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Abstract

The Active/Programmable networks allow the end users to inject customized programs
into special network nodes, making them able to let their data being processed (in the way
they want) directly in the network as it passes through. This approach has been presented
as a reaction to a certain fossilization of the traditional computer networks, which on the
one hand behave as a simple and extremely fast forwarding infrastructure, but which
on the other have not been designed for fast and dynamic reconfigurations and novel
services’ deployment. Multimedia application processing (e.g., videoconferencing, video
transcoding, video on demand, etc.), security services (data encryption over untrusted
links, secure and reliable multicast, etc.), intrusion detection systems, and dynamically
adapting intranet firewalls are just a few possible services, which could be provided.

Thanks to an amazing functional flexibility, the active/programmable networks be-
came very popular in a short time and have been studied by many research teams. Vari-
ous architectures have been proposed, from the integrated ones based on the active pack-
ets containing a program code (so-called capsules) to the discrete ones, where the pro-
gram injection is separated from the processing of the data packets, all of them including
software-only as well as software-hardware architectures. The fundamental issues, which
have to be addressed by all the architectures, are:

• Execution Environment Flexibility – the active/programmable nodes have to provide
an execution environment (EE), inside which all the user active programs (APs) are
processed. Ideally, the nodes should be able to accept and run the user-supplied
APs designed for an arbitrary EE, which will provide the highest flexibility possi-
ble. However, the existing solutions usually restrict the users to provide the APs
designed just for a single and specific EE, ordinarily represented by a Unix/Linux-
based OS, Java Runtime Environment, or a specialized proprietary one.

• Resource Isolation and Security – for security purposes, the running APs have to be
strongly isolated from each other, so that a malicious/compromised AP cannot af-
fect another APs sharing the same HW/SW resource(s) nor it can directly affect the
simultaneously running APs themselves. Such an isolation has to further elimi-
nate a hidden influence among the APs (e.g., through swapping of virtual memory
pages) as well. Most of the architectures, which have been presented so far, more
or less omit such security mechanisms at all, or provide proprietary mechanisms,
which are externally enforcing defined security policies, but which do not address
the fundamentals of the problem.

We claim, that instead of proposing novel and hopefully “more perfect” proprietary
solutions, these issues could be generally addressed by making use of the virtualization
techniques, which have revived in the recent years. And even further, besides helping
to cope with these mentioned issues, the virtualization could also provide another useful
benefits, which are discussed in this thesis as well.
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The main goal of this thesis is to study and present the benefits of employing the vir-
tualization principles in the active/programmable networks area. To illustrate them, we
propose a novel programmable network node architecture, named DiProNN (Distributed
Programmable Network Node), that employs the virtualization techniques and makes use
of their discussed features.

The employed virtualization, properly combined with the other desirable concepts,
enables us to propose a flexible and powerful programmable node, which allows its
users to develop their active programs for arbitrary execution environments and com-
fortably compose them into complex processing applications. Besides the execution en-
vironments’ flexibility, the employed virtualization makes the proposed node further able
to provide higher security and strong isolation capabilities, additionally enhanced by ro-
bust resource reservations and guarantees.
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Chapter 1

Introduction

Contemporary computer networks behave as a passive transport medium which delivers
(or in case of the best-effort service tries to deliver) data from the sender to the receiver.
The whole transmission is done without any modification of the passing user data by the
internal network elements1. These “dumb and fast” networks became mature product
where only speed is ever increased and there is no ambition except for simple forward-
ing of the data. This approach is more or less acceptable for common network services
(emails, world wide web, etc.), however, it need not suit the requirements requested from
the network by specialized applications/user groups. These could prefer changing such
a simple but extremely fast forwarding paradigm into an active transport medium, which
processes passing data based on data owners or data users’ requests. Multimedia appli-
cation processing (e.g., videoconferencing, video transcoding, video on demand, etc.), se-
curity services (data encryption over untrusted links, secure and reliable multicast, etc.),
intrusion detection systems, and Intranet firewalls are just a few possible services which
could be provided. The principle called Active Networks or Programmable Networks is an
attempt how to build such intelligent and flexible network using current “dumb and fast”
networks serving as a communication underlay.

A traditional computer network can be considered as a system whose end nodes pro-
vide computations up to the application level, while inner elements (routers, switches,
etc.) provide computations up to the network level, and all nodes are connected via pas-
sive links. While the elements may be programmable to some extent, the control is always
in the hands of network administrators. The major difference in the active networks is
that the elements inside the network are directly programmable by the users, so that they
can provide computations over passing data streams up to the application level. These
inner elements are called active nodes, active routers, or programmable routers (all three with
rather identical meaning). Users and applications have thus the possibility of running
their own programs inside the network using these active nodes as processing elements.

Thanks to an amazing functional flexibility, the active/programmable networks be-
came very popular and have been researched by many research teams. Various architec-
tures have been proposed, from the integrated ones based on active packets containing
a program code (so-called capsules) to the discrete ones, where the program injection is
separated from the processing of the data packets, all of them including software-only as
well as software-hardware architectures. However, programming of complex stream pro-
cessing applications for programmable nodes is not effortless since they usually do not
provide sufficient programming and execution environment flexibility. Usually, when a

1Even thought some network elements do interventions to passing data streams (e.g., firewalls, proxies,
application gateways, etc.), these interventions are limited to processings defined by their administrator(s).
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CHAPTER 1. INTRODUCTION 2

program performing requested processing exists, there might not exist a programmable
node with an execution environment capable of running it (and vice versa), and thus the
original program has to be revised or a new one has to be created.

To cope with such problems, the reinvigorated technology, that has become one of
the most talked-about technologies in recent years—the virtualization [247]—can be help-
ful. By employing the virtual machines (VMs) principles, the flexibility of programmable
nodes’ execution environment can be greatly increased since the programmable routers
become able to run completely different execution environments simultaneously—the
ones based on common operating systems (e.g. Linux or FreeBSD) as well as the special-
ized ones uploaded by users. Moreover, the virtualization can also bring other benefits—
e.g., strong isolation among the user VMs, security improvements, complex resource
management, possibilities of enriched programming flexibility, etc.—and thus make the
usage of the active/programmable nodes easier from the users’ point of view, and safer
from the applications’ point of view.

From the users’ point of view, another limiting factor of most active/programmable
architectures, that have been presented so far, is the necessity to create and upload just a
single active program (AP) performing required (and sometimes highly complex) func-
tionality. The users are thus forced to create and manage complex applications—they
usually do not have a simple way to compose the required complex functionality from
several, single-purpose simple active programs, even though such a separation can bring
both functional and non-functional benefits. For example, concerning the functional ben-
efits, it can yield into better possibilities for the resource management system, since avail-
able resources can be apportioned for the set of active programs in a better way than for
a single one (which requires the same amount of resources as the set of the APs in total).
Thus, the particular single-purpose active programs performing the requested complex
functionality could be spread over a distributed infrastructure, which can make the over-
all requested resources attainable even though these were not attainable for the original,
complex AP. Regarding the non-functional benefits, it can make the node programming
more comfortable, since it allows the applications to be composed from several indepen-
dent components, which could be further reused, if necessary.

Last, but not least, the still increasing speed of network links and still increasing
applications’ demands for higher network bandwidths make the single-computer ac-
tive/programmable nodes infeasible to process passing user data in real-time, since such
processing may be fairly complex (e.g., video transcoding, data encryption, etc.). The
node, which wants to be capable of processing higher number of active programs simul-
taneously running as well as to be capable of processing high volumes of data at high
rates, has to distribute:

• processing load—to enable processing amounts of data that are impossible to process
via any single computer,

• network load—to avoid bottlenecks formed by networking interface of a single pro-
cessing computer.

If a computationally intensive processing is required, the distribution of the processing
load is sufficient [126]. However, such a distribution is not suitable for many applications
since a single computer’s internal architecture may saturate when working with multi-
gigabit data flows. Thus, in such cases, the network load needs to be distributed over
multiple computers as well [127].
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1.1 Contributions

The main goal of our work is to study and present benefits, which can bring the employ-
ment of the virtualization principles in the active/programmable networks area. Besides
being discussed within this thesis, all the benefits are illustrated on a novel VM-aware
programmable network node architecture, named DiProNN (Distributed Programmable
Network Node), which thus provides the following set of fundamental features (see the
Section 3.2 for further discussion):

• F1. The built-in execution environment flexibility – the active programs, which can be
processed by the node, could be provided for multiple arbitrary execution environ-
ments the node supports.

• F2. Execution environments’ uploading – once the execution environments, which are
provided by the node, are not suitable for the users because of any reason, they are
able to upload their active programs encapsulated in their own execution environ-
ments, which the APs should be processed in.

• F3. Component-based programming – to simplify the node programming, the node is
able to accept user sessions consisting of multiple single-purpose cooperating ac-
tive programs (components) [255, 272] and data flows among them defined on the
basis of the workflow principles [63]. The sessions’ workflows could by dynami-
cally adapted to changing conditions and, as results from the previous items, each
component (AP) might be further designed for a different execution environment
(provided by the node or uploaded by the user).

• F4. Parallel/Distributed processing – to make the node capable of processing higher
amounts of data, its architecture is based on commodity PC clusters, allowing both
parallel and distributed processing of the user sessions. The APs, which are in-
tended to run in parallel, do not have to be adapted in any way to make such a
processing possible.

• F5. Complex resource management and QoS support – to provide a different priority
to different applications, users, or data flows, or to guarantee a certain level of a
processing performance to a session, the node provides complex resource manage-
ment capabilities, which allow the users to specify the resources required by the
particular APs processing their sessions.

• F6. Strong APs’ and resources’ isolation – for security purposes, the running APs
are strongly isolated from each other, so that a malicious/compromised AP cannot
affect another APs sharing the same HW/SW resource(s) nor it can affect the simul-
taneously running APs themselves. Such a strong isolation also eliminates a hidden
influence among the APs and ensures, that the APs cannot compromise each other
in other way than through the network. Once the APs are strongly isolated, the
accounting of the resources’ utilization might be performed as well.

• F7. Mechanisms for fast APs’ communication – since the processing components might
want to communicate with each other (e.g., because of an internal synchronization
and/or state sharing), and since such a communication should be provided as fast
as possible, the node allows the definition of the control communication channels
among the APs, which are provided by a specialized low-latency interconnect. The
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APs themselves do not have to be aware of these interconnects during their de-
velopment, so that they do not have to be adapted to a particular interconnect the
different nodes’ implementations use.

• F8. Virtualization system-independent architecture – the node architecture is neither
designed for a particular virtualization system nor for a specific kind of them. It
uses common networking techniques only, which allow the node to be built upon
almost any existing virtualization solution.

• F9. Hardware support for performance improvements – to cope up with the overhead in-
troduced by the use of virtualization, we also depict a FPGA-based programmable
hardware network card’s architecture, which allows accelerating the packets’ ma-
nipulation inside the node.

The virtualization, properly combined with the other useful concepts, thus allows us
to propose a very flexible and powerful programmable node, which allows its users to de-
velop their active programs for arbitrary execution environments and dynamically com-
pose them into complex processing applications. Besides the execution environments’
flexibility, the employed virtualization makes the proposed node further able to pro-
vide higher security and strong isolation capabilities, additionally enhanced by robust
resource reservations and guarantees.

1.2 Thesis Structure

The rest of this PhD Thesis is organized as follows: The Chapter 2 gives the state-of-the-
art in the area of the active/programmable networks and presents several stand-alone
and distributed programmable routers’ architectures. It further introduces the virtualiza-
tion techniques, and presents several existing virtualization solutions currently available.
The chapter concludes by the presentation of several computer network’s applications,
which the virtualization principles have been successfully used for.

The Chapter 3 then depicts the benefits of employing the virtualization principles in
the active/programmable networks area, and discusses the objectives, which the pro-
posed node should satisfy (including the motivation for them). Finally, the chapter com-
pares our work with existing (not-only) active/programmable nodes architectures.

The following chapter, the Chapter 4, provides details about the DiProNN’s archi-
tecture, describing the functionality of all its units. It further discusses both the data
and control interconnections the DiProNN uses, and the possibilities of its architecture
modifications, that lead to its easier application by minimizing the amount of the units
requested by the most general architecture.

The data transmission protocols, which are used for transporting the user data both in-
side and outside the DiProNN, are addressed together with the control protocols (the in-
ternal transmission ones used for communication of the user APs via the low-latency con-
trol interconnect and the external application-level one for the DiProNN management) in
the Chapter 5.

The programming model, which is used for the DiProNN programming, is proposed
in the Chapter 6, while the DiProNN’s operational overview addressing all the processes
occurring during the DiProNN’s runtime (initialization, user requests, session establish-
ments, data flows, etc.) is presented in the Chapter 7.

The following Chapter 8 then presents the possibilities of DiProNN’s distributed pro-
cessing, and provides an analysis of the scheduling problem (planning the APs onto the
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available DiProNN nodes) requested by it. The chapter ends with the discussion of an
application of the existing scheduling techniques for the DiProNN’s scheduling.

The further DiProNN’s features—the Quality of Service (QoS) support and the hard-
ware support—are depicted in the Chapter 9, while the following chapter (the Chap-
ter 10) shows several applications the DiProNN might be advantageously used for.

The Chapter 11 illustrates the DiProNN’s independence on the virtualization system
(by depicting its implementation in several existing virtualization solutions), while the
following chapter—the Chapter 12—provides both qualitative and quantitative evalua-
tion of the proposed architecture.

The semi-final Chapter 13 then presents an example usage scenario the DiProNN
might be used for. The thesis ends with conclusions presented in the Chapter 14, the
list of abbreviations, the list of bibliography, and the list of author’s selected publications.



Chapter 2

State of the Art

2.1 Active/Programmable Networks

The programmability in network elements (switches, routers, etc.) was introduced in
90s of the last century as a reaction to a new requirement of enabling fast deployment
and customization of future network services (for example, virtual networking [193]), for
which the traditional computer networks have not been designed. The proposed con-
cepts, named active and programmable networks, provide an architecture enabling these
features by allowing network users to dynamically program inner network elements.
The dynamic programming refers to allowing the users to inject an executable code into
a network element in order to establish a new functionality at runtime. The basic idea is
to allow third parties (end users, operators, and service providers) to deploy application-
specific services (in the form of a code) into the network. [94]

As described in [51], two basic concepts emerged on how to make the networks pro-
grammable. The first one, supported by the Opensig community1, which has been es-
tablished through series of international workshops, argues that by modeling communi-
cation hardware using a set of open programmable network interfaces, an open access
to switches and routers can be provided. This approach abstracts the network elements
as distributed computing objects providing well-defined open-programmable interfaces
(hence “programmable networks”), allowing third-parties to manipulate the network
state using middleware toolkits (e.g., CORBA).

The other concept, supported by the DARPA2 agency, constitutes several diverse ac-
tive network projects advocating the dynamic deployment of new services at runtime
mainly within the confines of existing IP [221] networks. The level of dynamic runtime
support for new services goes far beyond the one proposed by the Opensig community—
this concept considers the dispatch, execution, and forwarding of packets based on the
idea of active packets (sometimes also called capsules). These contain a processing envi-
ronment as well as data, that should be processed—at one extreme, a single active packet
can prepare/boot a complete software environment seen only by that packet, while at
the other one, each active packet can modify the behavior of available processing envi-
ronment depending on its data needs. Such active networks thus allow a customization of
network services on per-packet basis, offering maximum flexibility in a service creation,
however, (compared to the Opensig concept) with the cost of adding more complexity to
the programming model. Nevertheless, this approach is far more dynamic than Open-
sig’s quasi-static programming of network interfaces.

1http://opensig.comets.wisc.edu/
2http://www.darpa.mil

6
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However, both concepts share the common goal to go beyond existing approaches and
technologies for construction, deployment and management of new network services in
traditional networks. Since both concepts are forms of achieving an open programmabil-
ity inside the networks, in recent years, the tendency has gone towards their integration.
Thus, in this thesis we will assume both terms—active and programmable networks—to
have rather identical meaning, representing the networks being able to accept and run
(in particular execution environment) user-supplied active programs.

Active/Programmable Networks’ Architectures
When considering the active/programmable networks’ architectures, one possible classi-
fication criterion is the way an active code is delivered to them [222] (see the Figure 2.1):

• Active nodes – the active nodes approach (sometimes also called a discrete approach
or a “plug-in approach”) allows an injection of the AP’s code into the active nodes
separately from the data packets. The code can be injected before the data packets
are sent (during an initial phase of the data transfer) or provided as node’s built-in
functionality. The main advantage of this architecture is that the code is injected
only once, and thus its size is not limited and not critical. A disadvantage is the
necessity to inject the code before the data transmission, which provides a larger
startup latency, and a lower flexibility since it is usually hard to change the code
during the data processing.

• Active packets – in so-called integrated approach, each data packet (the capsule) con-
tains a program code, which is extracted on an active node and executed on the data
part of that packet. This approach is very flexible since individual data packets—
even the ones belonging to the same transmitted stream—can be processed in a
different way. The node thus needs to be able to extract the relevant parts of the
transmitted packets and execute the extracted code over relevant data. The disad-
vantage is that even a very limited extent of the code means a large overhead for
transmitted data.

• Active packets and active nodes – the combination of both previous architectures al-
lows the use of more complex programs while remaining flexible enough. Usually,
a program is transferred before the actual data transmission occurs, but individual
data packets contain some kind of parameters or specific program commands. This
supports an individualized packet processing without the limitations of the active
packets approach. However, the initial delay necessary to establish the session is
not eliminated.

Node Operating System and Execution Environments
The active networking community has designed an architectural framework that defines
a three-layer stack on each active node [48]. Based on the framework, the functionality of
an active network node is divided into the Node Operating System (NodeOS), the Execution
Environments (EEs), and end users’ active programs/applications. The NodeOS repre-
sents the operating system’s components implementing services such as packet schedul-
ing, resource management, and packet classification, which are usually independent of a
specific active networking implementation. These services are offered to the EEs running
on top of the NodeOS—the EEs are thus isolated from the details of resource management
and from the effects of behavior of other EEs.
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Figure 2.1: Active/Programmable Networks Architectures.

The EEs implement an active networking protocol-specific processing. They export
programming interfaces which can be programmed or controlled by end-user active ap-
plications. Thus, an EE acts like a “shell” program in a general-purpose computing sys-
tem, providing an interface through which end-to-end network services can be accessed.

Thanks to lots of possible applications (some of them have been mentioned in the in-
troduction chapter), the active/programmable networks have become highly popular in
a short time, and studied by many research teams. Various active/programmable nodes’
architectures have been proposed—from the simplest ones providing a fixed functional-
ity defined by nodes’ administrators without any resource management and/or Quality
of Service (QoS) guarantees, through the ones based on a specialized hardware to the
complex ones based on a cluster computing and providing some kind of resource man-
agement and QoS guarantees. In the following sections, we describe several proposed
architectures, focusing on the integrated ones as well as the discrete ones. Since some
of them combine both principles in some way, we explicitly denote the ability to upload
user’s functionality (for integrated ones) or control processing on a per-packet basis (for
discrete ones) in their description.

In the end of this section, we show several operating systems (NodeOSs) that have
explicitly targeted programmable networks and finish with parallel/distributed active
nodes’ architectures related to our work.

2.1.1 Integrated Active Network Solutions

2.1.1.1 ANTS (Active Network Transport System)

The ANTS [276, 277], developed at MIT3, is an approach based on a mobile code, a de-
mand loading, and caching techniques. The ANTS architecture allows new protocols to
be dynamically deployed at both routers and end-systems, without any needs for coor-
dination and without unwanted interaction with co-existing protocols.

The ANTS node consists of an arbitrary router, the NodeOS (which is JDK over Solaris
or Linux), the ANTS platform and, on top, the Java end-user application(s). The ANTS

3http://www.mit.edu/
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platform comprises the node control component used for a registration of the ANTS pro-
tocols (i.e., the active services running on the ANTS platform), a component group re-
sponsible for handling both the active code and the state information associated with it,
and a component group handling the data path for ANTS capsules (the ANTS routing).

The ANTS capsules carry parameter values for a related piece of a Java code. If the
node, which a capsule is passing through, contains the related code, the node initializes
the code with a capsule’s parameter values and executes it. If the code is not present on
the node, the node requests the code from the previous one (the node from which has the
capsule arrived)4. This distribution/transport mechanism ensures that the ANTS nodes
become primed “on the fly” by the capsules passing through them.

Concerning the resource management and the QoS guarantees, there is no support by
the ANTS. There is no way to assign resources/priorities to the execution of capsules—
the node just provides a simple computing network element, where the passing capsules
could be processed in a best-effort manner.

2.1.1.2 PLAN (Packet Language for Active Networks) and PLANet

The PLAN programming language [117, 139], developed at the University of Pennsyl-
vania, was designed and developed as a part of the SwitchWare project described later.
The PLAN is a functional scripting language based on the simply-typed lambda calculus,
which has been specifically designed for lightweight and simple programming of mobile
code included in active packets—PLAN programs tend to be very small, so that they can
easily fit inside the active packets. Furthermore, the ability to statically type-check the
programs before active packets are injected into the network improves the safety of such
a mobile code.

The PLAN considers a two-level programming architecture—the services for active
packets are composed from the low-level functionality residing on the nodes using a
high-level scripting language (PLAN). Thus, the PLAN provides a “glue” to create value-
added and customized network services using low-level node’s services (programmed in
any general-purpose language). This distinction between the high-level (lightweight) and
the low-level (heavyweight) programmability helps to design lean and efficient active
programs.

Regarding a resource management system, the PLAN provides an explicit support for
it, enabling the runtime environment to control resources’ usage during the execution of
active packets. Each EE counts the amount of processing and memory resources required
to process particular packet—if the counter exceeds the upper bound for a resource before
the AP terminates, it is immediately terminated by the system.

The PLAN programming language has been also used in the PLANet project [118]
building an active inter-network, which implements network-layer services directly on
top of the link layer5 technologies. Although it is designed not to rely on the existing IP
infrastructure, it is implemented as an overlay network based on the UDP/IP communi-
cation model for simplicity reasons.

4The Java programs loaded onto the ANTS node during the node start-up are called “code extensions”.
These cannot be uploaded directly by users and cannot be removed from the node during its lifetime. The
distribution of such a code must be handled by some mechanism outside of the ANTS.

5The layers’ specification can be found in the ISO/OSI Network model description in [288].
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2.1.1.3 Smart Packets

The Smart Packets [240, 241] is a DARPA6-funded active networks project, which aims to
apply active networks technology to network management and monitoring. The project
argues that the active network technology is convenient solution for the network man-
agement, because it enables intelligent processing inside the network, closer to the net-
work nodes/devices being managed. Compared to traditional systems relying on passive
“polling” techniques to identify network problems, this approach improves communica-
tion efficiency as well as events’ discovery.

To limit the complexity, the Smart Packets’ nodes do not maintain a persistent state
across the packets—they require the smart packets to be completely self-contained, with-
out any connection states or fragmentations performed on the transport layer. Thus, the
Smart Packets’ programming language have to be able to fit active programs code under
the MTU in length.

The project has further developed two programming languages—namely, the Sprocket
and the Spanner. The Sprocket language is a high-level language much like C, but with
security-threatening constructs (such as pointers) removed and special features neces-
sary for various network management computations (i.e., special types for data packets
and MIB access) added. The Sprocket programs are compiled into the Spanner—a CISC
assembly language—which is further assembled into a compact machine-independent bi-
nary encoding, that is placed into Program packets—a Smart Packet dedicated to carry the
code, which should be executed on the active routers along the transmission path. The
other types of Smart Packets are the Data packets used to report the results of the program
execution back to the originating network management program(s), the Message packets
carrying informational messages rather than a code, and the Error packets used to indicate
transport errors or execution exceptions. All the Smart Packets are encapsulated within
the ANEP protocol [9].

When a Smart Packet arrives, a node checks it for integrity and performs authenti-
cation and authorization. If the arrived packet is a Program packet, an instance of an
execution environment is instantiated and the code within the packet is executed. Other-
wise, it is delivered to the appropriate user.

2.1.1.4 PAN

The PAN [204, 205], developed at MIT, is a kernel-based implementation of the active
capsule approach. Although the mobile code is executed on a per-capsule basis, it is
able to achieve high performance since it processes capsules directly in the OS kernel,
performs minimal data copying, and caches the code for immediate execution.

PAN capsules contain both data they transport and a reference to a code object, that
should be executed when passing a PAN node. The code object, that is provided either as
a native Intel x86 code or a Java VM code, can direct the node to forward the capsule to the
destination node, to modify the capsule’s content, to pass the capsule to an application,
or to access a state within the node. If the code object is unavailable on the particular
node, it is dynamically loaded in a similar way as in the case of ANTS.

The PAN architecture supports multiple mobile code systems simultaneously running
within a node (as a user-space processes within PAN’s NodeOS). The prototype imple-
mentation supports a simple and completely insecure system for a dynamic loading of
Intel x86 object code as well as an interface to a Java VM, which is, however, supported

6http://www.darpa.mil/
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only in the user-space. The NodeOS is performed by any UNIX-like operating system—
the node services then run either as a user-space process or a loadable kernel module.
The PAN’s resource management capabilities are also very minimal.

2.1.2 Discrete Active Network Solutions

2.1.2.1 Hladká, Salvet: Active Network Architecture

The Active Network Router [120, 122], developed at Masaryk University in Brno, uses
the “active nodes” approach to active networking and the concept of “sessions” similar
to connections in connection-oriented networks or sessions in the RSVP protocol [36].
The processing of a user code consists of two independent, but communicating processes.
The first one controls the sessions’ establishment and management, having the role of a
control plane. It also incorporates a process of loading user functions into the router—
the functions might be either pre-loaded (before or during setting up the connection)
or loaded on demand during the data transmission (if a new requirement arises). The
control process also provides book-keeping functions. The second process performs the
packets’ processing themselves—it executes the user code.

The generic design of the router’s execution environment enables it to run different
types of active programs designed for its Linux-based NodeOS—for example, compiled C
or interpreted Java programs. The router management functionality as well as uploaded
user programs are processed in the user space, whereas all the core of the router (sched-
ulers, queue managers, etc.) are processed in the kernel space. The model also takes a
resource management and network QoS guarantees into account, but these router’s func-
tions have never been designed in details yet.

The router has never been fully implemented, however, its main ideas were success-
fully used for a model and implementation of the user-empowered UDP packet reflec-
tors [120, 121] to create a virtual multicasting environment as an overlay on top of cur-
rent unicast networks. Moreover, the second-generation user empowered UDP packet
reflector, called “Active Element”, has been also introduced; to improve its scalability
with respect to the bandwidth of each multimedia stream being processed, the concept
of a distributed active element has been further proposed [126], which uses computer
clusters with a low-latency internal interconnection to perform parallel/distributed pro-
cessing.

The router’s model has further served as a basis for protocol research and devel-
opment, e.g., “Active Node Authentication Protocol (ANAP)” [72] and “Active Router
Transport Protocol (ARTP)” [225], whose possible utilization in the proposed node is fur-
ther discussed in the Section 5.1.

