Figures 8, 9, 10 and 11 show the results achieved.

4.1 Results discussion

Before we discuss the results, it is necessary to point out that the theoretical
maximum achievable during our experiments was 500Mbps since the streams
were duplicated on the DiProNN nodes and were sent through the network
lines having maximum capacity of 1 Gbps twice. Thus at least the Brno
output lines, Brno input lines (analysers) and Pilsen input lines would be
saturated.

However, the maximal bandwidth of 500Mbps is highly theoretical, since
the real network lines usually do not provide their theoretical capacity. Thus,
we have measured the real maximal bandwidths achievable on synchronous
infrastructure built. The maximal throughputs were measured between
each two nodes (their dom0 s and their domU s) directly communicating

11

in DiProNN session described above. The data streams were generated by
the iperf tool, and the results achieved are summarised in Tables 4 and 5.

Packet size Maximal throughput [Mbps]
Br-Pra Br-Lib Pra-Pil Lib-Pil

100 B 159 124 169 134
500 B 597 582 603 599
1000 B 923 889 929 907
1450 B 937 918 944 924

Table 4: Maximal throughputs achieved (between dom0 s).

Packet size Maximal throughput [Mbps]
Br-Pra Br-Lib Pra-Pil Lib-Pil

100 B 146 108 162 121
500 B 577 578 592 586
1000 B 901 866 916 891
1450 B 923 899 925 903

Table 5: Maximal throughputs achieved (between domU s).

The comparison of Tables 4 and 5 shows, that the virtualisation itself
has almost no impact on the infrastructure’s network performance. The
next table (Table 6) shows, that the maximal bandwidths achievable during
tested DiProNN session, that are restricted by the network itself (not by the
XEN and its internal communication).

It is obvious, that the network itself is not the bottleneck of the DiProNN
session tested during our example scenario, and thus we have to keep looking
for the real bottleneck to make the achieved results clear.

Since the internal XEN communication among dom0 and domU s can
bring other performance overheads, we have tested the effect of network
stream multiplication on the most burdened DiProNN node—Brno node.
It is obvious, that during the DiProNN session tested the particular VMs
running on the Brno node had to cope with input/output bandwidths given
in Table 7.

The Table 7 shows that when having the input node bandwidth x (for
example 100 Mbps), the dom0 had to cope with the input network band-
width of size 4x (400 Mbps) while each dom U had to cope with the input
network bandwidth of size x (100 Mbps). The output dom0 bandwidth was
also 4x (2x to dom U s and 2x out of the node), while the output bandwidth
of domU 1 was 2x and the output bandwidth of domU 2 was x.

Thus we have tried to saturate the Brno dom0 with up to four network

12

Packet size Throughput [Mbps]
Prague Liberec Pilsen from Pra Pilsen from Lib

100 B 74.5 62 74.5 62
500 B 298.5 291 298.5 291
1000 B 461.5 444.5 461.5 444.5
1450 B 468.5 459 468.5 459

Table 6: The maximal throughput that was achieved during performance
tests (restricted by the network itself). The maximal achievable bandwidths
between dom0 s (Table 4 are divided by 2 and the minimal value on the path
from the data sender to the data receiver connected to given content provider
is presented. The reason why we use the maximal bandwidth between dom0 s
and not between domU s is, that DiProNN always sends all the data to
dom0 s where they are forwarded using iptables rules to appropriate active
programs for further processing.

Bandwidth
input node BW x
domU 1 from dom0 x
domU 2 from dom0 x
dom0 from domU 1 2x
dom0 from domU 2 x
output node BW 2x

Table 7: The study of input/output bandwidths of the Brno DiProNN node.

streams generated from the dom U s on the same host. The dom0 had to
return the streams back to the sender where the maximal throughput was
analysed8. We have tested same packet sizes as we did in previous tests—
100 B, 500B, 1000 B and 1450 B. The results achieved are summarised in
the Table 8.

Results conclusions
Concerning the infrastructure tests, the approximate limitations of the

whole infrastructure not being set to any DiProNN session were presented
in the Table 6. The results show that the virtualisation used has almost no
impact on the infrastructure network performance and thus the DiProNN
nodes are able to communicate with each other as if they were running native
Linux OS.

8Note, that during these tests the maximal bandwidth available was not limited by the
1Gbps network interconnection—all the packets were sent among domains using the XEN
internal interconnection.