2.1.2.2 FAIN (Future Active IP Networks)

The FAIN project [94, 95] was a research and development project under the IST pro-
gramme7 (IST-1999-10561), partially funded by the Commission of the European Union.
The project aimed to develop an open, flexible, programmable, manageable, and reliable
(secure) network architecture based on the active node concepts.

The FAIN active node has been built upon a programmable network element, e.g., an
IP router with open interfaces. The node’s computing platform, consisting of a local op-
erating system (NodeOS), one or more distributed processing environments (e.g., TINA-

7http://cordis.europa.eu/fetch?ACTION=D&CALLER=PROJ_IST&RCN=53059
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DPE8), and system facilities (e.g., resource control framework) provides a layer through
which downloaded/injected components communicate with the network and with each
other. Upon the platform, a set of execution environments is created to host the service
components.

The node platform provides the basic functions, on which the EEs rely. As such, the
platform’s lowest layer—NodeOS performed by the Linux, FreeBSD, or an embedded
OS—manages node’s resources and mediates demands for them, including transmis-
sions, computing, and storage among the EEs. The EEs are thus isolated from details
of resource management and from effects of another EEs’ behavior.

A single FAIN node is expected to support multiple concurrent EEs9. Since different
EEs may have different trust levels, the NodeOS protects them by enforcing boundaries
and resource limits on each of its EEs. The EEs in turn hide most of the details of the
node’s platform from the users.

Further, to guarantee a secure and fair usage of resources, the FAIN platform includes
a resource control framework partitioning allocated resources. The FAIN defines two
types of resources—the physical resources referring to the node’s hardware capabilities
(e.g., CPU time, network bandwidth, memory, storage) and the logical resources referring
to node’s software capabilities (e.g., classifier table, computation table, filtering table,
forwarding or routing table). All the resources are abstracted through the APIs used by
the EEs.

The FAIN node’s administrator is able to define a set of services (in fact, active pro-
grams), which can be used by the FAIN’s users. In the FAIN network, the services are
deployed via active service provisioning—the service providers are responsible for re-
leasing new services as well as withdrawing the existing ones (in cases when a service
update deployment or a complete removal is necessary).

2.1.2.3 ANN (Active Network Node)

The ANN project [69, 146], led by the University of Washington, is aimed at the de-
sign, prototype implementation, and demonstration of a high-performance active net-
work node supporting network traffics at gigabit rates. The system is designed for max-
imum performance, which is achieved partly by running active programs in the kernel,
but also by running on top of a dedicated hardware.

The top-level hardware architecture is based on the high-performance IP routing ar-
chitecture [208], which was refined and optimized for the purpose of active networks.
The node consists of a set of Active Network Processing Elements (ANPEs), each one con-
sisting of a general-purpose processor, a large FPGA, and a memory. The ANPEs are
connected to an ATM switch fabric.

To utilize the ANN hardware architecture in an efficient way, the software architecture
is optimized for high-performance as well. A highly efficient data path is provided—
the high-bandwidth data pass through the components implemented in the system’s
kernel—whereas all management components are implemented in a user-space provid-
ing a flexible control path. The ANN supports two execution environments, namely the
ANTS execution environment and the Distributed Code Caching for Active Networks, called
DAN [70]. In the ANN, the NodeOS is performed by an optimized NetBSD operating
system.

8http://www.tinac.com/
9As far as we know, just two different EE instances, namely the Java EE and the High Performance

EE [147], have been implemented [71].
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The code blocks implementing application-specific network functions are called “ac-
tive plugins”, which contain a code downloaded from the Code Server10. The code is
downloaded as soon as a reference to it appears in a passing datagram; nevertheless, it
can be downloaded by a special configuration packet or by the node’s administrator as
well.

The ANN node also contains a component responsible for the resource management
functions, called Resource Controller. The component controls a fair CPU time sharing [284]
and memory consumptions among active plugins on a per-instance basis.

2.1.2.4 NetScript

The NetScript project [245, 49], which was started in 1996 at Columbia University, was an-
other pioneering project in the area of active networks. The project focused on a proposal
of a programming model for the active networks, a programming language for network
programming, and a programmable node architecture.

Regarding the programming model, the project has proposed a distributed program-
ming model, where the script programs can customize node-resident functionality and
services enabling them to define the processing of packet streams on individual network
nodes.

The network architecture then compromises a collection of Virtual Network Engines
(VNEs) interconnected by Virtual Links (VLs). The VNEs—programmed by a script pro-
gram (so-called agent)—process the packet streams and provide its services to other VNEs.
The VNEs together with VLs determine a NetScript Virtual Network (NVN). The NVN does
not necessarily correspond to the underlying physical network—a single physical node
might be responsible for executing several VNEs as well as a single physical link may
relate to a collection of VLs (and vice versa).

The agents are defined using the NetScript programming language. It is a small and
simple object-oriented dataflow language designed specifically for the programming of
a stream-based computation [245]. To simplify agents’ programming, the NetScript pro-
vides a library with a set of standard primitives (parse, flatten, split, join, etc.) and oper-
ations on streams of messages (multiplex, demultiplex, etc.). The agents can be deployed
dynamically into the VNEs—a new code can be loaded and executed on-the-fly without
disrupting the processing on the VNE.

The NetScript’s distributed programming model enables the processing of a single
stream by multiple agents—as soon as a packet arrives at a VNE, an information about
the agents, which it should be processed with, is obtained from its header. This model
combines benefits of both the discrete and the integrated approach to active networks—
from one point of view, an active code can be uploaded onto VNEs as well as a node-
resident functionality can be chosen by the passing active packet (discrete approach),
while from the other, each active packet can define its own agent to be processed with
(integrated approach).

2.1.2.5 Click

The Click [155, 156], originally developed at MIT with subsequent development at Mazu
Networks11, ICIR12, and the University of California, is a modular software architecture

10The Code Server serves as a trusted, well known node for the plugins. It stores authenticated plugins
only—each ANN can check particular plugin sources and its developer before it is installed on the node.

11http://www.mazunetworks.com/
12http://www.icir.org/
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for building flexible and configurable routers. The Click router is composed from a set of
processing modules (called elements) that provide packets with a processing functional-
ity. In general, the elements (internally represented as C++ objects) examine or modify the
passing packets in some way—each element conceptually performs just simple computa-
tions (e.g., IP packet’s TTL field decrementing) instead of complex functionality. Click’s
configuration is determined at the compile time—the elements are inter-linked with each
other using object references.

Each possible path for a packets’ transfer is described as a connection—a link, through
which the elements pass packets to one another. Click’s configurations are then directed
graphs of elements with connections as the edges. Each connection passes the data pack-
ets from an output port of one element to an input port of another one. The connections
are of two types: push and pull. The push connection passes packets starting at the source
element downstream to the destination element. In contrast, using the pull connection,
the destination element initiates a packet transfer: it asks the source element to return a
packet or a null pointer if no packet is available.

The Click is still being enriched by new features and supported by the author—the
current Click’s distribution13 includes more than 300 elements, the Linux kernel mod-
ule, the user-level driver, the FreeBSD kernel module, a driver for the NS14 simulator,
necessary service tools, and a documentation.

2.1.2.6 SwitchWare

The SwitchWare project [6, 10], developed at the University of Pennsylvania, uses three
important components: the active packets, the active extensions called switchlets, and
a secure active router infrastructure. The active packets are very similar to the capsules
used in the ANTS project (described in the Section 2.1.1.1). The switchlets, which are writ-
ten using the already described PLAN programming language, are dynamically loadable
programs that provide node’s specific services used by the active packets. Since PLAN
programs are made secure by restricting their actions (e.g., the PLAN program cannot
manipulate node-resident state), the active packets can call switchlets to compensate for
these limitations.

The switchlets are modules written in the CAML (Categorical Abstract Machine Lan-
guage) [171] language, which supports formal methodologies to prove security proper-
ties of the modules at the compile time. The code fragments, that are dynamically load-
able and machine-independent, are authenticated by the developer and explicitly (not on
demand) loaded into the switch.

At the lowest layer, the Secure Active Network Environment (SANE) [8] ensures the
integrity and security of the entire environment. The SANE identifies a minimal set of
system elements (e.g., a small area of the BIOS), upon which the system’s integrity is
dependent, and builds an integrity chain with cryptographic hashes on the image of the
succeeding layer in the system before passing a control to that image. If an image is
corrupted, it is automatically recovered from an authenticated copy over the network.

Even though the SANE has been developed as a part of the SwitchWare project, it ad-
dresses the problem of security for active network environments in general. It includes
a secure bootstrapping mechanism providing static integrity guarantees [20], dynamic
integrity checking mechanisms as well as a secure key and a certificate exchange mecha-
nism enabling the code authentication [7].

13Available for download at: http://read.cs.ucla.edu/click/
14http://isi.edu/nsnam/ns/
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2.1.3 Operating Systems for Active Networks

2.1.3.1 Genesis Kernel

The Genesis Kernel [159, 160] project, developed at Columbia University, has proposed
a new class of open programmable architectures—so-called Spawning Networks [50]—
supporting deployment and management of new network services. The spawning net-
works are capable of creating distinct virtual network architectures on demand—they
consist of a parent virtual network capable of creating child virtual networks. The child
virtual networks then operate on a subset of a parent network’s topology and are re-
stricted by capabilities of parent’s underlying hardware. Further, it is isolated from the
other spawned networks.

The Genesis Kernel is a programming system used for the creation, deployment, and
management of new child virtual networks. It automates the virtual network life cycle
and consists of several phases: the profiling phase, which provides a virtual network’s
design analysis, the spawning phase, which sets up the designed topology, allocates nec-
essary resources, and binds transport, control, and management objects to the physical
network infrastructure. The management phase manages virtual network’s resources,
and finally, the architecting phase on-demand adds, removes, or replaces distributed net-
work algorithms.

According to [160], the Genesis supports spawning of virtual networks on three lev-
els. The lowest one—a transport environment—delivers packets from source to desti-
nation end-systems through a set of open programmable virtual router nodes, called
routelets. The routelets, which represent the virtual network, then constitute the lowest
level of operating system’s support dedicated to a virtual network—they process packets
along a programmable data path at the inter-networking layer. The intermediate control
level enables routelets interaction and controlling through distinct programming environ-
ments, while the top level is represented by the binding interface base [168]—an open pro-
grammable interface offering access to a set of routelets and virtual links constituting a
virtual network.

2.1.3.2 JANOS (Java-oriented Active Network Operating System)

The Janos15 project’s [264] objective is to develop a local operating system for active net-
work nodes oriented for executing an untrusted Java bytecode. The Janos primarily fo-
cuses on the resource management and control, the information security, performance,
and technology transfer of broadly and separately useful software components. Concep-
tually, the Janos includes three major components of a Java-based active network operat-
ing system: the low-level NodeOS, a resource-aware Java Virtual Machine, and an active
applications’ execution environment.

Active applications for Janos are written using a slightly modified ANTS runtime
(called ANTSR) running on top of a slightly modified, resource-conscious Java virtual
machine, called JanosVM. These components constitute an execution environment’s layer
and run on the Moab [211]—an implementation of the NodeOS. The Moab enables pre-
cise specification of local node’s HW resources to so-called domains—units of resource
control similar to processes in traditional OSs.

Concerning the resource management, the Janos is able to limit the memory, the CPU
usage, and the outgoing network bandwidth.

15http://www.cs.utah.edu/flux/janos/
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2.1.3.3 Scout

The Scout operating system [196, 248], developed at the University of Arizona, is a con-
figurable16, communication-oriented OS targeted at network appliances (e.g., network-
attached devices, set-top boxes, hand-held devices, and so on). An explicit path17 ab-
straction [198] enables the Scout to effectively optimize the critical paths through layers
of communication modules, resulting in a specializable operating system that has both a
predictable and a scalable performance.

The Scout is configured by the modules, which provide a well-defined and independent
functionality. Typical examples of modules are networking protocols, such as IP, UDP,
TCP, or HTTP, or modules implementing storage system components, such as VFS, UFS,
or SCSI. To form a complete system, individual modules are connected into a module
graph: the nodes of the graph correspond to the modules included in the system, and the
edges denote the dependencies between pairs of them. Such a configuration is defined at
build time, and a number of configuration tools can assemble the selected modules into
a Scout kernel.

The Scout further provides resource allocations and scheduling on a per-path basis—
each path can define its requirements for an I/O bus bandwidth, for memory buffers
required to absorb bursty data, and for data and instruction cache space to process the
data without thrashing.

2.1.3.4 SPIN

The SPIN18 [26, 27] is an extensible general-purpose operating system developed at the
University of Washington. In contrast to the traditional approach, where applications live
in user-level address spaces separated from kernel resources and services by protection
boundaries, the SPIN enables applications to safely add system extensions into the ker-
nel and specialize the running system depending on their needs. These kernel extensions
(called spindles—SPIN Dynamically Loaded Extensions) can specialize the kernel (for exam-
ple, add some services or replace default policies) or simply move an application into
the kernel address space to achieve a higher level of performance. To secure sensitive
kernel interfaces, the SPIN as well as spindles are written in the type-safe Modula-3 [54]
programming language and are dynamically linked into the SPIN’s kernel.

The SPIN kernel abstracts system’s physical and logical resources, and implements
a set of management policies for them. The low-level resource controllers provide light-
weight abstractions of the physical hardware (such as page frames or activation contexts),
while the higher-level resource abstractions (such as threads or address spaces) are imple-
mented by collections of communicating spindles. The management of these resources
is performed by the two-level resource allocation architecture—so-called system allocator,
which manages a global pool of resources (such as pages, CPUs, or network bandwidth),
and the user allocator, which manages private pools of resources that have been acquired
from the system allocator. [26]

16In the sense that a given instance contains exactly the functionality required by the system for which it
is built.

17In Scout, a path is an OS abstraction that encapsulates the data flow from an I/O source to an I/O
sink. The path comprises two parts—a sequence of communication modules defining path’s semantics (e.g.,
its reliable and/or secure transmission or other real-time behavior), and a collection of system resources
required for processing and forwarding the data along the path (e.g., the CPU time, memory buffers, a cache
space, etc.).

18http://www-spin.cs.washington.edu/
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2.1.4 Distributed/Parallel Active Nodes Architectures

2.1.4.1 CLARA (CLuster-based Active Router Architecture)

The C&C Research Laboratories have proposed the JOURNEY network model [207] con-
sisting of a network of routers with additional computational capabilities. The model
defines that streams of active multimedia units (MUs) are injected into the network for
routing to their destination as well as for customizing to the needs of their clients. Each
MU consists of one or more packets and is computationally independent even of other
MUs belonging to the same stream. It can be therefore processed independently on the
rest of the stream.

A CLARA [274] is a prototype of a routing node in such a JOURNEY network. It
consists of a cluster of generic PCs interconnected by a fast system area network (the pro-
totype implementation uses Myrinet [32]). A single PC (the routing element) is configured
as a normal IP router, while the others (the computing elements) provide computational
resources for the customization services.

The routing element behaves as a normal IP router for incoming packets that have al-
ready been processed. Whether a packet is processed or unprocessed is determined by
the fact, whether the IP Router Alert option [142] in the packet’s header has been set or
not. Therefore, processed packets are directly routed by normal IP router, whereas un-
processed packets are handed up to the CLARA software for possible processing19. The
decision whether the packet will be processed or not may depend on CLARA’s current
conditions—whether the required processing functionality20 and/or available comput-
ing resources are available.

The packets, that are accepted for processing, are dispatched to computing elements
supporting required processing functionality. After the processing, packets are aggre-
gated in the routing element and sent out through an appropriate interface (depending
on their routing requirements).

The CLARA software framework is designed to support accounting of stream’s re-
source utilization. The packets pass through multiple stages, where each stage comprises
a sequence of modules, each of which encapsulates packet processing capabilities. Each
stage accumulates a packet’s resource utilization while it is being processed. The packet’s
cumulative resource utilization is then transferred along with the packet to its next stage.
After this, any further resources, that are utilized by the packet in stages along its out-
going path, are accumulated at the stage associated with its stream.

Computational resources available in CLARA could also be reserved—the hierarchies
of schedulers can be created allowing fine-grained divisions of computational resources
available on the CLARA router. Thus, portions of router’s computational capacity can
be allocated to a user. The streams belonging to that user are then guaranteed that they
receive at least the portion of the computational capacity that has been allocated.

Obviously, the JOURNEY network model does not process all the media units belong-
ing to a particular stream at a single CLARA router. Moreover, the JOURNEY network
does not guarantee that all the packets will be processed either—some of them may not
be processed at all in cases when there are not enough resources to process them. Thus,
additional guarantees must be implemented end-to-end, according to the requirements
of individual streams.

19Since an MU may span several packets, the acceptance of the first packet of an MU necessitates the
acceptance of all the packets belonging to the same MU.

20The CLARA router functionality is fixed (set up by CLARA administrator).
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2.1.4.2 A Cluster-Based AR Architecture Supporting Video/Audio Stream
Transcoding Service

The goal of this project [108] is to present a cluster-based active router implementation
that provides video/audio transcoding service. As opposed to the JOURNEY network
model described before, it is assumed that there is only a single active router on the
media streams’ path, where the transcoding is performed.

The proposed active router consists of a routing node and a few computing nodes.
The nodes are organized as a distributed computing platform (a computing cluster) in-
terconnected over a high-performance network (the prototype implementation uses the
Gigabit Ethernet [68]). The routing node manages the whole cluster’s functionality as
well as behaves as a normal IP router.

Similarly to the JOURNEY/CLARA architecture, it is assumed that the media stream
can be divided into a sequence of media units that are ready for independent processing
(transcoding). The routing PC receives these media units and forwards them to the com-
puting PCs for transcoding—each computing PC processes the MUs independently on
each other using local computing resources. Because of the limited resources available,
some MUs could be sent out of the router without being processed—the main aims of the
router are to minimize the processing time of each MU as well as to preserve the MUs’
order of outgoing stream as much as possible.

Similarly to another cluster-based systems providing the parallel processing, a criti-
cal issue of this router is an employment of a suitable load-balancing strategy distribut-
ing multiple media streams among different computing PCs to achieve the best utiliza-
tion. As a part of this project, an evaluation of two load-balancing algorithms, namely,
round-robin and adaptive load-sharing, has been done. To preserve the order of computa-
tions among media units as well as to keep the simplicity of round-robin, the project has
proposed and implemented a new load balancing strategy—a stream-based round-robin
algorithm [108], which, as the name indicates, sends all the media units belonging to a
particular stream to the same computing PC.

2.1.4.3 LARA (Lancaster Active Router Architecture)

The LARA architecture [55] comprises both a hardware and a software active router’s
design. It consists of four parts, namely the Cerberus (a first prototype of the LARA con-
cept), the LARA Platform Abstraction Layer (LARA/PAL), the LARA MANagement component
(LARA/MAN), and the LARA Run-Time execution environment (LARA/RT).

The basis of the LARA router architecture is provided by the Cerberus—a platform
that can be built from common low-cost hardware components. The high-performance is
achieved partly because of distributing computations over a cluster of high-performance
processors, and partly because of the active processing performed in a kernel-space,
which enables fast processing since expensive copy operations and context switches are
avoided.

The LARA/PAL layer provides a platform independent layer able to provide various
execution environments (for example, SwitchWare, ANTS, etc.) on various hardware
platforms. It exports a set of programming interfaces (e.g., APIs to control and manage
scheduling, memory, network bandwidth, and policy constraints) that can be used by the
EEs.

The LARA/MAN then ensures the security on the LARA node. Depending on a pol-
icy infrastructure and an authentication mechanism, the LARA/MAN ensures that only
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an authorized active code (the one uploaded from a trusted source or installed by an
authorized user) will be loaded and executed by processing engines.

Finally, the LARA/RT execution environment is an extension of the Linux 2.2.x ker-
nels. An active code designed for this EE must be written in the C programming lan-
guage and provided either in the form of a loadable binary kernel module or a source
code (later compiled)—the code loading/unloading is based on standard kernel module
loading/unloading mechanisms provided by the Linux OS. To ensure a fair scheduling
of the processing resources on a LARA node, LARA/RT includes a dedicated preemptive
scheduler for active module threads. [233]

Although only a subset of the LARA architecture has been implemented, it has pro-
vided a useful input for the proposal of the LARA++ active router described in the fol-
lowing section.

2.1.4.4 LARA++ (Lancaster’s 2nd-generation Active Router Architecture)

As the name indicates, the LARA++ [233] has evolved from the LARA architecture devel-
oped at the Lancaster University as well. The reason to propose a new architecture has
arisen from results of a usability study performed by the LARA team—they have realized
that since the LARA requires “active programmers” to develop a low-level system code,
it is not suitable for common users used to program in the user-space (i.e., different APIs
must be used, the low-level system code is hard to debug, etc.). Further, the low-level
system code has been highly critical with respect to system failures since every failure
has typically led to a total system crash. [233]

As opposed to the LARA architecture, which has provided an innovative hardware ar-
chitecture, the LARA++ focuses mainly on the node’s software design that should be in-
dependent of the underlying hardware. This makes the LARA++ applicable on a single-
processor as well as multi-processor systems, using both centralized or distributed router
architectures.

The LARA++ components [234, 235] are dynamically loadable onto LARA++ routers,
where they provide additional or extended services for individual data streams or even
for whole protocol families. The components are built like normal shared or dynami-
cally linked libraries and are distributed in the form of a pre-compiled machine code or a
source code, which is compiled as soon as it is used for the first time (just-in-time compi-
lation). To achieve security, the LARA++ executes active codes uploaded by users within
restricted processing environments only, limiting access to low-level service routines and
shared resources.

2.2 Virtualization Systems

The Virtualization and Virtual Machine technologies [247] have been developed in a num-
ber of contexts—programming languages and compilers, operating systems, and com-
puter architectures—to enable new capabilities and to solve a variety of problems in in-
terfacing major computer system components. In the area of programming languages,
the virtual machines provide platform independence, supporting transparent dynamic
translation and optimization; in the area of processor architectures, the virtualization
principles mainly serve for an introduction of new instruction sets, while in the area
of computer architectures, they usually provide dynamic optimization for power reduc-
tions, resource utilizations, and/or performance improvements.
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Since the architecture of the proposed programmable node neither relies on a specific
virtualization system nor on a specific VMs’ type, we describe several VMs addressing
the areas mentioned in the following sections. The description starts with the platform-
level virtualization systems representing the most general VMs’ architecture, which is fol-
lowed by the OS-level virtualization systems and the process-level virtualization systems. An
application of all the mentioned VMs’ types in DiProNN is further discussed in the Chap-
ter 11.

Because the virtualization technologies go through a purple period, many architec-
tures have been proposed. Since their complete description is beyond the scope of this
thesis, in the following sections we describe just the most famous ones. Finally, there are
several examples of existing (non-programmable) network nodes employing virtualiza-
tion principles given at the end of this chapter.

2.2.1 Platform-level Virtual Machines

The virtual machines for operating systems support (so-called Platform-level Virtual Ma-
chines or System Virtual Machines) were defined in the 1960s: in the IBM VM/370 environ-
ment, a virtual machine created an exclusive environment for each user [102]. The use
of virtual machines is becoming interesting also in modern computing systems, mainly
because of their advantages in terms of cost and portability [30]. Moreover, their ability to
share resources in an effective way while maintaining a high degree of security is another
factor, thanks to which the VMs are receiving a renewed interest after years of relatively
little activity.

A virtual machine environment is created by a Virtual Machine Monitor (VMM), which
is sometimes also called a hypervisor, or “an operating system for operating systems” [145]
(see the Figure 2.2(a)). The monitor creates one or more virtual machines on top of a single
real machine—each VM then provides facilities for an application or a “guest system”
that believes to be executing on a normal hardware environment. Thus, many processes,
possibly belonging to multiple users, can coexist.

In the platform VMs, the major feature, which is provided by the VMM, is the platform
replication—a platform (usually the one, which the VMM is running on) is virtualized
and multiplicated, so that all the physical hardware resources are divided among mul-
tiple guest operating system environments. The VMM has an access to all the physical
resources, which it manages—a guest OS and the application programs running inside it
are then managed under a hidden control of the VMM; they are completely unaware of
this “behind-the-scenes” work performed by the VMM.

System and Whole-System Virtual Machines
The traditional system virtual machines provide the guest systems’ environments with
the same ISA (Instruction Set Architecture) as the underlying hardware, which the VMM is
running on, has. However, there are situations, when there is a need to provide the guest
systems with a different ISA than the host’s one is. [247]

This situation has motivated system VMs, where a complete software environment
(both an operating system and applications) is supported on a host system that runs a
different ISA—such virtualization systems are called Whole-System VMs. Since the ISAs
are different, the whole-system VMs have to emulate required guest ISA (e.g., via binary
translation [247]), so that both the guest applications and the guest OS believe to run
on their native computing systems. The most common implementation method of these
virtualization systems is to place the VMM and the guest software on top of a conven-
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(a) System virtual machines.

(b) Whole-system virtual machines.

Figure 2.2: Platform-level virtual machines [247].

tional host OS running on a particular hardware (providing native/host’s ISA)—see the
Figure 2.2(b).

2.2.1.1 QEMU

The QEMU [25], written by Fabrice Bellard, is a processor emulator providing the whole-
system virtualization. It uses the dynamic translation21 to achieve reasonable emulation
speed—the converted binary code is stored in a translation cache and thus can be simply
and fastly reused.

The QEMU uses two operating modes: a full-system emulation, which emulates a full-
system architecture including several processors and various peripherals, and a user-mode
emulation enabling QEMU to run particular processes compiled for a different CPU than
the hosting one. In the full-system emulation mode, the QEMU supports many CPU
architectures, including x86, x86-64, PowerPC, 32-bit Sparc, 32-bit and 64-bit MIPS pro-
cessors, ARM and others.

21The dynamic translation is a runtime conversion of the guest CPU instructions into host CPU instructions.
The advantage compared to an instruction interpreter is that the target instructions are fetched and decoded
only once.
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Since the QEMU source code is licensed under the GPL, it is often used as a basis
for another virtualization systems of third parties—for example, Win4Lin Pro22, Virtual-
Box23, or KVM24.

2.2.1.2 Xen

The Xen25 [76, 112], initially created by the University of Cambridge Computer Labora-
tory and now developed and maintained by the Xen community as a free software, is a
virtual machine monitor for IA-32 (x86, x86-64), IA-64 and PowerPC 970 architectures. It
is licensed under the GNU General Public License [294].

The Xen provides a system-virtual machine environment, where the lowest and the
most privileged layer is provided by the Xen hypervisor, above which one or more guest
operating systems scheduled across physical CPUs run. The first guest operating sys-
tem, called Domain 0 (dom0) in the Xen’s terminology, serves as a Service Domain having
special management privileges and direct access to the physical hardware. It is booted
automatically when the hypervisor boots and serves for starting and managing of another
guest operating systems.

The Xen provides mechanisms to manage resources, including CPU, memory and I/O.
Among the other important Xen’s features belong:

• Paravirtualization – the Paravirtualization is a specific type of the system virtu-
alization, where virtual machines and the VMM co-operate to achieve very high
performance for I/O, CPU, and memory virtualization. Thus, it enables high-
performance virtualization even on architectures like x86 that are traditionally very
hard to virtualize [312]. The paravirtualization exposes a virtual architecture that
is a slightly different than the physical one. However, it requires guest operating
systems to be ported (to use a special hypercall ABI26 instead of certain architec-
tural features) to be able to use it. Nevertheless, the user-space applications do not
require any modifications.

• Hardware-assisted virtualization – in addition to paravirtualization, the Xen also
allows unmodified guest OSs to be run on it. As opposite to traditional full virtual-
ization hypervisors yielding in a tremendous performance overhead, the hardware-
assisted virtualization, allowed by Intel VT (formerly Vanderpool) and AMD-V
(formerly Pacifica) architecture extensions, can offer very high performance for
para-virtualized guest operating systems as well as full support for unmodified
guests running natively on the processor.

• Virtual machine migration – the Xen provides two types of migration used to trans-
fer a domain between physical hosts—the cold/offline/regular one and the live
one. The cold migration moves the virtual machine by pausing it on the source host
and copying its memory content to a destination host, where it is resumed. The
live migration [64] provides the same logical functionality but without needing to
pause the domain—the domain continues its usual activities, so that the migration
should be imperceptible from the user’s point of view.

22http://win4lin.net/
23http://www.virtualbox.org/
24http://kvm.qumranet.com/
25http://www.xen.org/
26The Application Binary Interface (ABI) provides a program with access to the hardware resources and

services available in a system.
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2.2.1.3 VMware

The VMware27 [186, 268] is a popular virtual machine infrastructure for IA-32-based PCs,
initially based on the OS research at Stanford University. It is a commercial solution pro-
viding dynamic resource controls, complex resource management/reservation capabili-
ties, high availability as well as backup tools making it the most robust and scalable vir-
tualization technology currently available. It includes several products, e.g., the VMware
ESX Server, VMware Server, VMware Virtual SMP, VMware Distributed Resource Sched-
uler, VMware High Availability, etc. [186]

The VMware products do not emulate ISAs for a different hardware that is not phys-
ically present. This provides better performance, however, can cause problems when
moving virtual guests between hardware hosts running different ISAs as well as between
hosts having a different number of CPUs. Nevertheless, the VMware technology is the
most complex and sophisticated virtualization system on the market, providing most of
the features available in the other virtualization systems altogether, including paravirtu-
alization as well as offline and live migrations.

2.2.1.4 Denali

The goal of the Denali project [278, 279], developed at the University of Washington, is
to propose a virtualization system capable of running large number of domains being
simultaneously processed (tens of thousands domains on commodity hardware). The
virtual architecture provided by Denali consists of three main elements—an instruction
set, a memory architecture, and an I/O architecture.

The virtual instruction set has been designed for both performance and simplicity. The
Denali’s ISA consists of a subset of the x86 instruction set (enabling most of the virtual
instructions to be executed directly on the underlying processor) enriched by a set of spe-
cialized instructions (e.g., the “idle-with-timeout” instruction helping to avoid wasting
of the physical CPU by executing OS idle loops) and by set of virtual registers to expose
system information, such as CPU speed, amount of memory, etc. However, the special
virtual instruction set as well as the overall Denali’s virtual architecture make it unable to
run unmodified legacy guest operating systems. Even thought porting these OSs to De-
nali should be attainable, none of them has been really ported yet. Instead, the Denali’s
features have been evaluated using a novel operating system (called Ilwaco [278]), which
has been proposed by the Denali project as well.

2.2.1.5 Other platform-level virtualization systems

Among the other platform-level virtualization systems, that should be mentioned, be-
longs the UML (User-Mode Linux)28 [74]—a port of the Linux kernel being primarily
developed by Jeff Dike since 1999. The UML provides a safe and secure way of running
multiple Linux OSs within a normal Linux system. It does not provide machine emu-
lation layer, rather, it provides virtual OSs (called UML instances) behaving as common
processes in host’s user space. The UML instances are not forced to run the same kernel
version as the host runs—the kernel versions may differ, so that is entirely possible to
test “bleeding edge” versions of the Linux OS on a system running a much older ker-
nel. Moreover, the UML instances can be provided with a different hardware than the
physical hardware is.

27http://www.vmware.com/
28http://user-mode-linux.sourceforge.net/
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Furthermore, the KVM (Kernel-based Virtual Machines) [153] virtualization system,
as compared to other systems, is a relatively new virtualization architecture utilizing ad-
ditionally added virtualization extensions of Intel VT and AMD-V x86 processors, which
enable the KVM (in fact, a modified Linux kernel) to behave as a relatively simple vir-
tual machine monitor. Using the KVM, one can create and run several virtual machines
behaving as standard Linux processes. However, unlike the UML, the KVM requires
the physical host system to use the Intel VT or AMD-V x86 processors. The KVM also
provides limited support to paravirtualization and live migration capabilities.

The last platform-level virtualization system, which is mentioned in this thesis, is the
Bochs29 [167]—a portable x86 and x86-64 IBM PC compatible emulator and debugger
mostly written in C++ and distributed as a free software under the GNU Lesser General
Public License. It supports emulation of the processor(s), memory, disks, display, net-
work, BIOS, and another common hardware peripherals. It is able to run several guest
operating systems (including the DOS, several versions of Microsoft Windows, BSDs,
Linux, AmigaOS, Rhapsody and MorphOS) on many host OSs (like Windows, Windows
Mobile, Linux and Mac OS X). However, since the Bochs provides a complete PC emu-
lation, the guest system’s performance tends to be very slow as compared to the other
virtualization techniques.

2.2.2 OS-level Virtualization Systems

Especially because of the platform-level VMs’ performance limitations, the lightweight
virtualization systems—so-called OS-level virtual machines—have been proposed. They
provide the OS kernel-level virtualization—a partitioning of the user-space environment
of a single physical server into multiple small partitions (called Virtual Environments, Vir-
tual Private Servers, etc.), so that each such partition looks and feels like a real server from
the user point of view. Thus, instead of just a single user-space instance, multiple isolated
user-space instances can be created, running on top of a single (core) OS’s kernel (see the
Figure 2.3).

Figure 2.3: OS-level virtual machines.

29http://bochs.sourceforge.net/
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The OS-level virtualization system provide a very low overhead that enables them to
maximalize the efficiency of resources’ usage—programs in a virtual OS instance usually
use the operating system’s normal system call interface and do not need to be subject to
the emulation resulting in performance degradations. This negligible overhead enables
the OS-level virtualization systems to run hundreds or thousands virtual environments
on a single physical server—such level of density cannot be achieved by the platform-
level VMs mainly due to an overhead of running multiple kernels. From the other side,
the OS-level virtualization does not allow running different operating systems (i.e. dif-
ferent kernels) like the platform-level one, although different libraries, distributions etc.
running on top of a defined OS kernel are possible. The single-kernel drawback can fur-
ther represent a potential single point of failure as well as a security risk, if the kernel
becomes compromised.

2.2.2.1 Linux-VServer and FreeVPS

The Linux-VServer technology30 [176, 298] provides operating system-level virtualization
capabilities to the Linux kernel (similar to OpenVZ described later). Similarly to the Xen,
it is also developed and distributed as an open-source software and licensed under the
terms of the GNU GPL [294]. As opposed to the Xen, the virtualization is not provided on
the hardware layer, but on the kernel layer which requires all the guest operating systems
to support defined kernel version.

The basic idea of the Linux-VServer technology is to separate the user-space environ-
ment into distinct units (called Virtual Private Servers (VPS)) in such a way that each VPS
looks and feels like a real standalone server to the processes contained within it. The
VPSs share the same system call interface and thus do not have any emulation overhead.
This allows the VPSs to be able to run simultaneously on a single physical server at full
speed, efficiently sharing hardware resources (CPU, I/O, memory, etc.) [298].

The requirement that the host operating system has to be able to run on a specific OS
kernel belongs to main OS-level virtualization’s disadvantages in general. Further, the
VServer unfortunately does not provide any VPSs’ migration capabilities31 and, since the
networking is based on isolation (not virtualization), it does not allow the VPSs to create
their own internal routing and/or firewalling setups.

The FreeVPS32, which is originally a fork of the Linux-VServer, is a GPL-licensed vir-
tualization patch for the Linux kernel developed by Positive Software Corporation. Simi-
larly to the Linux-VServer, the FreeVPS also provides complete isolation of the filesystem
and processes running in each VM together with per-VM constraints for resources (e.g.,
network load, disk space, and memory consumption). In contrast to the VServer, the
FreeVPS provides a variety of improvements in system accounting, resource manage-
ment (limits on disk space, virtual/resident memory, the number of running processes,
context file handles, TCP connections, etc.), networking, and other administrative en-
hancements.

30http://linux-vserver.org/
31In fact, there are some attempts trying to enrich the VServer with migration capabilities [75]. However,

these were presented in a theoretical level only, since a real implementation rather remains still an issue.
32http://www.freevps.com/



CHAPTER 2. STATE OF THE ART 26

2.2.2.2 OpenVZ

The OpenVZ33 [254] is an open-source virtualization technology licensed under the GNU
General Public License [294] and developed by SWsoft34 as a part of their commercial
virtualization system called Virtuozzo35. The OpenVZ creates multiple containers (also
called Virtual Private Servers—VPS as well as in the Linux-VServer) running on top of
a single kernel instance. From the kernel point of view, each VPS is a separate set of
processes being completely isolated from each other.

The OpenVZ kernel is a modified Linux kernel adding the following functionality: vir-
tualization and isolation of guest subsystems, resource management, and checkpointing.
Regarding the resource management, the OpenVZ does a very good job in this area—
over 20 crucial resources can be set live, while the VM is running, optionally saved to be
re-initialized to the new value after a reboot [254]. The resources (such as CPU, memory,
disk space, etc.) could be limited as well as guaranteed in some cases. Further, the check-
pointing functionality allows the OpenVZ to provide both the cold (offline) migration as
well as live migration capabilities [194].

2.2.2.3 FreeBSD Jails

The FreeBSD Jail mechanism [140, 189] is an implementation of the OS-level virtualization
technology allowing the FreeBSD node administrator to partition the node into several
independent mini-systems called jails.

The jails could be considered as an extension of the chroot command—a system call,
which changes the root directory of a process and all its descendants. Processes created
in the chrooted environment cannot access files or resources outside of it—once such a
service is compromised, the attacker should not be able to compromise the entire system.

In contrast to it, the Jails are suitable for more complex tasks requiring a lot of flexi-
bility and advanced features. They improve the concept of the traditional environment
in several ways. In the chrooted environment, processes are only limited in the part of
the file system they can access—the rest of the system resources (like the set of system
users, the running processes, or the networking subsystem) are shared by the chrooted
processes and the processes of the host system. The Jails expand this model by virtualiz-
ing not only access to the file system, but also the set of users, the networking subsystem
of the FreeBSD kernel and a few other things. [292]

2.2.3 Process-level Virtualization Systems

Besides the platform-level and OS-level virtual machines providing a complete system
environment for an (arbitrary) operating system, there are also the Process Virtual Ma-
chines capable of supporting just an individual process. These virtual machines provide
user applications with a virtual ABI environment and usually serve as [247]:

• Emulators and dynamic binary translators – a challenging problem for the process-
level VMs is to support program binaries compiled to a different instruction set
than the one executed by the host’s hardware is—i.e., to emulate one instruction set
on a hardware designed for another. The most straightforward emulation method
is an interpretation—an interpreter program executing target ISA fetches, decodes,

33http://wiki.openvz.org/
34http://www.swsoft.co.uk/
35http://www.parallels.com/products/virtuozzo/
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and emulates the execution of individual source instructions. However, for better
performance, the binary translation is typically used—blocks of source instructions
are converted (translated) to target instructions that perform equivalent functions.

• High-level language VMs for platform independence – a cross-platform porta-
bility is a very important objective. A way of accomplishing this is to design a
process-level VM environment at the same time as an application development en-
vironment is being defined. Such an environment does not usually correspond to
any real platform—it is designed just for ease of portability and to match the fea-
tures of the high-level language that it is used for.

Figure 2.4: Process-level virtual machines [247].

One process-level virtualization system has been already mentioned in the previous
section—the QEMU technology, which in the user-mode emulation mode behaves as an
emulator of different guest ISA(s) than the host one is. The QEMU emulation is, as al-
ready mentioned in the QEMU description, realized using the dynamic binary transla-
tion. Among the other process-level virtualization systems belong:

2.2.3.1 JVM (Java Virtual Machine)

The Java Virtual Machine [178], developed by Sun Microsystems36, is an abstract com-
puter used for an execution of computer programs and scripts providing a virtual ma-
chine for high-level programming languages and serving as an instruction set simulator.
The JVM operates on a Java bytecode, which is usually (but not necessarily) generated
from a Java source code—the JVM can also process binary programs from other program-
ming languages, if a proper compiler is used. For example, the Ada [23] or the Ruby [84]
source code can be compiled into the Java bytecode and executed by the JVM. The avail-
ability of the JVM’s implementations for various platforms makes the Java bytecodes
portable across various platforms without any modifications or recompilations necessary.

The JVM provides so-called just-in-time translation [161] (also known as dynamic trans-
lation)—an alternative to the interpretation and the binary translation. Just-in-time trans-

36http://www.sun.com/
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lator does not generate translated code (the code ready to be processed by the host ma-
chine) prior to program runtime (as the binary translators do37), but during it as the
interpreters do. However, since the interpreters tend to be very slow, the JVM uses the
just-in-time translation which translates an application into the machine code during its
execution. The performance improvement over interpreters is reached by caching the re-
sults of translated blocks of code instead of a simple reevaluating each line/operand each
time it appears. In contrast to the binary translation, the just-in-time translation can be
further optimized to the targeted CPU and the operating system, which the application
runs in.

2.2.3.2 CLR (Common Language Runtime) and Portable .NET

The CLR38 is a core component of the Microsoft’s .NET framework. It is Microsoft’s imple-
mentation of the Common Language Infrastructure (CLI) standard, which defines an execu-
tion environment for a program code dedicated to the .NET framework. The CLR runs a
form of a bytecode called the Common Intermediate Language (CIL). Applications are writ-
ten in any supported programming language, such as C# or VB.Net—at a compile time,
a .NET compiler converts such code into a CIL code, whereas at runtime, the CLR’s just-
in-time compiler converts the CIL code into a code native to the operating system.

The goal of the DotGNU project39, called Portable .NET, is to build a complete suite of
free and open-source software tools (compilers, libraries, and tools) to compile and exe-
cute applications using the CLI standard. The initial target platform was Linux, however,
the Portable .NET is working under Windows, FreeBSD, NetBSD, Solaris and MacOS X
platforms as well. Further, since it is able to run on various processor architectures (for
example, x86, PPC, ARM, Sparc, s390, Alpha, IA-64, and PARISC), it provides very exten-
sive platform independence for programs written in C# and C programming languages.

2.2.3.3 LLVM (Low Level Virtual Machine)

According to [165], the LLVM40 is a collection of libraries and tools that make it easy
to build compilers, optimizers, just-in-time code generators, and many other compiler-
related programs. It uses a language-independent instruction set both as an offline code
representation (to communicate the code between compiler phases and to runtime sys-
tems) and as the compiler internal representation (to analyze and transform programs).

Among the strengths of the LLVM belong: extremely simple design, source language
independence, effective optimization at compile time, extensibility, stability and reliabil-
ity. Regarding the language independence, the LLVM includes frontends for, e.g., the C,
C++, Stacker, and Java languages. Programs written in these languages can be compiled
for and are able to run on the X86, X86-64, PowerPC 32/64, ARM, Thumb, IA-64, Alpha,
SPARC, MIPS and CellSPU processor architectures.

37In fact, the binary translators do code generations both before and during the program runtime. They
have to be able to translate a code during runtime especially in cases, when the code is available only at the
runtime (e.g., self-modifying code).

38http://msdn.microsoft.com/en-us/library/ddk909ch(vs.71).aspx
39http://www.gnu.org/software/dotgnu/
40http://llvm.org/
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2.2.3.4 Valgrind

Julian Seward’s Valgrind41 [242] is an example of employing process-level virtual ma-
chines for other reasons than the common ones based on platform independence or emu-
lation. The Valgrind is a suite of simulation-based tools for memory debugging, memory
leak detection, and profiling, designed for Linux OS and X86, AMD64, and PowerPC
32/64 processor architectures. The Valgrind’s modular architecture consists of a core
providing virtualized CPU in software and set of tools, each one performing some kind
of debugging, profiling, or similar task. Among the standard tools included in the Val-
grind distribution belongs: Memcheck tool detecting memory-management problems in
programs, a cache profiler Cachegrind and a caller-callee profiler Callgrind, a heap pro-
filer Massif, and the Helgrind, which detects synchronization errors in POSIX threading
primitives.

In its essence, the Valgrind is a virtual machine, which provides a just-in-time bi-
nary translation—it translates the original program into a temporary simpler form called
Intermediate Representation (IR), which is a processor-neutral, SSA-based (Static Single-
Assignment) form [173]. When the program is converted into the IR, the mentioned tools
are enabled to do whatever transformations they like (for example, the Memcheck tool
replaces the standard C memory allocator with its own implementation, which also in-
cludes memory guards around all allocated blocks—this enables Valgrind to detect mem-
ory reads/writes outside an allocated block). When the transformations are finished, the
IR is translated back into the host machine code and run.

2.2.4 Virtualization in Current Computer Networks/Systems

Besides using virtual machines for platform’s emulation, applications’ portability, and/or
platform multiplication for more effective usage of underlying hardware resources, the
virtualization principles became very popular in modern computer networks, too. Es-
pecially because of their low cost and portability, the virtual machines have become em-
ployed in various applications, like intrusion detection systems or applications’ develop-
ment.

In this section, we show several types of networking applications, which make use
of virtual machines benefits, starting with the section describing the idea behind several
projects attempting to employ virtual machines in the Grid environment.

2.2.4.1 Grid Computing on Virtual Machines

The fundamental goal of Grid computing [149] is to multiplex distributed computational
resources of providers among users across wide-area networks. Traditionally, these re-
sources are multiplexed using mechanisms found in typical operating systems—for ex-
ample, user accounts and time-sharings enable the multiplexing of processors, the virtual
memory enables the multiplexing of the main memory, and the file systems multiplex
disk storage. This approach, based on the operating system user level of abstraction,
makes it difficult to implement security mechanisms necessary to protect the integrity of
Grid resources as well as complicates the management of accounts and file systems not
suited for wide-area environments. [82]

There are several projects [73, 82, 90, 143, 163] proposing to change the way, which
the Grid computing is actually performing, by raising the level of abstraction from that
of the operating system user to that of the operating system virtual machine. The VMs

41http://valgrind.org/
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offer the ability to create a Grid environment on a host resource, which is optimized to
suit particular users’ needs—precise versions and flavors of operating system, libraries,
middleware and applications can be deployed without any unexpected interference with
other users’ environments. The users thus get an illusion of having their own, dedicated
virtual machine(s) customized to their needs.

Building virtual Grids over virtual machines provides also additional benefits—the
VMs provide almost ideal encapsulation of the whole operating system and its compo-
nents. This also allows the security improvements since a malicious user or an application
can only compromise their own operating system within the VM, not the computational
resource or another VM.

2.2.4.2 Cloud Computing

The Cloud computing [115, 273] is an emerging computing technology that uses the In-
ternet and central remote servers to maintain data and applications. Data and processing
power are stored in a shared cloud of Internet servers, and users access such an infras-
tructure when they want and in a way they need. The definition presented by [46] states,
that:

“A Cloud is a type of parallel and distributed system consisting of a collection of interconnected
and virtualized computers that are dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements established through negotiation between

the service provider and consumers.”

In fact, the Cloud infrastructure provides an illusion of infinite computing resources,
which are available on demand. The key technology, that makes the Cloud comput-
ing possible, is the virtualization—the servers, which the infrastructure is built on, use
the virtualization to apportion the applications and operating system resources to their
clients. Moreover, it benefits from the virtualization’s enhanced isolation capabilities as
well—multiple guest operating systems can reside on the same physical hardware with-
out any knowledge of the other ones, being thus protected from their instability and/or
configuration issues. The dynamic relocations, instant rebalancing (moving VMs from
over-utilized physical machines to lower utilized ones), and instant deployment are an-
other virtualization features the Cloud computing benefits from.

Recently, several academic [21, 144, 180] and industrial [34, 137, 290, 295, 301, 303]
projects have started investigating and developing technologies and infrastructure for the
Cloud computing. The mostly used virtualization systems for building the virtualized
infrastructure are the Xen and the VMware.

2.2.4.3 PlanetLab

The PlanetLab [62, 212, 213] is an open, geographically distributed platform for deploy-
ing, evaluating, and accessing planetary-scale network services. Its main goal is to serve
as a testbed for developing large-scale distributed systems that can benefit from having
multiple points-of-presence on the network. The project has been started as a reaction
to the unavailability of any distributed system environment for distributed applications’
developers.

The centerpiece of the PlanetLab architecture is a slice. Each deployed service (a set of
distributed and cooperating programs providing some higher-level functionality) then
runs in a slice—a network-wide container isolating services from each other. Each slice
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encompasses some amount of processing time, memory, storage, and network resources
across a set of individual PlanetLab nodes (machines capable of hosting one or more
virtual machines) distributed over the PlanetLab network [62].

In fact, a slice is a set of virtual machines with each element of the set running on a
unique node. Each virtual machine then provides an environment, where the program,
that implements some aspect of a service, runs. Obviously, each VM runs on a single
node and is allowed to consume some fraction of its resources. The PlanetLab implemen-
tation uses the Linux-VServer virtualization technique—a middle ground between the
complete virtualization (e.g., Xen), which was considered to bring high price in CPU and
memory resources, and the application-level virtualization (like JVM or CLR), which was
considered to bring low flexibility.

The PlanetLab architecture has been used for several projects. For example, the VIO-
LIN (Virtual Internetworking on OverLay INfrastructure) project [135] has used it to create
a prototype implementation of an architecture, which allows to create virtual isolated
network environments (consisting of virtual routers, LANs, and end-nodes) on top of an
overlay infrastructure.

2.2.4.4 XenoServer

Similarly to the PlanetLab, the XenoServer project [91, 113, 158], developed at the Univer-
sity of Cambridge, has also built a public infrastructure for a wide-area distributed com-
puting. Its aim is to provide an infrastructure of computing nodes able to host virtual
machines and scattered throughout the Internet network, allowing its users to submit
and run their own programs to reduce the communication latency and avoid network
bottlenecks as well as to deploy large-scale experimental services. Since the XenoServer
allows VMs’ migrations, it is also a suitable infrastructure for deploying mobile agent-
based applications.

The proposed architecture consists of the XenoCorp servers and the XenoServers. The
XenoServers, which run the Xen virtualization system, are hosted by remote machines
around the Internet providing so-called execution contexts—execution environments, that
run the services uploaded by the users. The XenoCorp servers then serve as a distributed
directory for maintaining active XenoServers and registered users. Before starting the use
of the infrastructure, clients have to register with XenoCorp. Once registered and prop-
erly authenticated, the clients can ask the XenoCorp to supply information about avail-
able XenoServers and their specification. Once a client selects the particular XenoServer
as a suitable one for running the particular task, the deployment phase, which consists
of two stages, follows—the session establishment stage, during which the resources re-
quired by the client are reserved, and the service deployment itself.

The clients define the execution context’s requirements using a simple XML schema
during the session establishment stage—they are able to choose an operating system,
which their service will run in, from a set of supported traditional OSs published by the
XenoCorp. The images of the OSs are prepared ahead of time and then deployed. It is
expected that in most of the scenarios no user will ever need to login to the VM running
the OS—the system boots up and starts required applications automatically. Moreover,
to make the distribution of the execution contexts’ images, that are required during VMs’
migration, as well as the initial deployment stage easier, a novel wide-area filesystem,
called Xest [197], has been created as a part of this project.



CHAPTER 2. STATE OF THE ART 32

2.2.4.5 Virtual Networks

Many network services could benefit from having their own network topologies, direct
control over the routing, forwarding, and/or addressing mechanisms rather than us-
ing a common communication infrastructure with other network services. For example,
interactive applications (e.g., gaming, VoIP) can run application-specific routing proto-
cols converging more quickly than existing network protocols, enterprises can construct
and rent a private network connecting geographically dispersed sites, network service
providers could run a separate “development” network for deploying and testing new
configurations, protocols and/or designs, etc.

A software platform for hosting multiple virtual networks, called Trellis [28, 29], en-
ables to define multiple virtual networks on a shared commodity hardware, allowing
the users to define their own topology, control protocols, and forwarding tables. The
Trellis makes use of two OS-level virtualization techniques, the Linux-VServer and the
NetNS [299], together with the EGRE42 tunneling mechanism, so that it provides a coher-
ent platform enabling high-speed virtual networks.

A virtual network in Trellis is built using two components: the virtual hosts running
user software and forwarding packets, and the virtual links transporting packets among
virtual hosts. The virtual hosts provide an illusion of a dedicated physical host (even
though multiple of the virtual hosts can run on a single physical hardware) allowing its
users to implement both custom control-plane and data-plane functions without compro-
mising the speed.

2.2.4.6 Virtual Machines for Intrusion Detection Systems

The Intrusion Detection Systems (IDS) are used to improve the security of computing sys-
tems. They continuously watch the system activity and look for attacks and intrusion
evidences. In general, the IDS systems can be divided into two groups [11]: the network-
based IDSs, which are based on watching the network traffic flowing through the moni-
toring system, and the host-based IDSs based on watching a local activity on a host (active
processes, network connections, system calls, log files, etc.) [98]. The main weakness of
the host-based IDSs is their relative frigidity—in order to be able to analyze the system
activity data, the system has to run an agent collecting them. However, this agent can be
deactivated or tampered by successful intruders in order to mask their presence.

The projects [98, 166] show, that this problem can be overcome by employing the vir-
tual machines. The common idea behind them is, that the watched host runs in a virtual
machine without any host-based IDS system installed. The IDS then runs in a different
virtual machine (or directly in a service virtual machine) and monitors the activity of the
host from outside. Thus, the IDS itself is kept safe since it is out of reach of intruders.

The prototype implementation of the [98] architecture, called Livewire, is based on the
VMware virtualization system. Since their IDS executes directly on top of the hardware
(on the hypervisor level), it scans only the low-level internal state of each VM being an-
alyzed. Against it, the second approach presents interactions of the IDS VM(s) with the
watched host VM, thus taking into account the activities carried out by its guest pro-
cesses. The prototype implementation of this system uses the UML virtualization system.

42Ethernet over GRE [79].