13

Packet size Average throughput [Mbps]
1 stream 2 streams 3 streams 4 streams

100 B 86.5 64.5 44.2 34.1
500 B 398.4 291.1 218.7 163.0
1000 B 778.2 407.9 324.0 275.4
1450 B 828.8 460.1 411.1 365.1

Table 8: The maximal throughputs achieved on the Brno DiProNN node
(internal XEN communication).

To find out how the infrastructure behaves while set to typical DiProNN
session we tried to analyse the theoretical results achievable, and tried to
find out the reason why the DiProNN session tests behave in the way we
measured. We found out, that for the scenario we tested, the Brno node
has to cope with the highest amount of data, and thus was the bottleneck of
the whole DiProNN session. The comparison of the Table 8 with the graphs
in the Figures 8, 9, 10 and 11 shows, that during the DiProNN session
tests we have reached the maximal capacity of the Brno DiProNN node.
However, the infrastructure performance depends a lot on the scenario it
is used for—for simple scenarios its performance might be limited solely by
the network performance, while for more complicated ones the performance
might decrease a lot.

5 Conclusions

In this report we have presented the synchronous infrastructure for multime-
dia streams transmission and processing built during the year 2007 by CES-
NET. The architecture of the infrastructure nodes, based on the DiProNN
nodes being developed by CESNET in cooperation with the Faculty of In-
formatics Masaryk University in Brno, was also presented. Besides that the
report shows the typical scenario the infrastructure can be used for. Fur-
thermore, we have presented several tests demonstrating the behaviour and
performance limitations of the infrastructure set to the scenario it will be
mainly used for.

Regarding our future work, the infrastructure built is supposed to be
used for scenarios similar to the tested one. We will analyse the most used
scenarios and study their bottlenecks, and if necessary, we will try to opti-
mise them. Another interesting topic for our future work is to implement
Quality of Service (QoS) assurances in the DiProNN nodes and try to keep
the network parameters within desired limits. Furthermore, we will try to
equip at least some of the DiProNN nodes by Myrinet 10Gbps network cards
and study the infrastructure behaviour when it is used for higher network

14

bandwidths and/or transmitting bigger packets (for example jumbo packets
having 8500 B instead of standard 1500B).

References

[1] HDV Video Format. http://www.hdv-info.org

[2] Tomáš Rebok. DiProNN: Distributed Programmable Network Node Ar-
chitecture. In Proceedings of The Fourth International Conference on
Networking and Services (ICNS’08), Gosier, Guadeloupe, accepted pa-
per.

[3] Tomáš Rebok. DiProNN: Distributed Programmable Network Node Ar-
chitecture. In Proceedings of the Cracow Grid Workshop (CGW’07), Cra-
cow, Poland, 2007.

[4] Tomáš Rebok. VM-based Distributed Active Router Design. In Proceed-
ings of the European Computing Conference (ECC’07), Athens, Greece,
2007.

[5] Tomáš Rebok. DiProNN Programming Model. In Proceedings of the
MEMICS’07 conference, Znojmo, Czech Republic, 2007.

[6] Tomáš Rebok. DiProNN: VM-based Distributed Programmable Network
Node Architecture. TERENA’07 Networking Conference poster, Copen-
hagen, Denmark, 2007.

[7] Aravind Menon and Jose Renato Santos and Yoshio Turner and G.
(John) Janakiraman and Willy Zwaenepoel. Diagnosing performance
overheads in the XEN virtual machine environment. VEE ’05: Proceed-
ings of the 1st ACM/USENIX international conference on Virtual exe-
cution environments, Chicago, USA, 2005.

[8] Jim E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Elsevier Inc., 2005.

[9] User Datagram Protocol (UDP). RFC 768, ftp://ftp.isi.edu/
in-notes/rfc768.txt.

[10] Datagram Congestion Control Protocol (DCCP). RFC 4340, http://
www.rfc-editor.org/rfc/rfc4340.txt.

[11] Tomáš Rebok. Active Router Communication Layer. Technical report,
29 pages, CESNET, Prague, 2004.

[12] Eva Hladká and Zdeněk Salvet. An Active Network Architecture: Dis-
tributed Computer or Transport Medium. In Proceedings of the ICN

15

2001: First International Conference Colmar, pages 612-619, France,
July, 2001.

[13] Andrzej Cichocki and Marek Rusinkiewicz and Darrell Woelk. Workflow
and Process Automation: Concepts and Technology. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[14] Boris Dragovic and Keir Fraser and Steven Hand and Tim Harris and
Alex Ho and Ian Pratt and Andrew Warfield and Paul Barham and
Rolf Neugebauer. Xen and the Art of Virtualization. In Proceedings of
the ACM Symposium on Operating Systems Principles, Bolton Landing,
NY, USA, 2003.