CHAPTER 2. STATE OF THE ART 33

2.2.4.7 Xen-Based Execution Environment

The main goal of the XenBEE project43, which started in late 2007, is to create a Xen-
Based Execution Environment [215] (hence the project name XenBEE) that allows its users
to execute arbitrary batch applications (the applications without users’ interactions) on a
Grid-based remote computing infrastructure. The proposed architecture is based on the
Xen virtualization system—the hosting node is able to accept user applications in self-
contained virtual disk images (VMs), which have to contain the XBE Instance Daemon set
to properly start appropriate application(s) inside the VM. The architecture thus allows
to run arbitrary execution environments the host system supports—the particular EE has
just to run the XBE Instance Daemon, which communicates with the main XBE Daemon
controlling both the host node (including the communication with the XenBEE clients)
and all the XBE Instance Daemons. The uploading (and running) the applications with-
out any provided EE is not supported, since the XenBEE neither provides EEs for such
applications nor it is able to upload an application into any of them—it focuses just on
their proper startup.

The other XenBEE’s execution semantic is the on-demand server deployment—a VM,
which includes a server application, is supplied to the XenBEE and started in the same
way as for the batch-based applications. However, as opposed to the batch-based ap-
plications, the server applications are supposed to run “forever” (to the time their VM
is shutdowned) and to be reachable through a standard network connection (including
VM’s remote-login capabilities).

One of the XenBEE’s goals is to be integrable with existing grid environments (e.g.,
the Globus toolkit [87], the Unicore [114], or the Condor [259]). Thus, the applications’
specifications are described using a slightly modificated version of the Job Submission
Description Language (JSDL) [17], which the mentioned grid middlewares support. The
Public Key Infrastructure (PKI) is used for the authentication, authorization, and secure
communication between the host system and the client. Nevertheless, the resource man-
agement and QoS capabilities have not been addressed by the project so far.

2.2.4.8 QuaSAR (Quality of Service Aware Router)

The main aim of the QuaSAR project [187, 188] is to demonstrate the feasibility of par-
titioning network router resources among independent flows by making use of virtual
machines. The QuaSAR router consists of a number of virtual machines (called (QoS)
routelets), each of which has an allocated portion of the underlying physical machine’s
resources (e.g., CPU time, network bandwidth, etc.). Each routelet is assigned to route
a single data flow requiring defined QoS guarantees (e.g., defined using the RSVP sig-
nalling [36]) enabling the QuaSAR to provide QoS guarantees to each network flow in-
dividually. The VMM then ensures that each particular network flow can only access
its allocated resources, and prevents the other network flows from interfering with it.
One another virtual machine then routes the rest best-effort traffic and controls the router
overall.

The QuaSAR prototype implementation has considered the use of Xen and Denali par-
avirtualization systems, however, because the Denali does not have any well-used oper-
ating systems ported to its virtual instruction set, the Xen has been used. The QuaSAR
routelets run the Linux OS and route the MPLS traffic flows [230]. The routelets/VMs
have necessary resources assigned by the Xen’s virtual machine monitor—the CPU time

43http://www.xenbee.net/
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is managed by the Borrowed Virtual Time (BVT) scheduler [77], while for the network
transmission rates’ allocations, the project has implemented a transmission limiting sys-
tem (based on a simple credit allocation scheme) on its own.

2.2.4.9 SwissQM (Scalable WIrelesS Sensor Query Machine)

The Sensor networks [5] are a sensing, computing and communication infrastructure that
allows to instrument, observe, and respond to phenomena in (usually) the natural envi-
ronment. The sensors themselves can range from small passive microsensors (e.g, "smart
dust") to a larger scale, controllable sensing platforms (used, e.g., to control the tempera-
ture and/or detect a toxicity in buildings).

The SwissQM [201, 200] is a sensor network platform based on virtual machines ca-
pable of executing bytecode programs on the sensor nodes. The SwissQM performs a
combination of a software running on the sensor nodes and a software running on the
gateway machine—the machine providing an access to the sensor network. The gateway
machine translates user queries (expressed in various languages) into virtual queries (ex-
pressed in an internal format suitable for a multi-query optimization, query merging,
etc.), which are later translated into network queries (expressed in a bytecode) and ex-
ecuted on the sensor nodes. This three-tier mechanism in combination with a flexible
execution platform on the sensor nodes provides a level of abstraction hiding technical
details from the users while allowing them to collect data in an easy, declarative way.

The Query Machine (QM), which runs on the sensor nodes, is a virtual machine execut-
ing an instruction set—a small subset of the JVM extended with specialized instructions
reducing the size of the programs.



Chapter 3

Motivation and Objectives

As already depicted during the introduction chapter, our work presented within this
thesis focuses on investigating the VMs’ features, which the active/programmable net-
works can profit from. At first, we present the intended benefits from more or less gen-
eral point of view (the Section 3.1), while in the latter section, we study them together
with another useful concepts in more detail (together with examples of real-life applica-
tions/situations, which can profit from them). The discussed benefits have thus become
the objectives of our novel Distributed Programmable Network Node (DiProNN) architecture,
that aims to verify their attainability.

Finally, the Section 3.3 briefly compares our work with the existing solutions described
in the previous chapter.

3.1 Programmable Networks and Virtualization

For the active/programmable networks, the most straightforward virtualization’s con-
tribution is the possibility of running several platform-level virtual machines (and thus
operating systems) simultaneously on a single physical network node. In an extreme
scenario, one can think about a single physical node simultaneously running several ac-
tive/programmable nodes, which have been described in the previous chapter, and thus
behaving as a “multi-programmable” node. However, even being interesting, such a
contribution does not provide any functional benefits except possibilities of more effec-
tive usage of the underlying physical hardware resources and thus is not important in
the context of this thesis.

Execution Environments’ Flexibility
The ability to run multiple virtual machines (with arbitrary OSs/EEs running inside)
on a single physical node can, however, lead to the active/programmable node’s ability
to provide multiple distinct execution environments for user active programs. In this
case, users are not forced to create their active programs for a single (and usually highly
specific) execution environment, but they could be enabled to specify the EE, which their
active programs require—the node can thus upload their active program(s) into a proper
virtual machine running the requested environment. Moreover, all the virtual machines
providing distinct EEs do not have to run all the time—the ones, that are not used at
the particular time, could be made non-active (suspended) so that they do not utilize
limited system resources, and re-activated (resumed) at the time an active program needs
them. Even further, execution environments do not need to exist at all during the node
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runtime—they can be assembled and run at the time an active program needs them, and
later destroyed (stopped and deleted).

The active/programmable node, which is able to run multiple virtual machines simul-
taneously, can also enable its users to upload not only standalone active programs1, but
the whole virtual machine(s) with active program(s) running inside. Such a capability
could be highly desired when:

• the node must not provide the particular execution environment (operating system)
requested by the users’ active program(s), e.g., because of licence constraints,

• users’ active programs request highly specialized operating system’s functionality
and/or rely on an execution environment not commonly available (e.g., users’ own
execution environments),

• users’ active programs require administrative privileges in order to run properly,

• the users do not trust the execution environments provided by the node for any
reason,

• users’ active programs have to cooperate with a shared service located in the same
EE (e.g., multiple APs have to access (huge) data collections available in a database
program, etc.).

Security and Strong Isolation Among User VMs/APs
Besides the benefits related to the execution environments’ flexibility, the virtualization
can also bring other features. For example, a strong isolation among the user VMs [181]
and security improvements—what happens if an operating system or an active program
inside a VM gets compromised and/or becomes malicious?

In common active/programmable nodes, a malicious AP could affect and compro-
mise all the other APs running on the node as well as make the node unavailable for all
the other users (by compromising the control plane). Such attacks are possible since the
APs share the same execution environment in these common nodes—when an AP com-
promises the execution environment (an operating system) and acquires administrative
rights2, it is able to access the memory of all the other processes (APs) running on the
node and compromise them.

In the case of two independent physical machines, when one of them becomes com-
promised, it almost always3 has only one way to compromise the other—through the
network. Such a security model is also available under the virtualization systems, since
the execution environments of all the virtual machines do not share the same “physical”
memory4 and cannot compromise each other in other way than through the network.

1An active program uploaded without its virtual machine (execution environment).
2Compromising the execution environment and acquiring administrative rights is not always necessary—

when an active/programmable node runs all the active programs under a single system user, the malicious
process (AP) is able to access and compromise the memory of all the other processes belonging to the relevant
user without any necessity to compromise the whole execution environment.

3Besides the attacks made through the network, the compromised machine can compromise the other,
e.g., through a shared data storage (on an assumption that it somehow ensures, that the other machine
executes a malicious program(s) uploaded there).

4In fact, all the virtual machines do share the same physical memory, since they run on the same physical
machine. However, the VMM creates an illusion of an independent “physical” memory to all the running
VMs (and their execution environments), that believe to run on an independent physical hardware with their
own physical memory. Thus, if the VMM behaves correctly, the VMs and APs running inside them are not
able to access the memory of all the other VMs, even if their execution environment becomes compromised.
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Further, if we consider each virtual machine running just a single active program, we get
all the active programs strongly isolated, so that they are not able to compromise each
other. Even further, since the VMM can see and manage all the network communication
among the VMs, in the case of each VM running just a single AP one gets absolutely
isolated APs—when the VMM detects an unexpected communication among the VMs, it
may suppress it as well as break all the unannounced communication by default.

However, ensuring that a compromised VM stays isolated requires a great deal of
rigor and correctness in the VMM and all of the software in the host, that interacts with
the VMs. This can be achieved through the use of sound security practices, so that one
can reduce the risk of a compromisation of these components, and provide a greater
assurance that the VMs stay isolated.

Complex Resource Management System
The strong VMs’ isolation feature discussed in the previous paragraphs leads to possi-
bilities of using a complex resource management system under the virtualized system.
Once the VMs are precisely isolated from each other, they could be provided by a set of
resources5 (either requested or available at the moment), depending on the facilities of
the particular virtualization system used.

Unlike typical multi-programming environments, where the resource control mech-
anisms are applied on a per-process basis, the VMs allow resource control at a coarser
granularity—that of the collection of resources accessed by a user [82]. In traditional
systems, the privileged control mechanisms interact with physical resources at the same
level as the users’ applications do, which requires the resource management system to
be sophisticated enough, so that it is (among others) able to distinguish the privileged
system calls, that imply from EE’s actions, from that system calls, which imply from the
user applications’ actions. Against to it, the virtual machines are straightforward—once
a user is provided with a whole “raw” machine, the resource owner sees a single entity,
which he or she schedules onto his/her resources.

The provided resources could be further guaranteed—scheduled in a way satisfying
running VMs’ resource requirements—so that the VM is ensured that the requested re-
sources will be always available through its whole runtime (and will not vary depending
on the node’s actual usage). In the case of each VM running just a single active program,
such a node can provide resources for every particular active program running, provid-
ing a fairly complex resource management system (RMS). This RMS does not require any
support of the APs’ execution environments since all its functions are provided by the
virtualization mechanisms, namely by the VMM.

Unification
So far, we have discussed the virtualization benefits from more or less straightforward
perspective. Nevertheless, there is another aspect of mentioned benefits that should
be pointed out—the unification of users’ applications (the standalone active programs
and/or the active programs running in the users’ virtual machines) on a lower layer than
in common active/programmable nodes (generally, in common non-virtualized com-
puter systems). In common nodes, all the user active programs must be designed for
an execution environment, which the particular node provides, since all of them have to
run inside it. Thus, all the APs are unified in the sense that they have to satisfy EE’s (in

5For example, CPU time, amount of free memory, network buffers and network bandwidth, storage sub-
system access, etc.—see the Section 3.2.4.
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fact, operating system’s) facilities—for example, libraries, kernel versions, 32-bit or 64-bit
architecture, etc.

However, in the case of System Virtual Machines (the Section 2.2), the user applica-
tions’ unification is lowered to the hardware architecture layer—all the user applications
have to satisfy the requirements of the hardware platform, which the particular VMM
runs on, and which is provided for the VMs (especially its ISA). Thus, such a node
does not require the users’ applications to satisfy particular execution environment’s
requirements—the node’s VMM just requires all the user applications to be able to run on
a specific hardware platform. The VMM then serves as an execution environment for ar-
bitrary execution environments (hence the VMM alias “an operating system for operating
systems”).

Even further, thanks to the Whole-system Virtual Machines, such a virtualized system
does not require the user applications to satisfy its ISA at all, since it is able to emulate
and run an arbitrary hardware platform. Anyway, in such a case, one also gets a layer all
the user applications are unified on—the VMM layer.

Once the user applications are unified on a particular layer, the layer controlling pro-
cess (the OS in common computer systems or the VMM in the virtualized computer sys-
tems) can manage and approach to all of them in a uniform way, which could be used
especially for resource assignments. Moreover, the controlling process can manage the
data flows as well as the communication among all the applications in a way it needs,
while applications do not need to know about it. Such a data flows’ management is also
used in the novel programmable node we propose—see the following chapters.

3.2 DiProNN Objectives

The analysis depicted in the previous section identifies a set of features, which the vir-
tualization can provide to the active/programmable networks. To verify their attainabil-
ity, we propose a novel programmable network node architecture, which combines the
virtualization’s principles with another useful concepts allowing the node to provide a
powerful and flexible programmable system.

In the following sections we discuss the objectives, that we require from such an ar-
chitecture. Moreover, the real-life situations, which they could be profitably used in, are
also depicted.

3.2.1 VM-aware Execution Environment Architecture

The beginning of this chapter depicts, that by employing the virtualization principles
one can (among others) enhance the execution environments’ flexibility of a computing
system they are used in. Similar fact applies for the DiProNN—the virtualization can
enable its users to upload not only standalone active programs later running inside some
required execution environment (provided by the node), but they are also allowed to
develop their programs for various specialized EEs, and to upload them together with
the particular AP(s) encapsulated inside a whole virtual machine.

As the [45] states, such specialized execution environments can be customized to the
needs of that particular application (active program) without any needs to support legacy
interfaces, which the common general-purpose OSs have to provide. The overall perfor-
mance of such a system can thus improve, because the applications run in execution
environments, that are less complex and less demanding, and that are better suited to
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their needs. The increased simplicity can also have positive implications on security and
reliability issues.

For example, the high performance computing (HPC) applications were—based on the
analysis depicted in [45]—observed to run significantly faster, when running stand-alone
in a simulation environment than on top of a general-purpose OS in the same simula-
tion environment. The tests published in [265, 266], which have been performed on a
virtualized infrastructure, have shown, that the overhead of the virtualization results in
slightly better run times for the native Linux OS at small workloads, but as the size of the
workloads grows, a specialized stand-alone environment significantly outperforms such
a general-purpose OS. Similar observations were also made in the XenSource project6,
which has presented a light-weight execution model for HPC applications [260] being
able to run on top of the Xen hypervisor.

Another example, that can benefit from being able to be run in a specialized execution
environment, are Java applications. Since the Java Virtual Machines provide their own
implementations of scheduling, networking, and memory management, specialized ex-
ecution environments could be used to avoid duplicating of these functionalities, which
are also provided by the general-purpose OSs. This can allow the application code to
run at a level much closer to the underlying hardware, which can result in an increased
performance. The examples of such execution environments, which are specialized on
running Java applications in a virtualized execution environments, are the Libra OS [12],
the LiquidVM OS [300], the JavaGuest OS [138], the JX OS [104], and the JANOS OS (see
the Section 2.1.3.2).

Furthermore, the applications requiring specialized light-weight and customizable op-
erating systems, which focus on providing as high performance as possible—e.g., the
Synthesis OS [185], the Synthetix [223], the Library OS [14], or the ones provided by the
K42 project [162]—could be also supported by such a virtualized system. Last, but not
least, the applications requiring a reliable and/or safe execution environments (e.g., the
EROS OS [243] or the MINIX OS [257]), or the applications that do not trust the EEs pro-
vided by the particular node (e.g., the encryption/decryption applications depicted in the
Section 10.5) could benefit from the ability to upload the whole execution environments
as well.

As this brief survey indicates, the uploading of whole execution environments, which
is not available in the active/programmable architectures presented so far, could be very
useful for the users’ applications, and thus the proposed programmable node should
supports it. Basically, we have identified the following requirements (which cover the
features F1 and F2), that the DiProNN has to fulfil. The node has to:

• enable its users to upload specialized execution environments for the APs – as already
depicted, the users should be able to develop their active programs for various ex-
ecution environments having specific features (specific runtime software, libraries,
kernel versions, supporting programs, etc.). Thus, the node should allow them to
upload the whole execution environments encapsulated into the VMs.

• enable its users to upload standalone active programs – the node must not force users
to upload the whole virtual machines only—the users must be able to upload an
active program only (further referred as the standalone active program), which has to
be further run inside an appropriate execution environment.

6http://www.xensource.com/
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To allow this, the node should offer a set of built-in virtual machines, which pro-
vide various execution environments for the standalone APs (e.g., the Linux OS, the
FreeBSD OS, the MS Windows OS, etc.). The suitable VM has to be chosen depend-
ing on the AP’s execution environment requirements (e.g., based on the desired
operating system or another system components the active program needs for its
proper functionality).

• provide built-in functions available for the users – besides the uploaded APs/VMs, and
besides the built-in VMs serving as execution environments for the standalone APs,
the node has to be able to provide a built-in functionality (active programs) that
might be used by its users. Such built-in functions should be set by the node(s)
administrator(s) and should be available for multiple users simultaneously.

• enable the administrators to run virtual machines with specialized functionality – the node
administrator should be able to run his own set of privileged virtual machines pro-
viding specialized functionality not related to a particular data flow (i.e., which may
process all the users’ data flows)—for example, anti-virus checks, classical routing
and/or other network’s/application’s services.

• enable running just a single active program per virtual machine as well as several active
programs in a single virtual machine – the approach of running just a single AP per
VM, as outlined in the Section 3.1, brings several benefits (for example, the ability to
employ complex management system enabling resource allocations for individual
APs). The node has to support it, however, it has to be able to run several APs per
VM as well (especially because of efficiency purposes).

The drawback of employing the virtualization is that it brings some performance over-
head necessary for the VMs’ management [192]. This overhead depends on system char-
acteristics (including the processors’ ISA, the VMM architecture and implementation,
etc.), and is especially apparent for I/O virtualization, where the VMM or a privileged
host OS has to intervene every I/O operation. We are aware of these problems, but we
have decided not to restrict the DiProNN’s design to the actual state in the virtualization
systems—we believe, that lots of current issues will be solved in close future. Neverthe-
less, we have also decided to examine, whether there is a possibility of employing an
accelerating hardware in the proposed DiProNN node, which can lower the virtualiza-
tion’s performance overhead as low as possible (the feature F9).

Last, but not least, the node architecture should be general enough so that one should
be able to choose a virtualization system, which suits best the requirements requested
by a particular implementation (the feature F8). The other reason for building such a
general architecture is, that if the node had been designed for and/or dependent upon
functionalities of a particular virtualization system, which later becomes unsupported
or which becomes unimportant because of a poor performance, its future adaptations to
different virtualization system would have been complicated or even impossible.

3.2.2 Component-based Programming

The component-based paradigm [255, 272] of software development enables applica-
tions’ developers to construct complex large-scale systems, which can be assembled of
heterogeneous functional or logical components (with diverse functionality, used pro-
gramming language, etc.) and distributed across the network. The components pro-
vide well-defined processing functionality and interfaces, using which they communi-
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cate with each other. Thus, once the components are composed into a larger system, they
are able to realize the requested functionality.

Although it is obviously possible to encapsulate the whole requested functionality into
a single component, the creation of several components cooperating on the requested
processing provides several important advantages:

• Programming simplicity and flexibility – once the complex functionality is divided into
several cooperating components, each of them might be independently developed.
Thus, instead of developing a single complicated application, one can focus just on
the functionality, that the particular components should provide, and even choose
the development system/platform, which suits best for their implementation.

Moreover, if a misbehavior appears in a particular component, it might be modified
and changed without any affects on the other ones.

• Components’ reusability – specialized components (e.g., compression components,
encryption components, data distributing components7, video-transcoding compo-
nents, RTP streams synchronization components, etc.) can be reused across many
applications. This allows faster delivery of requested functionality and reduces the
time necessary for new applications’ development.

• Better resource attainability and load-balancing – a single-component application has
to be run on a single physical node, which limits the computing resources available
for it. However, in the case of the same application consisting of multiple compo-
nents, each component can be deployed on a different physical node, which can
provide better load-balancing and resource management capabilities (each compo-
nent requests a portion of the whole computing resources required for the particular
application).

• Simpler performance bottlenecks’ identification – performance bottlenecks can be iden-
tified, and the needs for performance improvements can be localized in a small
number of performance-critical components instead of searching for the bottlenecks
in the whole complex application. The components can be internally optimized
and/or moved between platforms to improve their performance without affecting
the functionality of the whole application.

The component/module-based programming principles have already been studied
and successfully used in several existing active/programmable nodes architectures. For
example, the NetScript project (see the Section 2.1.2.4) has proposed a collection of Vir-
tual Network Engines (processing elements) interconnected by Virtual Links (data paths).
Moreover, the Click (the Section 2.1.2.5) and the SwitchWare (the Section 2.1.2.6) routers
allow to compose the processing functionality from a set of processing modules. How-
ever, all the systems require the components/modules to be designed as objects for the
particular programming language (the NetScript programming language or the C++ pro-
gramming language in the case of the Click router), or to be programmed using a par-
ticular programming language (the CAML in the case of SwitchWare). Moreover, the
SwitchWare allows just a sequence-based data flows among the modules and, except the

7By the data distributing components we mean the components, that are necessary for parallel processing
of the APs (for further information on the DiProNN’s parallel processing see the Section 7.4.1). These com-
ponents perform a distribution of an incoming data stream over multiple, simultaneously running parallel
instances, e.g., in a round-robin fashion.
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Netscript, the systems allow the composed application to run just on a single physical
node without any possibilities to distribute the processing load of the components across
a distributed infrastructure.

Because of the presented benefits, we have decided to employ a component-based pro-
gramming model for the proposed node as well. The model should consider the virtual-
ization employed in the node and should allow applications’ composition in the simplest
and most comfortable way as possible (the feature F3). Thus, similarly to the existing
ones, the employed programming model should enable the DiProNN users to compose
the required complex functionality from several, single-purpose simple active programs
and communication channels among them defined (such an association will be further
denoted by the term (DiProNN) Session). However, since the designed node should en-
able its users to develop the APs for arbitrary execution environments, the model has to
take into account the APs encapsulated in their own VMs as well.

3.2.3 Possibilities of Parallel/Distributed Processing

Since many applications, which the active networks can be advantageously used for, re-
quire a real-time stream-based processing, the proposed node should allow creation of a
processing environment, which provides as low latency of data processing as possible.
For example, a processing of multimedia streams for collaborative environments require
such a powerful system—even thought the human’s visual perception does not register
as low latencies as the perception of the sound8, for truly collaborative environment the
video must be precisely synchronized with the audio (so-called “lip synchronization”),
and thus the video processing latency becomes of the same importance [126]. Another
example are applications processing data for the haptic interactions, where the force com-
puting algorithms generally require high sampling rates (typically, 1 KHz), and thus the
processing latency has to be as low as 1 ms [116].

Since such processings are usually fairly complex (for example, the processing of video
streams often involves multiple discrete cosine transformations and complicated matrix
transforms, and other computationally intensive operations), a distribution of the pro-
cessing load across several processing elements (e.g., processors) is necessary. However,
such a distribution is not always sufficient, e.g., when high amounts of data have to be
processed. Thus, to avoid bottlenecks formed by the networking interface of a single
computer, the distribution of the processing load has to be combined with a distribution
of the network load as well (by distributing the network load across multiple processing
nodes).

There have been proposed several architectures, which address these issues. For ex-
ample, the active/programmable ones presented in the Section 2.1.4—whilst the CLARA
and the Cluster-based AR focus on the multimedia streams processings only, performing
the data distribution and parallel processings on a cluster of commodity PCs, the LARA
and LARA++ architectures allow processings of an arbitrary data streams on a dedicated
distributed infrastructure based on the Cerberus hardware [55]. However, both the LARA
and LARA++ use such a distributed infrastructure just for a distribution of the APs, not
for their simultaneous parallel processing.

Another example could be the non-programmable processing infrastructure presented
in [126] (called Distributed Active Element), which is used for a distributed processing
and delivery of multimedia streams in a collaborative environment. As a part of this
work, the author also proposes the Fast Circulating Token algorithm [126], which becomes

8In general communication, the human is able to register as low sound latencies as 100 ms.
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very useful in situations, when one wants to decrease an unwanted packet reordering
introduced by a distributed processing. And there are many other architectures—e.g., the
Borealis [1], the Chromium [129], or the Eclipse [231]—that perform a distributed processing
of data streams as well.

The common characteristic of all the mentioned architectures9, which perform a dis-
tribution of the incoming data stream over several processing nodes providing the re-
quested processing in parallel, is, that they consist of a distributing node, several pro-
cessing nodes, and usually an aggregating node. The distributing node distributes the in-
coming data over the processing nodes, which provide the required computations, whilst
the aggregating node aggregates the processed data in some a way (e.g., performs proper
packet ordering). One can notice, that such a processing infrastructure could be easily de-
fined using the component-based programming facilities, which the proposed DiProNN
node provides.

Nevertheless, to make the proposed node capable of providing sufficient computing
power for such a parallel/distributed processing, its architecture has to comprise sev-
eral processing nodes interconnected with a powerful communication infrastructure. On
the one hand, the node should enable simultaneous processing of multiple instances of
a single AP, over which the incoming data are distributed by a special data distribut-
ing component (this processing will be further denoted as the parallel processing). And
moreover, on the other, the node should also allow a partitioning of the whole processing
application, which consists of multiple components, over a network of multiple nodes in
the way, that the selected nodes cooperate on the whole session processing (this process-
ing will be further denoted as the distributed processing). (Both these processings cover the
feature F4).

Last, but not least, because of synchronization purposes (e.g., to allow the proper func-
tionality of the mentioned Fast Circulating Token algorithm, when a proper packet order-
ing is required), the node should be able to provide a low-latency communication among
the parallel instances spread over the processing nodes (the feature F7).

3.2.4 Fine-grained Resource Management System

Real-time network applications, which need to achieve a particular end-to-end perfor-
mance, usually make use of resource10 reservations. The applications usually specify
quality of service (QoS) requirements during an establishment of the network connection,
and the QoS system in turn guarantees, that (modulo system failures or preemptions) the
reservation will not be reduced during the lifetime of the application. Otherwise, when
the applications do not have access to the requested resources in time, the end user could
notice a glitch or drop in the presentation quality. [80, 283]

For the Internet, several concepts for implementing the QoS at the IP level have been
proposed—in particular, the Integrated services (IntServ) and the Differentiated services (Diff-
Serv). The IntServ approach is based on signalling the QoS requests from application to
the network (using the Resource Reservation Protocol (RSVP) [36]) and allocating all the re-
sources on the intermediate routers on the path from the sender to the destination. Due
to the scalability problems of the RSVP [275] (the inner network nodes have to maintain
a per-flow state), the more scalable DiffServ approach has been proposed. The DiffServ

9Not including the LARA and LARA++ architectures, which just distribute the computing programs
across several processing nodes.

10“A resource” is a certain capability of the node (processing power, data storage, etc.) that is offered at a
certain amount for a specific consumer.
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is based on classifying the traffic, when it is entering the network, on boundary nodes.
Once classified, the traffic is attributed to different behavior classes, which are provided
by different processing priorities on the inner nodes.

In comparison with traditional networks, there are more resources shared among the
users of the active/programmable nodes—the CPU cycles, state storage capacity, and
data storage together with traditional networking components like packet queues on net-
work interfaces. Since a precise specification of the requested resources is needed, and
since the active/programmable networks do not aim to support a huge number of users
(but mainly focus on a specialized user groups requesting additional services from the
network), the IntServ-based approach becomes more suitable for them.

There are many works [2, 88, 169, 202, 216, 256, 282] making use of the resource alloca-
tions/reservations for real-time or time-sensitive applications (usually multimedia ones)
for the traditional networks. In the active/programmable networks area, the QoS issues
have also been more or less taken into account (PLAN(et), Active Network Architecture,
ANN—see the Section 2.1), however, these were usually not designed and/or imple-
mented in details. Thus, the active/programmable node architecture, which provides the
most comprehensive study and design of the resource management and QoS support, is
the FAIN active node (see the Section 2.1.2.2). The FAIN project defines a resource control
framework that partitions and allocates the available resources (including computing re-
sources such as CPU time and memory, and network resources such as bandwidth and
routing table), and which is able to provide both hard allocations (the application has guar-
anteed access to the whole allocated capacity, even if there is a congestion in the node)
and soft allocations (the application is guaranteed to receive the requested resources, but
only if there is no congestion in the node).

As discussed in the previous section, the time-sensitive applications should be also
supported by the proposed node. Thus, once the node becomes used in a shared net-
work environment, important challenges in the design of its resource management sys-
tem (RMS) have to be taken into account. On the one hand, the node should allow its
users to specify resources required for proper run of their applications, and on the other,
it should allocate and guarantee the requested resources during the applications’ lifetime
(under all circumstances—the hard allocations). Since the DiProNN applications can con-
sist of several components (active programs), the users should be allowed to define the
amount of requested resources for individual components—the feature F5. The kinds of
resources, that we consider sufficient for such a programmable node, are the following:

• CPU time – the time required for an execution of an active application,

• Amount of free memory – amount of a short-term storage (e.g., RAM) necessary
for proper active applications’ execution,

• Data bus bandwidth – applications’ capability for data transmissions performed
through a data bus being used for data exchanges among various physical compo-
nents of inside a single element and/or the whole node,

• Amount of free storage capacity — amount of a free space in physical devices being
used for storing data for long periods of time (hard disk, shared storage, etc.),

• Input bandwidth of a network – maximum rate, at which the particular active
application can handle incoming data from the network interface,

• Input network buffers – used for queueing the incoming packets before their trans-
mission to another elements of the node,
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• Output bandwidth of a network – maximum rate at which the particular active
application can transmit outgoing data to the particular network interface,

• Output network buffers – similarly to the input network buffers, the output net-
work buffers are used for queueing the outgoing packets after they have been han-
dled from the processing applications.

For the security and accounting purposes, the running active applications have to be
properly isolated from each other in the sense of a resource sharing (the feature F6). A
malicious user or a compromised application should not affect another applications shar-
ing the same physical resource nor it should be able to affect the resource itself. Such
a strong isolation is very important to eliminate a hidden influence among the applica-
tions (e.g., through a swapping of virtual memory pages) and is the basis for resource
monitoring and accounting capabilities (once the applications are properly isolated, it is
quite easy to identify, what resources and for how long the particular application was
consuming).

3.2.5 Flexible Data Transmission Protocol Architecture

The common task of all the transport protocols is to transmit data between the sender side
and the receiver side. However, the requirements on the transfer quality (e.g., reliable
communication, in-order vs. out-of-order delivery, flow and/or congestion control, etc.)
differ vastly depending on the application they are used for. In general, the transport
protocols could be divided into two groups: the pure transport protocols, which operate
directly on top of the Network layer of the ISO/OSI Network model [288] (usually, on
top of the IP protocol [221]), and the application-level transport protocols, which make use
of an underlying pure transport protocol (usually, the UDP).

Besides the mostly known pure transport protocols—i.e., the User Datagram Protocol
(UDP) [220], the Datagram Congestion Control Protocol (DCCP) [157], the Transmission Con-
trol Protocol (TCP) [131], all of which are described in the Chapter 5—there is a variety of
specialized lesser-known protocols, some of which should be mentioned as well. For ex-
ample, the NETwork BLock Transfer Protocol (NETBLT) [65], which is intended for the rapid
transfer of a large quantity of data between computers, the Versatile Message Transaction
Protocol (VMTP) [59], which is a transport protocol designed to support remote procedure
call (RPC) and general transaction-oriented communication, or a set of customized trans-
port protocols provided by the Cactus [40] or Horus [227] systems, which allow building
customized protocols from collections of fine-grained specialized modules.

Examples of application-level transport protocols then include the Real-time Transport
Protocol (RTP) [236], which provides end-to-end transport functions suitable for appli-
cations transmitting real-time data, the Reliable Multicast Transport Protocol (RMTP) [209]
providing lossless delivery of bulks of data from one sender to a group of receivers, the
UDP-based Data Transfer Protocol (UDT) [107], which is a high performance data transfer
protocol designed for transferring large volumes of data over high speed wide area net-
works, and many others (e.g., the FRTP [287], the LambdaStream [285], etc.). All these
application-level transport protocols make use of the underlying UDP pure transport
protocol.

As we have already depicted during their introduction, the basic idea behind the ac-
tive/programmable networks is to allow a simple and dynamic deployment of new ser-
vices. Since such services might want to use unusual or novel transport protocols, the
architectures presented so far support such a functionality by operating just on top of the
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Network layer of the ISO/OSI Network model and locating all their control information
just behind the packet’s IP header. Similarly, the usage of arbitrary transport protocols
should be supported by the proposed node as well—its communication layer must not
force the users to use a particular transmission protocol, so that they should be able to
use an arbitrary transmission protocol depending on the nature of their passing data.

3.3 Comparison with Existing Approaches

The previous chapter indicates, that even though we have presented just the most pi-
oneering works in the active/programmable networks area, there have been proposed
many various active/programmable routers’/nodes’ architectures. In spite of this fact,
as far as we know, in the community there have not been any attempts to study the fea-
tures, which the virtualization principles can provide to them, and which would have
been provided by any existing architecture11. The proposed architectures usually cope
with the fundamental issues of the ANs—the execution environment and programming
flexibility, the resource isolation and security, etc.—by employing their own proprietary
solutions and/or operating systems’ (NodeOSs’) facilities. As we have depicted so far,
we claim, that these issues can be easily and essentially addressed with the use of the
virtualization, which can further provide another useful benefits as well.

Even thought not professing to the active/programmable networks’ area, there has
been one VM-based architecture mentioned in the previous chapter, which follows their
basic principles. That is the node proposed by the XenBEE project (the Section 2.2.4.7),
whose basic idea is very similar to the one of our work. The XenBEE also allows a server
application (e.g., an AP), which could be encapsulated in a user VM running an arbi-
trary supported EE to be deployed on the host VM-aware system. And similarly to the
DiProNN’s architecture described in the following chapter, besides the main control dae-
mon, which controls the particular node, the XenBEE also employs per-VM daemons
running in every uploaded virtual machine, which communicate with the main control
daemon and start the applications inside the relevant VM depending on its instructions.
Nevertheless, in comparison with the XenBEE, the architecture we propose is more com-
plex and provides more useful features, which the XenBEE is not able to provide—see
the discussion later in this section.

Anyway, the virtualization principles have been also successfully used in various non-
programmable network architectures, which are described in the previous chapter—for
example, the Grid and Cloud computing systems, the PlanetLab and XenoServer infras-
tructures, etc. The common characteristic of these architectures (let us denote them as
computing systems) is, that all of them are able to provide an access to virtual computers
(in fact, virtual machines running certain OSs) located (from the users’ point of view)
“somewhere” in the network. These VMs usually run on a powerful infrastructure and
the end users can use them for various massive computations in the same way as they do
on a common personal computer (i.e., via a remote login and common OS’s functions).
From a particular point of view, these computing systems could be also considered very
similar to our work—the proposed DiProNN node also allows remote login possibilities
(even thought this is not the primary goal) and thus allows to perform user-controlled on-

11Several architectures use the process-level virtual machines, namely the Java VMs, to ease the portability
of active programs distributed over the active network (ANTS, FAIN, OPENET, etc.). There are also archi-
tectures assuming system-level virtual machines created on top of their proprietary abstraction levels (for
example, the SANE architecture in the SwitchWare project described in the Section 2.1.2.6), however, none
of them tries to utilize VMs’ benefits in the depth we do (i.e., the (whole) platform-level virtualization).
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line computations inside the network. However, the idea behind such systems is essen-
tially different in comparison with the proposed DiProNN node. Whilst these computing
systems focus on providing virtual computers behaving as common PCs with desired
performance, the DiProNN focuses on the programming capabilities, which can enable
the users to flexibly and comfortably define the processing performed over their pass-
ing data. Thus, based on this specialization, the DiProNN node (and more generally, the
network of the DiProNN nodes) offers several features not (directly) available in these
architectures, i.e.:

• It allows user programs to run on top of specialized EEs – besides the XenBEE, the other
computing systems are not able to run (active) programs in specialized execution
environments, possibly provided by the end users. As we have depicted before,
specialized EEs can improve the performance of some applications, since they have
to neither provide support for legacy interfaces (as the general-purpose OSs have to
provide) nor remote login capabilities required for accessing the virtual computers.

• It allows comfortable component-based programming and automatic components deploy-
ment – in spite of the fact, that the applications’ components could be also deployed
over several virtual computers provided by the mentioned computing systems, the
whole deployment and data flows’ setting process has to be performed manually in
comparison with DiProNN, where this process is fully automated.

• It allows tightly-coupled parallel processing – even thought the parallel AP instances
could be manually spread over several virtual computers as well, these computers
could be dispersed over distant physical nodes12, which can make such a processing
inefficient (especially, in cases when a latter ordered composition of the instances’
outputs is needed, since the data could pass throught different paths of the public
networking infrastructure, which can result in different end-to-end latencies).

• It provides high-throughput inner data networking infrastructure – the mentioned com-
puting systems cannot cope with the situation, when the inner processing com-
ponents generate high amounts of data (even thought the application’s inputs and
outputs request low bandwidth only)13—the components, which are dispersed over
(possibly distant) physical nodes, have to communicate over the public networking
infrastructure, which need not provide sufficient throughput, and which increases
the overall communication latency as well.

• It enables low-latency control communication among the APs – since the components
might want to communicate with each other as fast as possible, the latency provided
by the public networking infrastructure could be also too high for fast components’
synchronization, state sharing, etc.

12The users are not aware of the physical location of their virtual computers—the computing systems
provide just an access to the virtual computers providing requested computing power.

13For example, the real-time computations for haptic interactions as presented in the Section 10.4—based
on a current haptic device position, the computing nodes have to perform massive computations of defor-
mations and forces, which generate high amounts of data, that are later filtered and delivered to the client(s).



Chapter 4

DiProNN: Distributed Programmable
Network Node

In this chapter, we present the architecture of the proposed Distributed Programmable Net-
work Node (DiProNN), which illustrates the discussed benefits of employing the virtualiza-
tion in the active/programmable networks area, and which satisfies the objectives stated
in the previous chapter. The proposed architecture is presented in the most general sce-
nario, however, since such a general architecture is not always necessary, the Section 4.7
describes its available modifications leading to the ease of its application.

Figure 4.1: Model architecture for implementing the DiProNN.

The DiProNN’s architecture assumes the infrastructure depicted in the Figure 4.1. The
DiProNN units form a computer cluster consisting of commodity PCs, that are intercon-
nected with two interconnections—a control interconnection used for an internal commu-
nication inside the DiProNN, and a data interconnection used for user data transmissions
(for details about both the interconnections see the Section 4.6). Such a parallelized ar-
chitecture makes the DiProNN being capable of processing higher amounts of data, since
it allows the distribution of both the processing and network loads over the Processing

48
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Units. The number of Processing Units is arbitrary, thus, the node should be able to sat-
isfy most applications’ bandwidth/processing requirements (even the higher ones).

From the high-level perspective of operation, the incoming data are first received by
the Distribution Unit, where they are forwarded to appropriate Processing Units for pro-
cessing. Once being processed, the data are finally aggregated using the Aggregation
Unit and sent over the network to the next DiProNN node (or to the receiver). As obvi-
ous from the Figure 4.1, the DiProNN’s architecture comprises five major parts, that are
further described in detail in the following sections:

• Distribution Unit—the Distribution Unit takes care of forwarding the ingress data
flows to appropriate virtual machines running on the Processing Units; the for-
warding is determined by the Control Unit,

• Processing Units—the Processing Units receive incoming packets and forward them
to the proper active programs for processing. The processed data are then for-
warded to next APs for further processing, or to the Aggregation Unit to be sent
away.

• Control Unit—the Control Unit is responsible for the whole DiProNN node man-
agement and communication with its neighborhood (including the communication
with users to negotiate new DiProNN Sessions’ establishments and, if requested,
providing feedback about their behavior).

• Aggregation Unit—the Aggregation Unit aggregates the processed traffic to the
output network line(s).

• Storage Unit—the Storage Unit serves as a DiProNN service providing the built-in
APs and the built-in virtual machines, which serve as the EEs for the standalone
APs, or which provide a specialized functionality. If necessary, it might also serve
as a storage for users’ data produced during the processing.

All the DiProNN units as well as virtual machines running on them operate on a pri-
vate network segment, where each VM/unit has (and is referenced by) its own unique
IP address. This ensures easier VMs’/units’ addressing without any interventions with
other network devices, as it may happen in cases of sharing a single network segment.

4.1 Distribution Unit

As already depicted, the Distribution Unit receives incoming users’ data and forwards
them to appropriate virtual machines, which run on the Processing Units, for the pro-
cessing. The forwarding is controlled by the Control Unit, which sets it during sessions’
establishments.

In order to enable remote node management as well as in order to enable the users
to ask the node for relevant information and new sessions, the Distribution Unit listens
on a well-known DiProNN Control Port, where all the node-related messages/requests
are delivered (further details about the remote node management are provided in the
Section 5.2.2). Once received, the messages/requests are forwarded to the Control Unit,
where they are processed by an appropriate node-related module.

Similarly, as soon as a new session is established, the Distribution Unit maintains its
private Session Control Port (specified during the establishment process), where the users
are able to control the processing and request relevant information about its actual state.
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The messages, that have been delivered to the Session Control Port, are also forwarded
to an appropriate session-related module running on the Control Unit (see later).

Last, but not least, the Distribution Unit runs at least two modules—the Control mod-
ule, which communicates with the Control Unit and controls the behavior of the unit
(especially, the forwarding rules), and the Resource Management module, which pro-
vides relevant information about the unit’s state, utilization, and available resources. If
requested by the Control Unit, the Resource Management module should be also able to
allocate unit’s resources.

4.2 Processing Units

Since the Processing Units could be seen as independent programmable network nodes1,
their architecture is based on the generic model of an active router with loadable func-
tionality proposed in [122]. Thanks to its modular architecture, we have modified the
scheme in order to make the node being able to provide all the features we requested.

Figure 4.2: DiProNN Processing Units’ Architecture.

The Processing Units’ architecture is shown in the Figure 4.2. To make the DiProNN
node capable of hosting virtual machines, inside of which the active programs processing
the user data run, these units (and only these) are required to run a virtualization system.
In spite of the fact, that the architecture, which is being described, assumes the platform-
level virtualization systems, the DiProNN can be implemented using other virtualization
systems as well (see the Chapter 11).

The Service Domain2, which runs on every Processing Unit, has to manage the whole
unit’s functionality including uploading, starting, stopping, and destroying the VMs, the
communication with the Control and Storage Units, and the sessions’ accounting and
management. To provide all of these, the Service Domain has to run at least the following
set of modules:

• VM/AP Management module – the VM/AP Management module has to control
all the virtual machines running on the particular Processing Unit, and the APs

1The Processing Unit uploads active programs and/or virtual machines, and processes them over passing
user data in a similar way, as common programmable nodes do.

2The Service Domain is a specialized VM/console, which controls the particular virtualization system.
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running inside of them. The module manages two kinds of the VMs: in the case of
built-in VMs providing a specialized functionality (for example, the VM providing
classical routing as shown in the Figure 4.2), the module is asked by the DiProNN
Control & Sessions Management module for obtaining the particular VM’s image
from the Storage Unit. Once obtained, the particular VM is started by the VM/AP
Management module without another interventions.

The other kind—the sessions’ VMs—are represented by the VMs uploaded by the
users and the built-in VMs, which serve as EEs for the standalone APs (both the
built-in and uploaded ones). In this case, once the VMs are started, the communi-
cation with the Active Program Manager service (see later in this section) follows.
The goal of this communication is to upload (just in the case of built-in VMs serving
as EEs) and start the APs required for sessions’ processing.

To summarize, the VM/AP Management module has to provide at least the follow-
ing functionality:

– VMs’ uploading, starting, stopping, suspending (making them non-active—
saving their current state and freeing previously allocated resources), resum-
ing (re-activating a previously suspended VM), migrating (moving a VM to
another DiProNN’s Processing Unit), and destroying (cleaning),

– communication with the DiProNN Control & Sessions Management module of
the DiProNN’s Control Unit in order to receive built-in VMs providing special-
ized functionality, and to control them (start, stop, suspend, resume, migrate,
etc.)

– communication with the Control module of the Storage Unit in order to obtain
necessary built-in APs/VMs,

– communication with the DiProNN Session Operator module of the DiProNN’s
Control Unit to obtain the sessions’ description and VMs, to manage the num-
ber of AP’s parallel instances running3, to receive information about necessary
VMs’ migrations, to return the particular VMs during the process of session’s
termination, etc.,

– in cooperation with the Active Program Manager service uploading, starting,
and stopping, the active programs of sessions’ VMs.

• Control module – the Control module has to control the Processing Unit’s behavior
and perform the functions requested by the Control Unit. It has to provide at least
the following functionality:

– communication with the Control Unit (with the DiProNN Control & Sessions
Management module) in order to register the particular Processing Unit and
respond to liveness requests, to receive information about new DiProNN Ses-
sions’ establishments/terminations, etc.

– communication with the Port Associator service (see later in this section) of
sessions’ VMs, which run on the particular Processing Unit—this is necessary
for the registration of communication interfaces, as we describe later,

3As we have depicted during the motivation chapter, the DiProNN is able to process the APs in paral-
lel. In the Section 7.4.1, we describe this functionality in detail, including the instances’ adaptations to the
amount of data processed.
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– providing information about the registered communication interfaces to the
DiProNN Session Operator module, so that it is able to create a set of forward-
ing rules for ensuring the proper data flows among the session’s APs (the for-
warding rules and DiProNN data flows are further discussed in the Chapters 6
and 7),

– setting and removing the forwarding rules, that have been created/withdrawn
by the DiProNN Session Operator module.

• Information & Accounting module – the Information & Accounting module serves
as the unit’s information service, which both logs and provides information about
actual state and various events, that have occurred during the units’ runtime. The
covered events include the events related to the particular Processing Unit as a
whole as well as the events related to the VMs/APs actually running—e.g., start-
ing/stopping the unit, uploading/starting/destroying VMs/APs, suspending/re-
suming VMs providing special functionality, performed VMs’ migrations, etc. All
the unit’s events are logged, and if requested, delivered to the Control Unit (and
later provided to the node administrators/users).

Besides the logging purposes, if desired, this module could be also used for ac-
counting purposes. In cooperation with the unit’s Resource Management module,
it may log the real session’s usage of the relevant Processing Unit’s resources—the
acquired statistics might then be used for charging the DiProNN users for their re-
sources’ consumptions.

• Resource Management module – this module has to monitor and control the pro-
cessing resources of the particular Processing Unit. The Resource Management
module should at least:

– monitor the actual usage of all the intended resources, and in cooperation with
the Information & Accounting module, log all the acquired information for
accounting purposes,

– in cooperation with the DiProNN Control & Sessions Management module or
the DiProNN Session Operator module, allocate the resources required by the
particular VMs,

– communicate with the Control Unit (its DiProNN Resource Management mod-
ule) to provide information about the available Processing Unit’s resources
and their actual usage.

• Security module – the Security module monitors the behavior of the running VMs
(e.g., their network communication). If a misbehavior is detected, it is logged in co-
operation with the Information & Accounting module, and in cooperation with the
DiProNN Control & Sessions Management module or the DiProNN Session Opera-
tor module, solved depending on the security policy defined (e.g., the misbehaving
VM is immediately killed, while subsequently, the whole DiProNN Session, which
the misbehaving VM belongs to, is stopped). Finally, through the Control Unit, the
user is informed about the incident.

If the particular DiProNN implementation allows more standalone APs to be run in
a single built-in VM serving as an execution environment, the Security module co-
operates with the APM service of the relevant VMs, which performs the monitoring
of the APs running inside.
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Besides the set of mentioned modules, which has to run inside of the Service Do-
main of every Processing Unit, there are two services, that has to be run inside of all the
sessions’ VMs—the Active Program Manager service and the Port Associator service. The
functionality of both the services is as follows:

• Port Associator service (PA service) – the PA service serves for an association of
the communication interfaces with real port numbers (as depicted before). The ser-
vice monitors the free network ports of the particular VM and, if requested by an
active program, performs the association of the particular communication interface
(defined by its name) with chosen free network port. The information about the
associated couple is then sent to the Control module of the Processing Unit, which
the VM is running on.

• Active Program Manager service (APM service) – in the case of sessions’ VMs, that
have been provided by the users, the APM service manages the included users’
active programs, while in the case of built-in VMs serving as the EEs, it serves
for uploading the standalone APs into them as well. Besides this, in both the
cases, it starts/stops the (uploaded) APs depending on instructions provided by
the VM/AP Management module of the particular Processing Unit. Once the APs
are started, they contact the PA service of the relevant VM and associate their com-
munication interfaces as mentioned before.

Furthermore, if the particular DiProNN implementation allows more standalone
APs to be run in a single VM serving as an execution environment, the APM service
monitors the behavior of the APs running in the particular VM, and cooperates with
the Security module of the relevant Processing Unit, when an security incident is
detected.

4.3 Control Unit

The Control Unit is the main control point of the whole DiProNN node, which controls its
behavior, manages information about its state and capabilities—e.g., built-in APs, avail-
able EEs, established sessions, resources available, etc.—and responds to users’ requests.
It communicates with all the other DiProNN units, collects all the necessary information,
and decides about various events in the DiProNN (e.g., accepts/refuses new DiProNN
Sessions, chooses appropriate EEs for the standalone APs, decides about VMs’ migra-
tions, starts/terminates the sessions, collects all the accounting information, etc.). Whilst
the modules, that are described in the previous section, maintain the necessary informa-
tion for a single Processing Unit only, the Control Unit communicates with all of them
and collects all the necessary information throughout the whole DiProNN node. The col-
lected information is then used for various decisions as well as provided to DiProNN
users, if required and permitted.

As already depicted in the section introducing the Distribution Unit, all the users’ re-
quests are delivered throught it to the Control Unit—to the DiProNN Control & Sessions
Management module in the case of node-related requests, or to the DiProNN Session
Operator module in the case of a session-related requests—where they are processed.
Especially, the new session establishment requests are delivered to the DiProNN Con-
trol & Sessions Management module, which (depending on the actual resources’ utiliza-
tion and/or node state) replies, whether they could be satisfied or not. If the request
could be satisfied by the particular node itself (the one which has received the request),
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the Control Unit decides, which Processing Units will all the VMs, that belong to the
particular session, run on (so-called APs/VMs mapping process—for details see the Sec-
tion 7.3.1). Once this process finishes, the Control Unit informs all the relevant Processing
Units’ resource management modules to allocate the requested resources and starts the
DiProNN Session Operator module serving the particular session, and passes it all the
relevant information (especially, the APs’/VMs’ mapping).

If the new session establishment request could not be satisfied by the particular node
itself (e.g., there is not enough resources to satisfy the session’s requirements), the Con-
trol Unit contacts the Control Units of all DiProNN nodes available in the network and
asks them for participating on the session’s processing (see the Section 7.3). If all the
polled nodes do not have sufficient resources to satisfy the session’s requirements, the
establishment request is refused.

To provide all of the described functionality, the Control Unit has to run the following
set of modules:

• DiProNN Control & Sessions Management module – the DiProNN Control & Ses-
sions Management module is dedicated for controlling the behavior of the particu-
lar DiProNN node, communication with its neighborhood (another DiProNN nodes
in the network), and managing all the established DiProNN Sessions as well as in-
coming establishment requests. The module has to provide at least the following
functionality:

– performing DiProNN units’ registrations, checking units’ liveness,

– processing and responding to users’ node-related requests—especially, receiv-
ing new session establishment requests, and in cooperation with both the Di-
ProNN Resource Management module and the DiProNN Access Management
module of the particular node, or in cooperation with other DiProNN nodes
in the network, accepting or refusing the requests,

– in cooperation with the DiProNN Resource Management and DiProNN Infor-
mation & Accounting modules decides, which built-in EEs all the standalone
APs will run in (depending on their EE requirements), and which Processing
Units will then all the sessions’ VMs run on (the APs/VMs mapping process),

– communication with the Distribution Unit, e.g., to establish the control ports
for new sessions, etc.

– managing the DiProNN’s specialized functionality and setting necessary for-
warding rules for their proper operation,

– in cooperation with the DiProNN Resource Management module makes de-
cisions, which virtual machines should be migrated because of an effective
usage of the resources (in the case of migrating a session’s VM, this informa-
tion is further provided to the particular DiProNN Session Operator module,
which performs the migration itself),

– in cooperation with the Security modules of all the Processing Units processes
the security incidents,

– communication with all the other Control Unit’s modules to receive/provide
necessary information (e.g., list of built-in APs/EEs, node access policy, re-
source usage, security incidents, etc.)
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• DiProNN Session Operator module – the DiProNN Session Operator module con-
trols the behavior of a particular DiProNN Session. Once the session is accepted, the
module receives the information about the APs’/VMs’ mapping from the DiProNN
Control & Sessions Management module, and invites the user for uploading the
user APs/VMs. Depending on the mapping, the module forwards the particular
APs/VMs to the VM/AP Management modules of appropriate Processing Units,
which are also informed about the built-in APs/VMs, that should be obtained from
the Storage Unit. Once the uploading finishes, the VM/AP Management modules
are further provided with an information, which APs (and thus VMs) should be
started. As soon as all the APs are started and do have their communication inter-
faces registered, the DiProNN Session Operator module creates a set of forwarding
rules, that are later applied on the relevant units to ensure proper communication
channels.