[15] John Ive. Image Formats for HDTV. Sony Europe – PSE, technical re-
port.

[16] Eva Hladká and Petr Holub and Jǐŕi Denemark. User Empowered Vir-
tual Multicast for Multimedia Communication. In ICN’2004 Conference
Proceedings, 2004.

16

Project synchro_infrastructure.first_tests;

owner = "Tom Rebok"

notifications = none

use_RTP; # means, that DiProNN will suppose two ports for each

interconnection (port and port+1)

{ AP name="Dup_V" ref=localservice.duplicator;

inputs = V_in(DIPRONN_INPUT(10000));

requested DiProNN video input port is 10000

outputs = output1(Sync_high.in1), output2(Transcode.in);

}

{ AP name="Dup_A" ref=localservice.duplicator;

inputs = A_in(DIPRONN_INPUT(10002));

requested DiProNN audio input port is 10002

outputs = output1(Sync_high.in2), output2(Sync_low.in2);

}

{ AP name="Transcode" ref=localservice.transcoder;

inputs = in;

outputs = out(Sync_low.in1);

output_format = "mp4v";

bitrate = "variable(256)";

scale = "0.25"

}

{ AP name="Sync_high" ref=localservice.syncer;

inputs = in1, in2;

outputs = out(Dup_high.in);

precision = 0.001; # 1ms

}

{ AP name="Sync_low" ref=localservice.syncer;

inputs = in1, in2;

outputs = out(Dup_low.in);

precision = 0.001; # 1ms

}

... # Dup_high and Dup_low duplicators defined similarly as above

{ AP name="Saver_high" ref=localservice.saver;

inputs = in;

output_file = "stream_high.dump";

}

{ AP name="Saver_low" ref=localservice.saver;

inputs = in;

output_file = "stream_low.dump";

}

{ VM name="my_VM1" ref=my_VM1_image;

{ AP name="Reflector_high" ref=reflector;

inputs = in, participant_registration(DIPRONN_INPUT(12345));

outputs = out(DIPRONN_OUTPUT),

}

{ AP name="Reflector_low" ref=reflector;

inputs = in, participant_registration(DIPRONN_INPUT(12354));

outputs = out(DIPRONN_OUTPUT),

}

}

Figure 5: DiProNN program used in the example scenario.

17

Figure 6: Client side setup.

Figure 7: Client side screenshot. The clocks’ difference shows the latency
given by the transcoding itself (approximately 1 second).

18

0 10 20 30 40 50 60 70 80 90 100
BW [Mbps]

0

20

40

60

80

100

L
os

s
[%

]

Liberec
Praha
Plzen (Liberec)
Plzen (Praha)

Packet loss
100B

0 10 20 30 40 50 60 70 80 90 100
BW [Mbps]

0

100

200

300

400

500

de
la

y
[m

s]

Liberec
Praha

Packet delay
100B

Figure 8: Achieved results for packet size 100 B.

19

0 100 200 300 400 500
BW [Mbps]

0

20

40

60

80

100

L
os

s
[%

]

Liberec
Praha
Plzen (Liberec)
Plzen (Praha)

Packet loss
500B

0 100 200 300 400 500
BW [Mbps]

0

200

400

600

800

1000

de
la

y
[m

s]

Liberec
Praha

Packet delay
500B

Figure 9: Achieved results for packet size 500 B.

20

0 100 200 300 400 500
BW [Mbps]

0

10

20

30

40

50

60

L
os

s
[%

]

Liberec
Praha
Plzen (Liberec)
Plzen (Praha)

Packet loss
1000B

0 100 200 300 400 500
BW [Mbps]

0

5

10

15

20

25

de
la

y
[m

s]

Liberec
Praha

Packet delay
1000B

Figure 10: Achieved results for packet size 1000 B.

21

0 100 200 300 400 500
BW [Mbps]

0

10

20

30

40

L
os

s
[%

]

Liberec
Praha
Plzen (Liberec)
Plzen (Praha)

Packet loss
1450B

0 100 200 300 400 500
BW [Mbps]

0

10

20

30

40

de
la

y
[m

s]

Liberec
Praha

Packet delay
1450B

Figure 11: Achieved results for packet size 1450 B.

22