Once the session is started, the module processes and responds to user’s session-
related requests. If necessary, it also processes all the session’s VMs migrations, as
requested by the DiProNN Control & Sessions Management module.

• DiProNN Information & Accounting module – this module maintains necessary
information about the whole DiProNN node—it communicates with all the other
units/modules and collects information about actual DiProNN state (e.g., estab-
lished sessions, built-in APs/EEs, resources’ utilization, etc.) various node events,
and/or information necessary for node usage accounting. The module serves as the
main information service for the DiProNN users (if the node security policy allows
them to receive the particular piece of information).

• DiProNN Resource Management module – the DiProNN Resource Management
module maintains information about the actual state of intended DiProNN’s pro-
cessing resources. It communicates with the Resource Management modules of all
the DiProNN units and collects the information about the actual state and usage of
their resources. This information is used especially by the DiProNN Control & Ses-
sions Management module for decisions about accepting or refusing new DiProNN
Sessions, for the APs/VMs mapping process, and for decisions about necessary
VMs’ migrations in order to use the resources in an efficient way.

• DiProNN Access Management module – this module maintains the DiProNN’s
access policy used. If required, the users have to authenticate themselves through
the DiProNN Control & Sessions Management module (in the case of node-related
requests) or through the DiProNN Session Operator module (in the case of session-
related requests) by the DiProNN Access Management module before they can ask
the node for processing the request (e.g., the new DiProNN Session request). The
authentication could be performed, for example, using a shared secret knowledge,
registered username and password, the public key infrastructure (PKI) authentica-
tion using X.509 certificates, etc.

When the authentication process finishes, the users are allowed to control the Di-
ProNN node depending on their authorization (e.g., a common user vs. the node
administrator).
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4.4 Aggregation Unit

The Aggregation Unit aggregates the traffic, which has been processed on the Processing
Units, to outbound network line(s). Usually, the unit serves as a simple gateway between
the local private network area, which the DiProNN units operates in, and the Internet.
However, sometimes a more sophisticated functionality is necessary—the Aggregation
Unit, which is obviously controlled by the Control Unit, may provide some final outgo-
ing packets’ modifications, e.g., network address translations (when the network packets
leaving the Processing Units do not have external receiver’s IP address set), necessary
network packets’ encapsulation (e.g., the IPSec [148] encapsulation, if the NAT traversal4

or the VPN5 is necessary), etc.
Similarly to the Distribution Unit, the Aggregation Unit has to also run at least two

modules—the Control module, which communicates with the Control Unit and controls
the behavior of the unit (including the forwarding rules), and the Resource Manage-
ment module, which provides relevant information about the unit’s state, utilization,
and available resources. The Resource Management module should be also able to allo-
cate unit’s resources, if requested by the Control Unit.

4.5 Storage Unit

The Storage Unit maintains the DiProNN’s built-in functionality—the APs, which the
users might use for processing, and the VMs, which serve as execution environments for
the standalone APs (the user ones and the built-in ones), or which provide a specialized
functionality. The unit is mainly used by the Processing Units’ VM/AP Management
modules, which ask it to deliver APs/VMs/EEs, that are requested by the sessions (the
delivery itself is performed using a specialized service, e.g., the FTP, SCP/SFTP, or FTPS).

Besides delivering the files/images, the unit further maintains the list of available
APs/VMs/EEs, which is provided to the Control Unit’s DiProNN Information & Ac-
counting module, and later to the users. Moreover, if there is a shared network storage
in the network, which provides the APs/VMs/EEs for all the DiProNN nodes, the unit
has to collect them as well—once an AP/VM/EE, which is located in the network, is
requested by a user, the unit has to obtain it before being provided to the requesting
Processing Unit.

Optionally, the Storage Unit might also serve as a storage for users’ data produced
during their sessions’ processing. Hence, the unit should provide a remotely-accessible
network filesystem, which can be accessed by the Service Domains of all the Process-
ing Units (e.g., the NFS [244], AFS [52], Samba [56], etc.), and which is able to allocate
requested storage space for the users.

The Storage Unit should also run at least the Control module and the Resource Man-
agement module. In this case, the Control module has to maintain the list of available
APs/VMs/EEs and provide the relevant files/images to the requesting modules. The Re-
source Management module, which has to manage and provide information about units’
resources, should be further able both to allocate the requested disk space and the data
interconnection’s bandwidth for a particular session.

4The NAT traversal [85, 175] is a general term for techniques to establish and maintain TCP/IP network
connections which traverse Network Address Translation (NAT) gateways.

5The Virtual Private Networks (VPN) [39] provide an encrypted connection between user’s sites/networks
distributed over a wide-area public network (e.g., the Internet).
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4.6 Data and Control Interconnections

As the Figure 4.1 in the beginning of this chapter depicts, there are two independent
interconnections used in the DiProNN—the data interconnection and the control inter-
connection. Both interconnections are served by the Service Domain of the particular
DiProNN unit, and thus just the Service Domains has to support them (e.g., in the case,
when they need specialized drivers/features included in the OS’s kernel). The other vir-
tual machines running on the particular unit communicate with the Service Domain via
virtual interfaces provided by the particular virtualization system used—as described
later in the Sections 7.3.2 and 7.4, the Service Domain then decides, which packets will
be sent via the data interconnection and which ones via the control one; similarly, it also
receives and forwards incoming packets to relevant virtual machines. In this section, we
discuss several contemporary technologies that could be used to implement them.

The data interconnection is dedicated for data packets’ (the packets that are being
processed) transmissions and might be provided by common network interfaces like Gi-
gabit Ethernet [68] or 10Gigabit Ethernet [130]. The most important characteristic of the
data interconnect is the throughput it can provide, since it affects the amount of data,
that could be delivered for processing (and thus the amount that could be processed, if
there is a sufficient computing power on the Processing Units and/or enough Process-
ing Units to perform parallel processing). The communication latency is less important
for the data interconnections, since even being very low, the whole latency delivered by
the DiProNN node will be mostly affected by the session’s processing performed on the
Processing Units.

The described situation is diametrically different for the control interconnection, which
serves as a communication infrastructure used for control communication among the ac-
tive programs running and/or the communication among the DiProNN units/modules.
The available throughput, which is provided by the particular interconnect, is not so
important, because the amount of control messages necessary to be transferred will be
(in most cases) much lower than the amount of data messages. However, the latency
provided by the control interconnect is very important, since it can affect the whole Di-
ProNN performance—especially in the case of the parallel processing, when the parallel
instances need to communicate during the data processing (to share their state, to syn-
chronize, etc.).

Thus, the usage of a specialized low-latency interconnect providing the end-to-end la-
tency close to a message passing between threads on a single computer, is very desirable.
Nevertheless, as described in the Section 5.2.1, the network-layer and transport-layer pro-
tocols used with the particular control interconnect have to provide a transparent ad-
dressing and multiplexing features—the availability to address a particular application
running on a particular host (ideally, by employing/emulating the IP network stack to
allow the use of transport protocols mentioned in the Section 5.2.1). Unfortunately, this
requirement could lead to an increase of the end-to-end latency for highly specialized
interconnects; however, without these features, the particular interconnect could not be
used in the DiProNN (see more details provided in the following chapter).

The examples of currently available and applicable control interconnects are:

• Myrinet-2000 – the Myrinet-2000 [296] is a switched, gigabit per second proprietary
network technology developed by Myricom6. Using so-called GM message passing
library—a lightweight communication system designed by Myricom—the Myrinet-

6http://myri.com/
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2000 is able to provide as low as 5.05µs one-way latency for 1-byte messages [293].
However, since the GM library bypasses an operating system’s IP network stack
and does not provide a transparent multiplexing mechanism, it is not directly ap-
plicable in the DiProNN. Thus, an emulation of the IP network stack over the GM
must be employed, which naturally increases the end-to-end latency up to about
22-25µs for unidirectional communication and 1-byte messages as well [291].

• InfiniBand – the InfiniBand network [297], which is developed by the InfiniBandSM

Trade Association7, provides an architecture for an inter-server communication.
The InfiniBand connection’s signalling operates at a data rate of 2 Gbps of effective
theoretical throughput in each direction. These links can be aggregated together
into groups of four (4X) or 12 (12X) capable to provide a larger capacity (4X link
can pass a single stream of 8 Gbps). Moreover, the InfiniBand supports double data
rates (DDR) as well as quad data rates (QDR) speeds providing link speeds up to
96 Gbps for 12X QDR connection [57].

The InfiniBand network is able to provide as low as 4µs one-way end-to-end la-
tency for messages up to the size of 10 KB [123]. However, similarly to the Myrinet-
2000 the InfiniBand is not directly usable in DiProNN since it uses the MPI8 inter-
face to transmit data. Thus, an emulation of the IP layer over the InfiniBand must
be used [141], providing one-way end-to-end latency of about 17µs for messages
up to the size of 100 KB [123].

• Quadrics – the Quadrics Network (QsNet) [214] is a 2 Gbps network integrating
a local virtual memory of network nodes into a distributed virtual shared mem-
ory, and providing a programmable processor in each network interface, that al-
lows an implementation of intelligent communication protocols. The Quadrics net-
work consists of two main building blocks—the programmable network interfaces,
called Elans (Elan4s for second-generation network mentioned later), and the high-
bandwidth, low-latency communication switch, called Elite (Elite4).

The second-generation Quadrics network, called QsNetII [24], has reduced the one-
way end-to-end latency provided by the first-generation Quadrics network from
about 4.3µs to about 2µs (for small messages up to 32 B) [3]. While the Quadrics
user-level communication libraries (the libelan and the libelan4) can provide
an OS-bypass communication directly to user-level parallel programs, the kernel-
level communication library provides direct support to the IP protocol, and thus is
directly applicable in the DiProNN.

Since 2006, the Quadrics also offers 10Gigabit Ethernet switches under the name
QSTenG9. These products make use of experiences obtained from two generations
of QsNet networks, providing the port-to-port latency of about 200 ns [305].

• 10 Gigabit Ethernet – the technology progress, which has decreased the one-way
end-to-end latency of the 10 Gigabit Ethernet as low as about 19µs for small data
packets (up to 128 B) and as low as 23µs for data packets of about 1 KB [130],
makes the 10 Gigabit Ethernet interconnect also being suitable for the DiProNN’s
control interconnection. The performance achieved is very good compared to the

7http://www.infinibandta.org/
8MPI is a language-independent communication protocol used to program parallel computers. It has

become a standard for communication among processes that model a parallel program running on a dis-
tributed memory system.

9http://doc.quadrics.com/
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performance of Gigabit Ethernet providing one-way end-to-end latencies of about
62µs for 64B data packets and of about 91µs for larger packets (approximately
1450 B) [128].

When a specialized control interconnection is not available, the usage of just a data
interconnection is sufficient—the data interconnection is then used both for the data and
control messages simultaneously. In this case, all the DiProNN functionalities remain
unaffected, however, the control messages might become delayed not only because of a
higher end-to-end latency of the data interconnection used, but also delayed depending
on the interconnection’s actual saturation by the data packets. Nevertheless, the satura-
tion problem could be solved by the usage of two identical higher-latency “data” inter-
connections (one for the data messages and one for the control ones) and thus all the data
and control packets might be transferred separately.

4.7 DiProNN’s Architecture Modifications

As mentioned in the beginning of this chapter, the described DiProNN’s architecture rep-
resents the most general one. The only modification of the architecture being depicted
in the Figure 4.1, which has been mentioned in the previous section, was using just a
single interconnection serving as the data and control one simultaneously (in the case,
when a specialized (low-latency) control interconnection is not available). Nevertheless,
this modification is not the only one—without any degradation of DiProNN’s features10,
one can minimize the DiProNN’s complexity and set up the node using fewer physical
machines than the most general architecture assumes.

In the Figure 4.3, several types of the DiProNN’s architecture modifications, which are
based on merging the DiProNN units, are depicted. All of these modifications, which are
described in the rest of this section (except the minimal one depicted in the Figure 4.3(e)),
assume both the data and control interconnections. However, as discussed previously,
just a single interconnection for both the data and control messages can be used as well.

The most straightforward modification is merging the Aggregation and Distribution
Units, as shown in the Figure 4.3(a). In most situations, both units will not be too loaded,
and thus the usage of two independent physical machines is not necessary—the merged
unit then performs the functionality of both the merged ones simultaneously. Even fur-
ther, thanks to the virtualization, the Aggregation or the Distribution Unit (or both) might
be run in a specialized virtual machine(s) started on an appropriate Processing Unit (the
one having a connection to the Internet, so that it would be able to receive users’ requests).
Likewise, both the units’ functionalities might be performed directly by the Service Do-
main of an appropriate Processing Unit(s).

Moreover, the Figure 4.3(a) shows the Storage Unit, which is merged with the Con-
trol Unit. Nevertheless, the functionality of the Storage Unit might be also performed
by a single Processing Unit (see Figures 4.3(b) and 4.3(e)), or provided by some/all of
them simultaneously (the storage space is provided by some/all of them using a dis-
tributed filesystem11, whilst one of them runs both required modules and responds to
the requests)—see the Figures 4.3(c) and 4.3(d).

10Not including the performance feature, which, in the case of lower number of Processing Units, is obvi-
ously reduced.

11For example, the AFS [52], DFS [252], Ceph [271], Lustre [239], XUFS [267], etc.
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Similarly to the Aggregation and Distribution Units, the Control Unit neither requires
an independent physical machine and might be thus also run in a virtual machine run-
ning on an appropriate Processing Unit(s) (the Figure 4.3(b)), performed by the Service
Domain of some Processing Unit(s), or run on the same physical machine as the Distri-
bution and Aggregation Units do (see the Figure 4.3(c)).

By the combination of the discussed modifications, one may get the DiProNN com-
posed of several Processing Units only (see the Figure 4.3(d)) as well as the DiProNN’s
minimal architecture composed of just a single Processing Unit (see the Figure 4.3(e)).
The minimal architecture provides the simplest application of the DiProNN, since there
is neither data nor control interconnection necessary. As mentioned in the beginning of
this section, such a DiProNN node provides all the features as the DiProNN node set up
using the most general architecture described. Nevertheless, the performance of such a
DiProNN node is highly limited.
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(a) Merged Distribution and Aggregation Unit. The Storage Unit
performed by the Control Unit.

(b) Merged Control Unit with one of the Processing Units. The
Storage Unit performed by a single Processing Unit.

(c) The Control Unit runs together with both the Distribution and
Aggregation Units. The Storage Unit’s functionality is per-
formed by a single Processing Unit, whilst the storage space

is distributed among some of them.

(d) The DiProNN composed of Processing Units only. The
Storage Unit’s functionality performed by a single Pro-
cessing Unit, whilst the storage space is distributed

among all of them.

(e) The minimal
DiProNN’s archi-

tecture.

Figure 4.3: Several types of DiProNN’s architecture modifications.



Chapter 5

Data and Control Communication
Protocols

Before we present details about both the programming model, that we propose for Di-
ProNN programming and the DiProNN’s functional specification, we describe the data
and control communication protocols it uses. The data protocols are used for sessions’
data packets transmissions—the packets, which contain data that should be processed—
while the control communication protocols are used both for communications inside the
particular DiProNN node1 (the internal control transmission protocols) and for external
DiProNN controlling and management (the DiProNN Control Protocol (DiCP)).

5.1 Data Transmission Protocols

As depicted in the objectives, the DiProNN should not force its users to use a particular
data transmission protocol. In conformity to this requirement, it supports more of them
allowing its users to choose the proper communication protocol depending on their ap-
plications’ needs. And even further, the DiProNN Sessions’ design (details in the Chap-
ter 6) allows the users to use more transport protocols simultaneously throughout a single
session processing.

This enables the DiProNN users to use the proper transport protocol, which suits the
nature of their application and/or passing data best. For example, for applications, which
require real-time transmissions with minimized delays, they can choose connection-less
protocols, that do not provide any transmission quality guarantees (e.g., reliable delivery,
flow control, etc.), but provide as fast delivery as possible. Against it, for non-realtime
applications requiring a reliable delivery, they can use different ones. Thus, the users
are also able to use different implementations of well known transmission protocols as
well as their own ones—for example, different implementations of the TCP protocol de-
scribed in this chapter—e.g., the TCP Tahoe [133], TCP Reno [195], TCP Vegas [37], TCP
Hybla [47], etc. can be used.

The only functionality, that the DiProNN requires from such data transport proto-
cols2 is the data multiplexing—the protocol’s ability to serve several applications and/or
independent data streams for a single host (a VM in this case) simultaneously. Such a

1Note, that the control packets, which are encapsulated by a particular internal control transmission pro-
tocol, are transmitted over the DiProNN control interconnection described in the previous chapter.

2The data transport protocols’ ability to make use of the underlying IP layer (or another, e.g., a currently
unknown layer with similar functionalities, and/or a layer required by the type of the data interconnection
used) is naturally supposed.
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functionality is provided by a set of ports in the most common pure transport protocols
(e.g., the UDP, the DCCP, or the TCP).

Even though slightly limiting the set of usable transport protocols, this requirement
is necessary since the DiProNN has to distinguish among the data flows being sent from
a VM, so that it is able to forward them to other VMs for further processing (see the
session establishment process in the Section 7.3.2). Nevertheless, we believe, that this
limitation is more acceptable than inserting a service/control information behind the IP
header of every transmitted packet (as most active/programmable nodes do), which on
the one hand can enable the usage of an arbitrary transport protocol, but which on the
other wastes the available bandwidth.

The rest of this section presents four pure transport protocols3, which satisfy the men-
tioned requirement and which should be supported in every DiProNN implementation.
The protocols are described from the simplest one to more complex ones; in the end of
this section, we conclude with a comparison of their features and kinds of applications,
which they might be used for.

5.1.1 UDP (User Datagram Protocol)

The simplest data transmission protocol, which we describe—the UDP [220]—is one of
the core protocols of the Internet protocol suite providing an unreliable communication
service. It is a connection-less protocol that does just as little as a transport protocol can—
aside from the multiplexing/demultiplexing function and some light error checking, it
adds nothing to the underlying IP (Internet Protocol) [221].

UDP datagrams may arrive out of order, appear duplicated, or even go missing with-
out any notice. Therefore, the application program, which uses the UDP, must deal
directly with end-to-end communication problems that a connection-oriented protocols
like, e.g., the TCP (Transmission Control Protocol, details in the Section 5.1.4) would have
handled—for example, retransmissions for a reliable delivery, packetization and reassem-
bly, flow control, congestion avoidance, etc.

However, since the UDP avoids checking whether every packet arrived, it is more
suitable for time-sensitive applications, because the dropped packets are in cases of real-
time media transmissions more preferable than the delayed ones.

5.1.2 DCCP (Datagram Congestion Control Protocol)

The Datagram Congestion Control Protocol (DCCP) (as defined in [157]) is a slightly more
complex transport protocol than the UDP. It is a message-oriented transport layer pro-
tocol that implements bidirectional, unicast connections of congestion-controlled, unreli-
able datagrams. The DCCP is intended for the applications with timing constraints on the
delivery of data, that may become useless to the receiver, if a reliable in-order delivery
combined with a congestion avoidance is used. These applications, such as streaming
media, can benefit from DCCP’s control over the tradeoffs between the delay and the
reliable in-order delivery.

The main difference between the UDP and the DCCP is the TCP-friendly congestion
control mechanism provided by the DCCP. Because it is complicated to get it right, many
UDP applications ignore or greatly simplify congestion control issues, even though they
can lead to an application’s and/or a network’s misbehavior. Similarly to the UDP, the

3As depicted during the motivation, most application-level transport protocols operate on top of one of
the pure transport protocols being described, and thus are obviously supported.
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DCCP provides an unreliable flow of datagrams4 without in-order delivery guarantees.
Further, the DCCP datagrams’ size is also limited by the lesser of the maximum size of an
IP datagram (the underlying network’s MTU, Maximum Transmission Unit) and the size of
the DCCP datagram socket buffer. In addition to the UDP, however, the DCCP provides
a path MTU discovery to determine the maximum IP datagrams’ size.

5.1.3 ARTP (Active Router Transport Protocol)

The ARTP protocol [225], which has been designed as a part of the active router [122]
developed at the Masaryk University in Brno, is a connection-oriented transport proto-
col providing a reliable congestion-controlled duplex communication channel without
ensuring, that the data will be received in the same order as they were sent.

The data exchange between the ARTP layer and the application layer is done using
the data blocks called ARTP datagrams, which may have arbitrary size, and thus they may
not pass through the network at once. The ARTP protocol fragments them into smaller
parts (called ARTP packets) and sends them over the network to the receiver. When the
receiver receives all the fragments of a single datagram, it reassembles them into the orig-
inal datagram and passes it to the receiver application. The order of passing assembled
datagrams is not given—the ARTP guarantees the correct datagrams’ assembling only.

Similarly to the DCCP, the ARTP also provides a congestion-control algorithm, which
controls the amount of data, that is sent to the network, avoiding receiver’s or network’s
congestion. Furthermore, the ARTP allows two types of data to be transferred—the main
data, which are used for the data communication between the end nodes, and the out-of-
band control messages, which are dedicated to both end-points’ management. The main
data can further consist of two parts—the encrypted data and its signature.

5.1.4 TCP (Transmission Control Protocol)

The most complex data transmission protocol, which is described in this chapter—the
Transmission Control Protocol (TCP) [131]—is a transport layer connection-oriented byte
stream protocol, which (similarly to the UDP) also belongs to the core protocols of the
Internet protocol suite. The TCP provides a reliable in-order delivery of a stream of bytes,
making it suitable for applications requesting an accurate delivery rather than a timely
delivery—the TCP sometimes incurs relatively long delays while waiting for out-of-order
messages or retransmissions of lost messages.

The TCP is stream-oriented, that is, the TCP protocol entities exchanged streams of
data. Individual bytes of data are placed in memory buffers and transmitted by the TCP
in Protocol Data Units (PDUs—also known as “segments”). Among the other features,
which the TCP provides, belong an end-to-end flow control to avoid letting the sender
to send data too fast for the TCP receiver (which is unable to reliably receive and process
it) and a congestion control mechanism controlling the rate of data entering the network
to achieve high performance and avoid a “congestion collapse”, where the network per-
formance can rapidly fall (the TCP keeps the data flow below a rate that would trigger a
collapse).

As already depicted in the beginning of this chapter, there have been several versions
of the TCP presented—besides the mentioned TCP Tahoe [133], TCP Reno [195], TCP
Vegas [37], TCP Hybla [47], also other ones, e.g., the Fast TCP [270], CUBIC TCP [111],

4Both the DCCP and the UDP protocols are packet stream protocols (as opposed to, e.g., the TCP protocol,
which is a byte stream protocol).
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YeAH TCP [22], etc. The particular versions employ different congestion avoidance algo-
rithms and differ especially in the way, how they react to packet losses, and how they are
able to estimate (and utilize) the bandwidth available in the network.

5.1.5 DiProNN’s Data Protocols Summary

As the previous sections indicate, the transmission protocols provide various features,
which make each of them suitable for a specific kind of applications. To discuss the kinds
of applications, which they might be advantageously used for, let us summarize all their
important features, that have already been depicted, in the following table (the Table 5.1).

Feature UDP DCCP ARTP TCP

Reliable communication 7 7 3 3

In-order delivery 7 7 7 3

Flow control 7 7 7 3

Congestion control 7 3 3 3

Connection oriented 7 3 3 3

Stream type packet packet packet byte

Datagram (packet) size restricted by MTU
restricted by MTU

arbitrary —
(MTU discovery)

Control messages in-band in-band out-of-band in-band

Table 5.1: Summary of described data transmission protocols’ important features.

The main feature, that one has to decide before stream-based applications’ program-
ming, is the reliability of the communication. If the application needs to have a reliable
communication guaranteed (in the sense that all the data, which had been sent by the
sender, have to be received by the receiver), the user has to choose between the ARTP
and the TCP protocols (and its variants). Furthermore, if the application needs to receive
all the data in the proper ordering, the usage of the TCP protocol is necessary (the ARTP
might be also used, but the application has to manage the proper datagrams’ ordering on
its own).

In situations, where the reliability of the communication is not crucial, but where the
timely data delivery is highly desirable (time-sensitive applications like real-time multi-
media transmissions), the usage of the unreliable UDP or DCCP protocols might become
useful.

The other important feature is the type of the data stream transmission. The “packet
stream” means, that all the data are packetized by the sending application and sent in
data blocks of the size either limited by an underlying network’s MTU (in the case of
the UDP and DCCP protocols) or sent in data blocks of an arbitrary size (in the case of
the ARTP protocol, where the arbitrary sized ARTP datagrams are packetized depending
on the underlying network’s MTU on the protocol’s layer, not on the application layer
by the application itself as in the cases of the UDP and DCCP). In comparison with the
“byte data stream” approach, which is assumed by the TCP protocol and which means
that the data are passed from the sending application to the protocol layer as a sequence
of bytes, the application has better control over an independent blocks of data, that could
be easily distributed and processed in parallel (further details about DiProNN’s parallel
processing are given in the Section 7.4.1).



CHAPTER 5. DATA AND CONTROL COMMUNICATION PROTOCOLS 66

Finally, in addition to the other protocols, the ARTP provides a feature, that might
become useful in critical situations, and that increases the comfort of its use—the out-of-
band control messages, which are prioritized from the data ones. All the other protocols
require the application to send the data and control messages in-band, which might delay
crucial control messages inconveniently, and to distinguish between them on its own.

5.2 Control Transmission Protocols

5.2.1 Internal Control Transmission Protocols

The set of available control transmission protocols, which could be used for internal
communications via a particular control interconnection, depend on the communication
model(s) it supports—since each specialized interconnection might have its own com-
munication model(s) defined, it might require its own, special communication proto-
col(s). However, since the DiProNN cannot suppose, that all the VMs (including the
users’ specialized EEs) do support such specialized communication models, the users’
APs communicate via a well-known and widely-used communication model (e.g., the
IP network stack [221]) and the Service Domain (if necessary) transparently translates
their communication into the communication model required by the particular control
interconnection.

Generally, there are two scenarios, that might occur: the control interconnection, which
is used in the particular DiProNN node, provides such a well-known and widely-used
communication model, that on the one hand satisfies the addressing and multiplexing
features (as discussed in the Section 4.6) and on which is directly supported by all the
common operating systems, or not.

In the positive case, it can be supposed, that all the user VMs support the particu-
lar communication model, and thus the user applications are directly able to use it. The
Service Domain of the particular Processing Unit then just forwards the packets coming
from an application (running in the unit’s VM) to their receiver (and vice versa for in-
coming packets)—details about forwarding the flows inside the DiProNN are provided
in the Sections 7.3.2 and 7.4. An example of such a common and widely-used commu-
nication model, which will be probably used in most DiProNN implementations, is the
already mentioned IP network stack, that allows a set of common transport protocols to
be used above it. Since this model is also supposed for data transmissions, the applica-
tions might directly use the same transport protocols for the control messages as for the
data ones—several examples of them are given in the previous section.

In the negative case—when the particular control interconnection requires a special
communication model not supported in common operating systems, which is further
not able to emulate a common communication model (i.e., the IP)—the Service Domain
of each Processing Unit has to provide a translation5 between the widely-used commu-
nication model, which the applications communicate with the Service Domain, and the
communication model required by the particular control interconnection. This transla-
tion mechanism, however, obviously leads to increasing the communication latency, and
thus must be carefully considered.

5As results from the objectives, the DiProNN must not force its users to include highly-special features
inside their uploaded VMs.
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5.2.2 DiProNN Control Protocol

The DiProNN Control Protocol (DiCP) serves as an interface between the DiProNN node
and its users/administrators. In particular, the protocol defines a set of messages, which
enable the users to remotely manage the DiProNN’s/sessions’ behavior and which allow
them to ask the node for some information (e.g., information related to node actual state,
built-in functionality, access policy, previously established sessions, etc.). Since the DiCP
has not been designed in detail yet and since the particular DiProNN implementation
might further want to customize the DiCP on its own (to suit its particular needs), we
provide just the DiCP’s basics in the rest of this chapter.

5.2.2.1 DiCP Basics

The DiProNN Control Protocol (DiCP) is intended to be a simple, text-based, application-
level protocol used to transfer controlling and informational messages/requests to man-
age both the whole DiProNN node and the previously established DiProNN Sessions.
Its messages should be delivered using a fully reliable transport-layer protocol6 running
over the IP network stack (or another communication model employed in the future).
The concrete transport protocol, which the DiCP uses, is up to the particular DiProNN
implementation; however, the usage of the previously described TCP protocol is recom-
mended.

The requests, which are related to the whole DiProNN node management, as well as
the requests for new DiProNN Sessions’ establishment have to be delivered to so-called
DiProNN Control Port—a well known port, which is established on and maintained by
the DiProNN’s Distribution Unit (details about serving the user requests are provided
in the Section 7.2). Once the messages are received on the DiProNN Control Port, they
are immediately forwarded to the DiProNN Control & Sessions Management module,
where they are processed (obviously, if the user has been previously authenticated using
the DiProNN Access Management module, if required).

As soon as a new DiProNN Session is established, it is assigned a new port—the Ses-
sion Control Port—which serves for its management. The messages, which are received on
this port, are thus forwarded to the DiProNN Session Operator module, which processes
them and performs the required controlling/management/informational functions (ob-
viously, if the user has been previously authenticated).

The rest of this section depicts the set of basic functions, which the DiCP has to pro-
vide. Obviously, these functions can be further enriched by the particular DiProNN im-
plementation.

Node informational functions
The DiCP informational requests, which relate to the whole DiProNN node, have to be
delivered to the DiProNN Control Port. Depending on the user’s authorization, one
should be able to ask the node at least for:

• Built-in functionality – the active programs, which the users are able to use for their
processing applications (the ones available in the particular node as well as the ones
downloadable from a shared data storage located in the network).

6By the term “fully reliable” we mean the protocol, which provides reliable in-order delivery.
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• Available execution environments – the EEs, which the users might use for their stan-
dalone APs (again, the ones available in the particular node as well as the ones
downloadable from a shared data storage located in the network).

• Specialized functionality – the specialized administrators’ functionality (e.g., the clas-
sical routing), which the nodes performs (or is able to perform).

• Established/Active DiProNN Sessions – the sessions, which are running on the node.
The list should contain all the established sessions together with some relevant in-
formation about them (e.g., resource usage, running time, user information, status,
etc.).

• Authentication methods used – the list of authentication methods, which is used for
users’ authentication. This information should be obviously available for non-
authenticated users as well.

• Node usage/events history – the information about various events (sessions’ estab-
lishments, units’ failures, security issues, etc.) and/or node usage (used resources,
built-in functionality, EEs, etc.) from the history.

Node controlling functions
The DiCP controlling messages, which are related to the whole DiProNN node manage-
ment, have to be delivered to the DiProNN Control Port as well. Depending on the user’s
authorization, one should be able to maintain/control at least:

• Access policy – authorized users should be able to remotely (re)define the node ac-
cess policy—in particular, the method(s) used for users’ authentication and users’
authorizations.

• Set of built-in APs and EEs – in the case of a necessity to upload new built-in active
programs and/or execution environments, or to remove/block the existing ones,
the authorized users should be able to manage it remotely via the DiCP as well.
Nevertheless, the uploading itself could be performed using a specialized service,
which the user and the node agree (via the DiCP) on—e.g., the FTP, SCP/SFTP, or
FTPS.

• Sessions’ terminations – via the DiCP, authorized users have to be able to forcefully
terminate an arbitrary DiProNN Session, e.g., because of security violations.

• Units’ startup/restart/shutdown – if necessary, the authorized users have to be able to
remotely start/stop/restart the DiProNN units. (e.g., if the number of Processing
Units becomes insufficient/redundant).

DiProNN Session establishment
The session establishment request, which the DiCP delivers to the DiProNN Control Port,
is a special node controlling request, that the authenticated and authorized DiProNN
users use to ask the node for a new session. The whole establishment process comprises
two parts:

• The request delivery – besides user’s information, the DiCP message asking for a new
session establishment has to contain at least so-called DiProNN Program, which
defines the particular session and all the requested resources (further information
about the DiProNN Programs are provided in the following chapter).
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• APs/VMs uploading – once the session establishment request is accepted, the DiCP
should provide a message announcing the uploading of the user’s APs/VMs. The
message is delivered to the Session Control Port, and the uploading process itself
should be performed using a specialized service, which the user and the node agree
on.

Session informational functions
The DiCP informational requests, which relate to a particular session, have to be deliv-
ered to the relevant Session Control Port. The authorized users, which should be defined
by the session owner during the establishment process, might then ask the node for in-
formation about a particular session, e.g.:

• Session’s processing state – the users should be able to ask for information about both
the current and historical state of the session’s processing (running time, amount
of data processed by the particular APs, etc.)—the information should cover all the
DiProNN nodes participating on the processing.

• Session’s resource consumptions – the amount of node resources, which are/were con-
sumed by the session’s VMs/APs. Again, this information should cover all the
DiProNN nodes participating on the processing.

Session controlling functions
The DiCP controlling messages, which relate to a particular session, have to be deliv-
ered to the relevant Session Control Port as well. The authorized users (defined by the
session’s owner) should be able to maintain/control at least:

• Session’s startup – once the session establishment process finishes, the DiCP should
provide a message asking the node for starting it (i.e., its APs/VMs).

• Session’s dynamic reconfigurations – if required, the DiCP should provide functions,
which enable the users to dynamically adapt/change the session’s data flows. This
can also comprise the delivery of a new session’s DiProNN Program and/or new
processing VMs/APs.

• Session’s termination – once the processing finishes, the DiCP must provide a mes-
sage requesting session’s termination. Once the session is stopped, the DiCP should
provide functions asking the node for returning particular VMs/files (the down-
loading itself should be performed using a specialized service).



Chapter 6

DiProNN Programming Model

In this chapter, we describe the programming model, that we propose for DiProNN pro-
gramming. As depicted in the objectives, the model is based on the workflow [63] and
component-based programming principles [255, 272], and was further inspired by the
ideas of the StreamIt [261]—a language and compiler specifically designed for program-
ming modern stream-processing applications.

The main goal of such a programming model is to define the processing application,
that should be performed on the computing elements. Since such an application generally
consists of several components, the model has to be further able to define communication
channels among the components’ interfaces, so that the data, that should be processed,
can pass properly.

In the case of DiProNN, the components are represented by the active programs run-
ning inside virtual machines, whereas the APs’ interfaces are provided by the network
ports they communicate with. Thus, the DiProNN programming model has to be able
to define a processing application (denoted as the (DiProNN) Session), which consists of a
set of the APs communicating using common network services. Once such an application
is defined, the components have to be deployed across the DiProNNs’ Processing Units
according to a precomputed schedule (the deployment scheduling is further discussed in
the Chapter 8).

To ensure the communication among the deployed APs, two approaches could be
used—the static one and the dynamic one. The static one means, that during the APs’
startup, each of them is provided with an information, where its output interfaces should
send data to (e.g., an IP address of the VM, which the receiving AP runs in, and a network
port, that it listens on). This communication model does not require another interventions
into the data stream, however, provides slightly limited features.

The dynamic approach means, that during the APs’ startup, each of them is instructed
to send data to a specific inter-mediator (e.g., to the Service Domain), which further for-
wards the data to the subsequent APs according to the communication channels defined.
Even though one may think about introducing additional overhead because of another
interventions to the data stream (which is, however, negligible in the real situations, as
we show in the Section 12.2.4), this approach can provide several useful features. For ex-
ample, it can enable dynamic changes of the processing application without any needs to
restart the influenced APs—i.e., if a data flow outgoing the particular AP should be sent
to a different AP/receiver, the inter-mediator can ensure it on its own without any needs
to restart and reset the sending AP. Moreover, since the DiProNN allows a distribution
of the processing application across several nodes in the network, the dynamic approach
further allows inter-node migrations of the sessions’ VMs (see the Section 7.4.2), which
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in the case of static approach would have resulted in restarting and resetting the AP(s),
which sends data to the AP(s) inside the migrated VM1.

Even thought the combination of both approaches could be employed as well—initially,
the static approach is used and, once necessary, the dynamic changes are performed2—
just the pure dynamic approach is assumed in the rest of this thesis.

At first, this chapter elucidates the idea of DiProNN Sessions and sketches a pseudo
language, which we use for the definition of their processing functionality in the DiProNN
Programs. Later, the definition of the communication channels is presented and finally, an
example of possible application, that is defined using the presented pseudo language, is
sketched.

6.1 DiProNN Sessions

The DiProNN Session represents a particular processing application, which comprises of
a set of active programs, a set of virtual machines, and communication channels among
the APs. The active programs might be encapsulated inside a user VM, uploaded without
a VM (so-called standalone user APs), or provided by the DiProNN (standalone built-in
APs). Similarly, the VMs, which serve as execution environments for the standalone APs,
could be uploaded by the users, or provided by the DiProNN as well.

Every session has to be established before the data transmission and processing might
begin—the session’s establishment itself consists of a delivery of a new session request, a
verification of resource requirements’ satisfaction, resource allocations, uploading of all
the necessary APs/VMs, and setting all the communication channels (see the Section 7.3).
Such an established session can be further used for the processing of passing user data.
At the end of the processing, the session has to be terminated, all the allocated resources
released, and all the uploaded APs/VMs destroyed (if not requested otherwise).

6.2 DiProNN Programs

As depicted in the beginning of this chapter, the DiProNN Programs define the process-
ing applications (the DiProNN Sessions). More precisely, they define at least all the APs
and VMs required for the particular application (including the resource requirements’
specification and other necessary information), the data and control flows among all the
processing APs, and another necessary information related to the session. Such a defini-
tion can be based on a complex and well-known jobs’ description language (e.g., the Job
Submission Description Language (JSDL) [17]), or based on a simple pseudo language we
use throughout this thesis, whose general structure is depicted in the Figure 6.1.

DiProNN Session Graphs—the graphical representations of the DiProNN Programs—
then serve mainly for an illustration, simpler design, and better understanding of the
overall sessions’ functionality and the data flows defined among their APs (see the Ses-
sion Graphs’ symbols depicted in the Figure 6.2). Such a graphical representation prop-
erly accommodated with desired Sessions’/APs’/VMs’ options and created using an ap-
propriate editor might also serve for DiProNN Programs’ automatic generations.

1Remember, that the DiProNN operates on a private network segment—once a VM is migrated to a
different node, it must be referenced by the remote node’s public IP (further details about the migrations are
provided in the Sections 7.3 and 7.4.2).

2Note, that such a forwarding is attainable since the Service Domain can “see” and control all the packets,
that the VMs, which it controls, send (even the ones not destined to it).
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# Session’s parameters section
# (owner, notifications, overall resource requirements, ...)

# APs and VMs used for the processing follow
# ------------------------------------------

# standalone APs
{ AP name="first_AP" ref="first_AP_reference";

# AP parameters
inputs = ...;
outputs = ...;
# EE’s requirements
# resources’ requirements
# ...

}

# ... other standalone APs

# VMs including APs
{ VM name="my_VM1" ref="my_VM1_image";

# VM parameters
{ AP name="thisVM_AP" ref="thisVM_AP_reference";

# AP parameters
inputs = ...;
outputs = ...,
# ...

}
# ... other APs

}

# ... other VMs

Figure 6.1: The general structure of the DiProNN Programs written in the pseudo lan-
guage.

6.2.1 (Standalone) APs’ definition

As already depicted, there are two kinds of the standalone APs in the DiProNN—the ones
uploaded by users and the built-in ones provided by the node. Besides these standalone
APs, as we show later, another APs might be also directly included inside the users’ VMs.

The intended pseudo language characterizes all the APs by two parameters—the name
parameter and the ref parameter. Whilst the name parameter provides a unique iden-
tification name of the particular AP (unique in the context of the particular session) and
serves for referencing the APs in the communication channels’ definition (see the Sec-
tions 6.2.3 and 6.2.4), the ref parameter identifies the relevant (compressed) file, which
contains the uploaded standalone user’s AP (e.g., ref="filename.tgz"), the particular built-
in AP distinguished by a specific keyword (e.g., ref="DiProNNservice.AP_ident"), or the
AP included inside an uploaded VM (e.g., ref="included_AP_ident")3.

3Note, that the AP must be further identified by the VM’s APM service, which has to have all the neces-
sary information related to the included APs set (e.g., real locations, startup commands, etc.).
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(a) User AP, built-in AP, and par-
allelizable AP symbols.

(b) Data channels’ symbols.

(c) Control channels’ symbol. (d) DiProNN input and output
symbols.

Figure 6.2: DiProNN Session Graph symbols.

For the standalone APs, the other important parameters are the required EE’s identifi-
cation/description and the resource requirements specification (the requested resources
are, as we show later, provided to the VM the particular AP runs in). Moreover, all the
APs could be supplemented with additional parameters, which the particular implemen-
tation allows/requires to define (e.g., startup command, command-line arguments, pro-
cessing adjustments, etc.).
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6.2.1.1 Parallel Processing

As we have already mentioned, the proposed node is able to process the active programs
in parallel. Even though the detailed description of the parallel processing itself is pro-
vided in the Section 7.4.1, the definition of such a parallelizable AP in DiProNN Programs
is described here. Thus, if a special AP’s attribute

parallelizable[(instances_count)]

is defined, the DiProNN performs the AP’s processing in parallel. The number of running
parallel instances can be either fixed (the requested instances_count is present and
correctly specified), or variable (controlled by the DiProNN Session Operator module
according to the actual AP’s load and resources available).

However, once a user requires processing of an active program in parallel, he or she
has to specify, how to distribute the incoming data stream over such parallel instances.
Thus, before every AP having the parallelizable attribute set, there must be an AP (built-
in or user-loaded) defined, which performs the data distribution over the parallel in-
stances (further denoted as the distribution active program).

6.2.2 VMs’ definition

Similarly to the APs, the node assumes two kinds of the VMs as well—the user ones
and the built-in ones. Whilst the built-in ones need not to be explicitly defined in the
DiProNN Programs (they are just specified in the identification/description of the EEs
required by the standalone APs), the user ones have to be explicitly defined.

Against to the APs, the user VMs are characterized by a single parameter only—the
ref parameter, which identifies the relevant VM’s image. And similarly to the APs,
the users might specify the overall resources requested by the particular VM and all the
included APs as well as additional parameters, which the particular implementation al-
lows/requires to define.

As already depicted, the users’ VMs, that are intended to be uploaded into the node,
might directly include users’ APs. These APs have to be defined within the particular
VM’s section (see the Figure 6.1) in the same way as the standalone APs are (obviously,
without resources’ and EEs’ requirements). Note, that the users are also able to define
the built-in standalone APs within the VM’s section—once a particular built-in AP is
requested to be run inside a user VM/EE, it is uploaded into the VM during sessions’ es-
tablishment (details about sessions’ establishment process are provided in the following
chapter).

6.2.3 Data Interfaces’ and Channels’ Definition

We have already mentioned, that all the active programs are referenced by their unique
identification names. Similarly, all the input/output data/control interfaces, which de-
scribe the communication channels among the active programs required for the session’s
processing, are referred by their identification names as well. These symbolic names are,
as soon as the APs are started, associated with real network port numbers, that the APs
communicate throught.
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6.2.3.1 Inputs

Within the AP’s parameters section, there must be a single parameter (named inputs)
specified, which defines the AP’s data input interfaces, and which has to be of the follow-
ing form:

inputs = input1_name[(DIPRONN_INPUT[(port1)])],
input2_name[(DIPRONN_INPUT[(port2)])],
...

where

• the inputX_name specifies the symbolic name of the particular input data inter-
face, and

• the portX is an optional parameter specifying the requested port number of the
particular DiProNN’s data input (the external one).

Whilst the input of the simpler form (input_name) specifies the AP’s input inter-
face, which is further referenced by another AP (its output port), the input of the form
input_name(DIPRONN_INPUT(port)) means, that the input, named input_name, is
the node’s input (the input, which the user sends data to). Such an input might define
a particular port, which the DiProNN should listen on4, or might let the DiProNN to
choose an arbitrary port, which becomes negotiated during the session’s establishment.

Examples:

• inputs = audio_in1, video_input;

• inputs = in1(DIPRONN_INPUT);

• inputs = in3(DIPRONN_INPUT(10000));

6.2.3.2 Outputs

Within the AP’s parameters section, there must be a single parameter (named outputs)
specified, which defines APs’ data output interfaces and the data communication chan-
nels themselves. The parameter has to have the following structure:

outputs =
output1_name(AP1name.in1 | DIPRONN_OUTPUT(rcvr1:port1 | PASSTHRU)),
output2_name(AP1name.in2 | DIPRONN_OUTPUT(rcvr2:port2 | PASSTHRU)),
...

where

• the outputX_name specifies the name of the output interface, and

4As already depicted, the DiProNN inputs are opened on the node’s Distribution Unit, where the incom-
ing data are forwarded to the particular AP. In the case of distributed processing described in the Section 7.3
and the Chapter 8, the particular implementation might decide, whether these inputs are opened on the
entrance node or on the particular remote node.
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• the APXname.inX specifies, that the data leaving the particular AP throught the
outputX_name output interface have to be forwarded to the input port (named
inX) of the subsequent AP (named APXname).

The output interface, which is specified in the form

output_name(DIPRONN_OUTPUT(receiver:port | PASSTHRU))

then means, that the output interface, named output_name, is the DiProNN’s data out-
put. The data receiver is specified either by an IP address/domain name and a port
number, or (in the case of the PASSTHRU keyword) is defined during the data processing
by the particular AP itself. In the latter case, the DiProNN lets the outgoing data packets
as are—it does not perform any forwarding, so that the data pass throught the Aggrega-
tion Unit and continue to the receiver, which is set by the AP (further details about the
DiProNN’s data flows are provided in the following chapter).

Examples:

• outputs = audio_out(previous_AP.audio_in1),
video_out(specialized_AP.video_input);

• outputs = output(DIPRONN_OUTPUT(comp.mydomain.com:9738));

• outputs = out(DIPRONN_OUTPUT(PASSTHRU));

6.2.4 Control Interfaces and Channels’ Definition

As the Section 4.6 describes, there are two interconnections assumed in the DiProNN—
the data one and the control one. Whilst the data interconnection serves for data transmis-
sions among the APs, the control one serves for internal control communications among
them—to indicate some events, that have occurred in the data stream, to share informa-
tion about actual state, or just to ask another AP for something. In such cases, the users
may define the control communication channels among the APs similarly as they do it for
the data ones—using the keywords control_inputs and control_outputs. Never-
theless, the special forms DIPRONN_INPUT(...) and DIPRONN_OUTPUT(...) are not
allowed for the control messages.

Thus, as soon as a particular communication channel is defined as the control one, all
the messages passing through it are sent via the internal (low-latency) control intercon-
nect5.

6.2.4.1 Control communication among the parallelizable APs

Regarding the control communication in cases, where at least one communication partner
is a parallelizable AP, there are three possible scenarios:

1. parallelizable AP is a sender of control messages – when a parallelizable AP has to be
able to send control messages to another AP, the communication channel between
both the APs is defined in the same way as the ones, that define the control com-
munication between non-parallelizable APs.

5If there is any. When there is just one interconnection used for data and control communication simulta-
neously, the control messages are sent in the same way as the data ones are.
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2. parallelizable AP is a receiver of control messages – if an AP has to be able to send
control messages to a parallelizable AP, the communication channel is also de-
fined in the same way as the one defining the control communication between non-
parallelizable APs. However, in this case, the control messages are broadcasted
over all the parallel instances of the destined AP.

3. control communication among the parallel instances – when the parallel instances want
to communicate with each other, the combination of the previous two points takes
place: the particular parallelizable AP has to define a control output, that is con-
nected to a control input of the same AP (see the definition of the transcode AP
in the example 8.2). In this case, all the control messages coming from the specified
output control interface are broadcasted over the appropriate input control inter-
faces of all the other parallel instances of the given AP.

6.3 Example: Video Streams’ Composition in DiProNN

In this section, we sketch a possible implementation of a video streams’ transcoding and
composition application described in the Section 10.2. The application, which aims to
merge/compose incoming multimedia streams into a single output stream with current
speaker somehow highlighted (greater picture and/or lighter-colored), is sketched using
the depicted pseudo language and illustrated on the DiProNN Session Graph—see the
Figure 8.2.

Let us assume, that all the streams are transferred using the ARTP transport protocol,
which is able to distinguish among the input streams on the application-level (e.g., a
stream identification is passed as an ARTP option). Moreover, both the video and audio
data are transferred in an independent data blocks, as the ARTP assumes.

At first, there is a current speaker determined6 from the incoming audio stream (this
is performed by the determine_speaker active program). Once determined, the iden-
tification of the current speaker is sent to the video_distr AP using the control inter-
connection, where a relevant option indicating the current speaker is added to his/her
video stream. This option is read by the transcode AP7, which highlights the current
speaker’s video before/after the transcoding and forwards the stream to the sort_ARTP2
AP performing the independent data blocks’ proper ordering. Once properly ordered, all
the transcoded video streams should be synchronized and merged into a single video
stream. Finally, as soon as a single video stream is created, it should be synchronized
with the merged audio stream and sent to the receiver(s).

6The real method of a speaker’s recognition is not important for this example—several possible methods
could be found in [228].

7Note, that the transcode AP might be processed in parallel and each parallel instance may communi-
cate with the others, as indicated in the DiProNN Program.
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# session’s parameters (owner, notifications,
# overall resource requirements, ...)

{AP name="determine_speaker" ref="recognize_speaker1.tgz";
# AP parameters
inputs = audio_input(DIPRONN_INPUT(10002));

# requested DiProNN input port is 10002
outputs = output(sort_ARTP1.in);
control_outputs = ctrl_out(video_distr.ctrl_in);

}
{VM ref="my_VM1.img";

# VM parameters
{AP name="transcode" ref="transcode_video";

inputs = in;
control_inputs = stateshare_in;

# stateshare_in is the input for
# communication among parallel instances

outputs = out(sort_ARTP2.in);
control_outputs = stateshare_out(transcode.stateshare_in);
parallelizable; # parallelizable AP

} # ... other APs
}
{VM ref="my_VM2.img";

{AP name="sync_AV" ref="syncerAV";
inputs = audio_in, video_in;
precision = 0.001; # 1ms
outputs = out(DIPRONN_OUTPUT(PASSTHRU));

# the real receiver is defined inside the ARTP packets
} # ... other APs

} # ... other APs/VMs

Figure 6.3: The DiProNN Program’s fragment and the DiProNN Session Graph of a video
streams’ composition application.
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DiProNN Operational Overview

The previous chapters have presented the DiProNN’s architecture, the data and control
protocols, that are used for data transmissions and (internal) communication, and the
programming model, which is used for the DiProNN programming. So far, there have
been presented just a few pieces of information regarding its operational functionality
itself. Nevertheless, this chapter redresses it—in the following sections, we present and
define the DiProNN’s operation in detail, starting with its initialization through a new
session establishment, data flows and session’s processing, and ending with an estab-
lished session’s termination.

7.1 Initialization

The DiProNN initialization means the process, which starts with starting all the DiProNN
units’, and which ends in the moment, when the node is ready for an establishment of
new sessions. It is assumed, that once started, the units do have their network stacks
on both the data and control interconnections initialized, either via the DHCP or similar
network service.

During the initialization, all the DiProNN units have to start their necessary service
modules at first. Once started, all the units (except the Control one) have to register
themselves at the Control Unit (the Section 7.1.1), which subsequently discovers all the
resources available on them (the Section 7.1.2). Finally, the Control Unit asks selected
Processing Units for obtaining and starting the virtual machines, that are intended to be
started during the initialization. Once the Control Unit receives an information, that the
VMs have been started, it sets all the appropriate forwarding rules at the Distribution,
Aggregation and relevant Processing Units, so that the VMs become accessible from out-
side (if necessary) and the relevant data can pass properly. These forwarding rules are set
in a similar way as the sessions’ forwarding rules described in the Section 7.3.

Note, that the units’ registration approach, which is described in detail later in this
section, enables the DiProNN administrators to add and register new Processing Units
during the node runtime. The administrators are thus able to response to requirements
of additional resources or to response to sudden failures of the units, without any needs
to restart the whole node and completely reinitialize it (which would have resulted in
terminating all the already established sessions).

For simplification purposes, the graphical representation of the whole initialization
process is depicted in the diagram in the Figure 7.1. The particular parts of this process
are further discussed in detail in the following sections.
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Figure 7.1: DiProNN initialization diagram.
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7.1.1 Units Registration Process

At the beginning of the initialization process, all the units have to boot up and start all
the necessary service modules running inside of them (the VM/AP Management mod-
ule, the Control module, the Resource Management module, etc.). As soon as started,
the units perform the registration process—they register themselves at the Control Unit,
which thus becomes aware of all DiProNN’s physical components (units), that can be
used for processing the sessions. The registration, which is temporary and must be re-
freshed every specified time period, is performed by periodical registration requests sent
from the units (from their Control modules) to the DiProNN Control & Sessions Manage-
ment (DCSM) module1.

As soon as the Control Unit accepts the request, the positive reply is sent to the re-
questing unit’s Control module, and the process of units’ available resources discovery
follows.

The liveness of all the already registered units should be periodically checked by the
Control Unit (by contacting units’ Control modules). If a unit does not respond to live-
ness requests, it is said to be functionless and thus removed from an internal database.
Simultaneously, all the users of influenced sessions (the sessions, that have an AP run-
ning on the not responding unit, or all the users in the case of Distribution or Aggregation
Units’ failure) are informed. The influenced sessions are subsequently terminated (see the
Section 7.5).

7.1.2 Units’ Resources Discovery Process

After the successful registration, all the Resource Management modules, which run on
all the registered units, are contacted by the DiProNN Resource Management module,
which asks them for an information about their available hardware resources. This in-
formation is periodically obtained by the module and, as already mentioned in the Sec-
tion 4.3, serves mainly for decisions about placing new APs/VMs, VMs’ migrations, and
resources’ usage monitoring.

For the resources discovery and information exchange among the units, the use of a
standardized monitoring software tool is highly desirable. The examples of such tools
are the Ganglia [232]—a scalable distributed monitoring tool for high-performance com-
puting systems such as clusters and Grids—and the GLUE schema [16], which is an in-
formation model for Grid entities described using a natural language and enriched with
a graphical representation using UML Class Diagrams [33]. Such a resources discovery
and monitoring software tool has to collect, and to the DiProNN Resource Management
module provide an information (status and utilization) at least about all the unit’s CPUs,
network I/O, disk I/O, and memory subsystem. The acquired information is then man-
aged by the module, and if required, provided to other ones.

1Note, that the registration process assumes the Control Unit being already started and fully functional.
Nevertheless, if the Control Unit is not ready for responding to unit’s registration requests in the particular
time, the requesting units do not receive a notification of accepting the registration in a specified timeout
and thus keep to resend the registration requests until any reply from the Control Unit is received.
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7.2 Users’ Requests

As soon as the DiProNN is initialized, it is able to respond to users’ node-related mes-
sages/requests, which have to be delivered using the DiCP protocol (described in the
Section 5.2.2) to the DiProNN Control Port established on the node’s Distribution Unit.
Before the node processes the requests, it may require the users to authenticate depend-
ing on the access policy used. The authentication itself is performed by the DiProNN Ac-
cess Management module—the users have to authenticate themselves using, e.g., shared
secret knowledge, registered username and password, public key infrastructure (PKI)
authentication using X.509 certificates, etc.

Once the users are authenticated, the node processes their requests depending on
their authorization. The authorization policy—the definition, which users (and/or user
groups) are able to request which requests/functionalities—must be defined by the Di-
ProNN administrator(s). The authorization process itself is then performed by the Di-
ProNN Access Management module as well.

In general, the requests, which are accepted on the DiProNN Control Port and which
are further delivered to and processed by the DiProNN Control & Sessions Management
module, can be divided into two groups—the informational requests and the controlling
requests. For example, using the informational requests, the users might obtain an infor-
mation about the actual state of the node, built-in functionality provided, or previously
established DiProNN Sessions (logged history). The controlling requests serve for autho-
rized DiProNN administrators to remotely control the behavior of the node (e.g., forcing
termination of established sessions, security and access policy setting, controlling of Di-
ProNN’s HW and SW resources, etc.), and for authorized users to ask for a new DiProNN
Session establishment, as described in the following section. Further details about the ex-
ternal DiProNN’s management are provided in the Section 5.2.2.

7.3 Session Establishment

As already mentioned in the previous section, once the users pass the authentication
process, they are able to ask the node for a new session establishment. These requests,
which have to contain the session’s description (DiProNN Program), are delivered to the
DiProNN Control & Sessions Management module, which accepts or refuses them.

As soon as such a request is delivered to the module, it decides in cooperation with
the DiProNN Resource Management module, whether the resource requirements could
be satisfied or not. The decision depends on the actual DiProNN usage (resources avail-
able vs. resources required) and also comprises of the APs/VMs mapping process (see
the Section 7.3.1)—the decision, which VMs the standalone APs will run in and which
Processing Units each VM will run on.

If the session request could be satisfied by the node itself, all the requested resources
are reserved (if any). Subsequently, the appropriate Session Control Port is created, and
the DiProNN Session Operator module, which is used for managing the session being es-
tablished, is started. Finally, the user is informed about the session’s acceptance (includ-
ing the information about the Session Control Port opened) and the session establishment
process takes place (see the Section 7.3.2).

If the request could not be satisfied by the particular node itself, its DiProNN Con-
trol & Sessions Management module tries to ask the other known2 DiProNN nodes in

2Known, e.g., via an external service managing all the DiProNNs in the network, and providing a relevant
information about them.
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the network for participating on the session’s processing. At first, it asks them for an
overview of their available resources—see the Figure 7.2(a). As soon as the overview is
received (Figure 7.2(b)), the module decides, whether there is a “better” DiProNN node
(e.g., located closer to session’s data receivers, less loaded, more powerful, etc.), which is
more suitable for the session’s processing, or not. In the positive case, the DiProNN user
is asked for sending the session request to the chosen node, while in the negative case,
the module tries to divide the original session into several subsessions. Once the session is
divided, the module asks each of the selected nodes to establish the relevant subsession
(Figure 7.2(c))—in fact, it asks for a new session establishment in a common way, but just
with a relevant part of the original DiProNN Program. This process is performed until all
the nodes, which have been asked to establish the subsessions, confirm its establishment,
or there is a possibility to find another suitable session’s distribution.

(a) Incoming new session establishment request
and asking another DiProNN nodes for an

overview of available resources.

(b) Answers to the resources overview requests.

(c) Request to participate on the session’s
processing—the subsession establishment

request.

(d) The subsession establishment accept.

(e) The process of VMs/APs uploading. (f) Data flow and distributed processing.

Figure 7.2: The process of requesting another DiProNN nodes to participate on a new
DiProNN Session processing.

If all the nodes, which have been asked to participate on the session’s processing,
accept the subsessions3, an acceptation to the session establishment request is sent to
the user (Figure 7.2(d)) and the uploading of the VMs/APs (Figure 7.2(e)) followed by

3Note, that each of the nodes, which has accepted the subsession, had to perform the APs/VMs mapping
process as well as resources reservations before accepting it.
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the data transmission and processing (Figure 7.2(f)) might begin. Otherwise, the session
establishment is rejected.

Finally, let us point out, that once the session is divided into several subsessions, the
data communication channels4 among the divided APs—the last AP(s) from one subses-
sion and the first AP(s) from the following one—have to be transformed. This is necessary
since the Processing Units operate on a private network segment, and thus are not directly
accessible from the other nodes—otherwise, the Control module of the Processing Unit,
where the sending AP(s) from a particular subsession runs, would have not been able to
deliver the data to the following AP(s) running in the following subsession(s).

AP1: outputs = out(AP2.in);

AP2: inputs = in;

(a) Before the transformation (single subsession).

AP1: outputs = out(DIPRONN_OUTPUT(nextDiProNN.mydomain.com:60000));

AP2: inputs = in(DIPRONN_INPUT(60000);

(b) After the transformation (two subsessions).

Figure 7.3: The transformation of data channels divided into two subsessions.

The transformation of the data channels, that have been divided into two subses-
sions, simply changes the outputs of the sending AP(s) and inputs from the receiving
AP(s) in the way depicted in the Figure 7.3—the receiving APs’ inputs are changed into

4As the Chapter 8 shows, the division of the control communication channels need not to be considered,
since the sessions cannot be divided between the APs communicating via the control interconnection.
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DiProNN_INPUTs, which results in opening this ports on the Distribution Unit of the
node processing them (making them accessible from outside the node), and the sending
APs’ outputs are changed into DiProNN_OUTPUTs with the following DiProNN node
and the appropriate port number set as the receiver. If a subsession contains an AP(s)
with data/control DiProNN inputs, the particular DiProNN implementation may choose
between two approaches:

• providing users with an information about the nodes processing the subsession(s) – in this
case, the ports of the DiProNN inputs are opened just on the DiProNN node(s)
processing the relevant subsession(s). The users are then provided with an access
information of every opened port—the hostname or the IP address of the DiProNN
node processing the subsession and the port number opened on its Distribution
Unit, through which the relevant input port is accessible.

• hiding the distributed processing (and the other DiProNN nodes) – if the distributed pro-
cessing has to be hidden because of some reason, besides opening the input ports
on the relevant nodes processing the subsessions5 the same number of ports must
be opened on the DiProNN node, which the user is communicating with (further
denoted as the entrance node). In this case, the users are provided just with an in-
formation of the port number(s), that have been opened on the node establishing
the session (the entrance node), whose Distribution Unit forwards all the incoming
data to the particular node(s) really processing the relevant AP(s).

7.3.1 APs/VMs Mapping Process

Once the nodes, that are able to provide requested resources to satisfy session’s require-
ments, are chosen, each of them has to decide, which VMs will all the standalone active
programs run in, and which Processing Units will all the VMs run on. This process is, as
depicted before, called the APs/VMs Mapping Process.

The APs/VMs mapping process has two goals. First, it has to choose proper execution
environments for all the standalone active programs (both user and built-in ones), that
participate on the session’s processing—depending on their requirements (e.g., OS type,
libraries available, etc.), it chooses the appropriate built-in EEs for them. The particular
implementation might define, whether several APs might be planned into a single EE.
However, not to degrade the security benefits provided by the virtualization, in such a
case the node should not plan APs belonging to different sessions into a single EE.

The latter goal is to distribute the resulting VMs over the Processing Units of the par-
ticular node(s) in a way, that their resources requirements are met. If necessary, already
running VMs might be also migrated (as described in the Section 7.4.2), so that the re-
quested resources are freed.

If a suitable mapping is found, all the requested resources are allocated (so that an-
other session cannot use them) and the session request is said to be satisfiable. Then,
the positive response is sent to the user, who is subsequently invited to upload session’s
APs/VMs—the session establishment process, which is described in the following sec-
tion, thus takes place.

5These ports have to be opened, since the APs must be accessible from outside. However, the data, which
has not been sent from the participating DiProNN node, should be discarded.
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7.3.2 Session Establishment Process

As soon as the user receives a notification about accepting the establishment request,
he or she informs the DiProNN Session Operator module via the Session Control Port
about starting the uploading of the virtual machines and/or active programs related to
the session. The APs/VMs could be uploaded to every node, which participates on the
session, individually, or just to the entrance node (see the Figure 7.2(e)), which further
uploads the relevant APs/VMs to the subsequent node(s) in the same way as the user
does (it behaves like a common user to the subsequent node(s)).

The uploading itself is performed using a specialized service (e.g., the FTP, SCP/SFTP,
or FTPS) to a location dedicated on the Storage Unit, which has been specified during
the (sub)session establishment. Once the uploading finishes, the DiProNN Session Oper-
ator module of the particular node informs the selected Processing Units’ VM/AP Man-
agement modules about the (sub)session’s APs/VMs, which will the particular unit run
(based on the plan resulting from the APs/VMs mapping process). Each VM/AP Man-
agement module then obtains the relevant APs’/VMs’ files/images (including the built-
in ones, if requested) from the Storage Unit; the obtained VMs are subsequently started.

As soon as the VMs are started, a communication between the VM/AP Management
module and the APM service of every session’s VM follows. The goal of the communica-
tion is to upload all the necessary standalone APs into the particular VM6 and according
to the particular DiProNN Program to instruct the particular APM service, which APs
and how have to be started. Once provided, the relevant APs are started.

Communication Interfaces’ Association
During the APs’ startup, every AP has to associate its input/output data/control inter-
faces with real network port numbers, which the particular communication interface will
belong to. The particular implementation might decide, whether such an association will
be performed in a static or a dynamic way. The static association means, that the par-
ticular APs’ interfaces are statically assigned with appropriate (and for every startup the
same) network port numbers. As opposed to it, the dynamic association chooses the
appropriate port number for the particular interface dynamically depending on current
conditions during the establishment (it associates the interfaces with currently free net-
work ports). As obvious, the static associations are simpler and do not require the APs to
perform any communication in order to associate the interfaces, however, the dynamic
ones are more flexible and are desirable especially for implementations, that allow more
active programs to run in a single VM (this prevents port collisions, which might appear,
when more APs require a particular network port).

While the static associations could be defined in the APs’ configuration files, the dy-
namic associations are performed using the Port Associator (PA) service—for each in-
put/output data/control interface, which the AP wants to communicate with, the AP
sends the interface’s name to the PA service and asks, which network port number the
relevant interface should belong to. The PA service performs the association and replies
with the network port number, that the relevant interface has to connect to. Simultane-
ously, the information about all the couples (communication interface name, real port number)
is stored, and as soon as all the APs are started and have their interfaces associated, it is
sent to the Control module of the particular Processing Unit.

6Note, that the user VMs might contain the user APs directly included. In this case, no uploading is
necessary.
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Subsequently, as soon as all the couples are registered, the Control module uses this
information for setting the communication channels as described in the following para-
graphs.

Communication Channels’ Creation
As soon as all the APs, which are required for the session being established, are started
and as soon as all the communication interfaces are associated with real network port
numbers, the creation of the communication channels follows. The DiProNN Session
Operator module obtains the information about all the couples of the associated commu-
nication interfaces from the Control modules of relevant Processing Units and depend-
ing on the DiProNN Program creates a set of forwarding rules that have to be applied to
ensure proper data flows among the APs. Once the set is created, its relevant part is for-
warded to the Control modules of the particular Processing Units as well as to the Control
modules of the Distribution and Aggregation Units, where appropriate forwarding rules
are set as well.

The forwarding rules reflect the communication channels, that are specified in the Di-
ProNN Program. For example, when an active program named A wants (through its
output interface associated with the port number a) to send data to an active program B
(to its input interface associated with the port number b), the forwarding rule, that has
to be set in the Service Domain of the relevant Processing Unit, forwards all the packets
coming from the relevant VM (determined by its IP), which the A active program runs
in, and having their source port number set to a, to the IP of the VM running B active
program and to the b network port (to the successive AP listening there). The forward-
ing process itself depends on the particular DiProNN implementation, however, the use
of kernel Netfilter7 (iptables [15]) is usually highly advisable (see details in the Chap-
ter 11).

As soon as the communication channels are created, the DiProNN Session Operator
module(s) in cooperation with the Resource Management modules of the relevant units
reserves the requested resources8. After that, the session becomes established and ready
for data transmissions and processing—the user is informed about successful session’s
establishment and invited to send data. If an error occurs during the establishment pro-
cess, the user should be also informed together with an information about error details.

The graphical representation of the whole session’s establishment process is depicted
in the diagram in the Figure 7.4.

7.4 Data Flow and Processing

Once a new DiProNN Session is established, the data flow through the node could be
briefly described in the following way: when a user packet arrives to the Distribution
Unit, it is forwarded to the Processing Unit, which processes the session’s first AP (more
precisely, to an network interface of the relevant virtual machine and to the registered net-
work port, which the particular AP listens on). The forwarding is performed according
to the forwarding rules previously set.

7http://www.netfilter.org/
8If some network parameters have to be guaranteed between two nodes in the case of distributed pro-

cessing, these cannot be ensured by the DiProNN itself—these must be provided in cooperation with the
relevant services of the public networking infrastructure.
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As soon as the packet is processed, it leaves the AP throught a specific output port.
The forwarding rules apply again and the packet is forwarded to the next active pro-
gram(s) for further processing. This procedure repeats until the packet traverses all the
APs running on the particular node, which have to process it. After the whole processing,
the packet is forwarded throught the Aggregation Unit to the receiver. This forwarding
depends on the situation, that occurs:

• Data receiver is specified in the DiProNN Program – if the data receiver is specified
directly in the DiProNN Program (see the Section 6.2.3.2), the Service Domain of
the Processing Unit, which runs the last processing AP, forwards the packet leaving
the AP through a particular output port directly to the data receiver.

• Data receiver is specified by the last processing AP – if the data receiver is specified
by the last processing AP (the PASSTHRU keyword is used in the output channel’s
definition, as described in the Section 6.2.3.2), the Service Domain lets the packets
leaving the last AP as they are—the packets leave the Processing Unit and through
the Aggregation Unit continue to the receiver set by the AP.

Note, that this data flow approach conforms to the distributed processing as well. As
soon as the session is distributed among several nodes, a set of subsessions is created
according to the transformation described in the Section 7.3. Thus, each subsession could
be considered as a common DiProNN Session, which has some input channels, some
output channels, and output channels’ receivers set (pointing to the session’s receiver(s)
in the case of last subsession or to the subsequent DiProNN(s) otherwise).

Nevertheless, such a data flow approach does not enable the active programs to be
able to determine the IP address of the real data sender/receiver (if required)9—each
packet is destined by the particular Service Domain to a relevant VM’s address and given
AP’s port, and thus has its source/destination IP address/port set. To make their active
programs being aware of the real data sender/receiver, the users have to use an extended
functionality of the data transport protocol used—e.g., protocol’s data options or user-
specified data format.

7.4.1 Parallel Processing

As depicted in the Section 6.2.1, the DiProNN is able to run active programs in paral-
lel. It means, that the virtual machine, which runs the parallelizable AP, is mirrored over
several Processing Units of a single node10, where the passing data are simultaneously
processed. The resource requirements, which have been specified for the particular par-
allelizable AP in the DiProNN Program, are then applied for every parallel instance in
the amount requested (except the requested network bandwidth, which is portioned ap-
propriately).

Nevertheless, this approach has two main prerequisites to enable an active programs
to run in parallel. First, the data being processed have to be separable into indepen-
dent data blocks (for example, the ARTP datagrams independent on each other), so that

9If the Distribution Unit simply forwards all the incoming packets, the first AP could be able to determine
the data sender. However, once the Distribution Unit has to provide some precomputations on the incoming
packets (e.g, extractions of packets encapsulated using the IPSec [148] protocol), the information about the
real data sender could be lost (the unit becomes the data sender from the AP’s point of view).

10All the parallel instances of a single AP have to run on the same node, since they should be allowed to
communicate with each other through the (low-latency) control interconnection as fast as possible. Other-
wise, the communication latency would have been increased by the external interconnect (e.g., the Internet).
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they can be spread over the parallel instances, where they are processed independently
on each other. Second, before each parallelizable AP, there must be a distribution active
program specified—the active program, that collects all the independent data blocks and
distributes them over the parallel instances.

If both conditions are met, users may specify the parallelizable APs using the relevant
option in the DiProNN Programs (parallelizable[(instances_count)]—see the
Section 6.2.1). If the instances’ count is specified, the parallelizable AP is mirrored by the
DiProNN Session Operator module over specified number of Processing Units during
the session’s establishment. If the instances’ count is missing, the DiProNN tries to adapt
the number of instances to current processing conditions (whether the running instances
can cope with the amount of data, that have to be processed)—during the session’s estab-
lishment, the AP is mirrored over an initial number of the units.

To properly distribute the incoming data, the distribution active program has to be
aware of the number of AP’s parallel instances, that might be used in that particular time.
Thus, during its startup (more precisely, during the process of communication interfaces’
association), the relevant PA service reserves the appropriate number of real network
port numbers for every distribution AP’s output port (equal to the instances_count,
if specified, or being at least11 the same as the current count of the Processing Units is),
and the distribution active program shares a constant/variable with the APM service,
that indicates the current number of parallel instances, over which the data might be
distributed (being set statically to the instances_count or having an initial value and
varying in time). Subsequently, all the forwarding rules are set—each real network port
must be addressed to a single and unique parallel instance.

However, if the node has to adapt the number of parallel instances to current process-
ing conditions, a detection of instances’ saturation must be performed. Such a detection
process depends on the particular DiProNN implementation—for example, depending
on the amount of data being distributed, the distribution active program may decide
to ask the DiProNN Session Operator module for a new parallel instance (the request
is delivered throught the APM service and the VM/AP Management module) or the
APM service of each parallel instance may monitor the amount of packets, that have
been dropped by the particular OS’s kernel (e.g., via the tcpdump tool). If there are some
packets dropped for a specified amount of time, it can be supposed, that the current num-
ber of instances is unable to cope with the amount of data required to be processed—the
APM service may thus ask the DiProNN Session Operator module to increase the num-
ber of parallel instances as well. Nevertheless, the final decision is up to the DiProNN
Session Operator module, where all the requests are forwarded.

7.4.2 VMs’ Migrations for Efficient Resources Utilization

The VMs’ migration process occurs, when the DiProNN Control & Sessions Management
module decides to redistribute the running VMs from any reason. Such migrations could
be generally performed either inside a single DiProNN node (let us call them intra-node
migrations) or among different nodes as well (inter-node migrations). For example, the
intra-node migrations could be performed to utilize node resources in a more efficient
way (the goal is to apply a better distribution that enables the node to accept sessions,
that would have been rejected because of unavailable resources before the migration),
whereas the inter-node migrations could be also performed because of better resources’
utilization, but also because of service repairs required to be performed on a particular

11The PA service may reserve more real port numbers to allow future adding of the Processing Units’.
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node, or because of more effective usage of the network (e.g., the session distributes in-
coming data and most receivers are located nearer a different node).

The migration itself is provided by the relevant DiProNN Session Operator module (or
modules in the case of inter-node migrations), which the migrated VM belongs to. How-
ever, since the inter-node migration should be also enabled to the nodes, which do not
participate on the session’s processing, the DiProNN has to cope with the non-availability
of a dedicated DiProNN Session Operator module running there (the one, that belongs
to the particular session). Since this module is necessary during the migration process,
at first, the remote node has to be asked for an establishment of a new empty DiProNN
Session (a session without any APs/VMs). Once this empty session becomes established,
a dedicated DiProNN Session Operator module is started on the remote node, and the
inter-node migration process might be performed.

As depicted, the decision that a VM(s) should be migrated is made by the DiProNN
Control & Sessions Management module. This module monitors the actual node usage
(in cooperation with the DiProNN Resource Management module), communicates with
the other nodes in the network, and as soon as there is a necessity to redistribute a ses-
sion’s VM(s), asks the DiProNN Session Operator module(s) of the influenced session12

to provide it. During the migration, the DiProNN Session Operator module(s) prepares a
new set of forwarding rules (corresponding to the state after the migration) and once the
migration finishes, applies them in cooperation with the Control modules of the relevant
units13.

Last, but not least, since the session, whose VM is being migrated, should be influ-
enced as low as possible during the migration, the usage of a principle called Live Migra-
tion [64] is highly desirable. This enables copying of the migrated VM’s content from one
physical host to another without stopping it, which minimizes the time period, throught
which the service/process running inside the VM is unavailable.

7.5 Session Termination

The termination of an established session could occur because of the user’s request, the
node administrator’s request, or because of DiProNN’s own decision. In the first case,
the authorized user might ask the node for terminating a particular session by sending an
appropriate DiCP request to the DiProNN Session Control port, while in the second one,
the administrator(s) might ask the node for terminating an arbitrary session by sending
the DiCP request to the DiProNN Control port. The termination, that is based on the
node’s decision, occurs in cases when a session breaks DiProNN rules in any way (for
example, the Security module of a Processing Unit detects14 a malicious AP, which may
result in the immediate termination of the session that the AP belongs to).

In all the cases, the termination have to be performed by the DiProNN Session Oper-
ator module, which controls the particular session. Thus, if the termination is initiated
by the node administrator or by the DiProNN itself, the DiProNN Control & Sessions
Management module, which receives the request and solves the internal incidents, in-

12Note, that there cannot be running any APs belonging to different sessions inside a single VM—the
definition of the APs/VMs mapping process disallows this (see the Section 7.3.1).

13Note, that the inter-node migration requires an application of similar session’s transformation, as the
one depicted in the Section 7.3 (especially, it requires opening new ports on the target’s Distribution Unit in
order to make the APs running in the migrated VM accessible).

14To detect malicious active programs, similar techniques, which are studied in the projects dealing with
the intrusion detection systems, can be used—for example, the ones presented in [86, 125, 166].
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structs the relevant DiProNN Session Operator module to terminate the session. If more
DiProNN nodes participate on the session’s processing, once a particular DiProNN Ses-
sion Operator module becomes aware of the session’s termination, it instructs all the
DiProNN Session Operator modules controlling the session’s subsessions to terminate
them as well.

The (sub)session’s termination is then performed on every involved node in the fol-
lowing way: the DiProNN Session Operator module sends the termination request to the
Control modules of all the Processing Units, which run (sub)session’s VMs, and to the
Distribution and Aggregation Units. The units remove all the forwarding rules set for the
particular (sub)session, and acknowledge the removing. After that, the DiProNN Session
Operator module contacts the relevant VM/AP Management modules in order to stop
and destroy the session’s VMs; once destroyed, all the reserved resources are freed on the
particular Processing Unit, and the stopping/destroying is acknowledged.

Sometimes, users might require the node to return data produced during the session’s
processing. In such a case, the relevant VM/AP Management modules are asked for
saving the relevant session’s VMs to a location dedicated on the Storage Unit, where
the users might download it. Nevertheless, since the node may not want to provide the
whole built-in EEs, inside which the session’s standalone APs have run, the required files
should be extracted from the VM in cooperation with the APM service and separately
saved on the Storage Unit as well.

Finally, the DiProNN Session Operator module confirms session’s termination to the
user, closes the communication and ends its operation.
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Figure 7.4: Sessions’ establishment diagram.



Chapter 8

Distributed Sessions’ Processing

The distributed processing depicted in the Section 7.3 allows several DiProNN nodes to
participate on a single session’s processing, so that more hardware resources are avail-
able to satisfy sessions’ requirements. The session establishment process, which has been
described in the previous chapter, is performed in a standard way—once the DiProNN
Program describing the session, which should be established, is delivered to a DiProNN
node, and once the node decides to distribute the session (i.e., there is no “better” node
able to satisfy the whole session), the session is separated into multiple subsessions and
the neighboring DiProNN nodes are asked to establish each of them (see the Section 7.3).
Once all the subsessions are established, the original DiProNN Session is accepted (see
an example of a distributed DiProNN Session in the Figure 8.1).

Figure 8.1: An example of a distributed DiProNN Session.

The whole session distribution process is under control of the entrance node (more
precisely, under control of its DiProNN Control & Sessions Management module). Since
(from the users’ point of view) the distributed processing behaves as a normal processing
provided by a single node, the users need not to notice it (if they are not informed by the
node providing the session establishment)—the particular implementation might define
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that all the data as well as control information is sent just to the entrance node1, which
manages all the necessary forwarding to relevant APs and/or another DiProNN nodes.

As obvious, the main task of the DiProNN node establishing such a distributed ses-
sion, which should be performed in cooperation with an external service managing all
the nodes in the network, is to find both a suitable separation of the particular DiProNN
Session and a suitable mapping of all its APs over the Processing Units of appropriate
DiProNN nodes (the APs/VMs mapping process). Let us denote this problem as the Di-
ProNN Scheduling Problem (DSP), which we formally describe together with several con-
straints it has to follow in the Section 8.1. The complexity of any DSP solution method is
later studied in the Section 8.2, while a discussion of available scheduling techniques for
the DSP follows in the Section 8.3.

8.1 Problem Description

This section formally describes the DSP. During the description as well as the rest of this
chapter, we assume both the DiProNN Sessions and DiProNN nodes to be represented as
graphs with nodes and edges (defined in the following subsections). Moreover, the con-
straints, which have to be satisfied by any DSP solution, are specified in the Section 8.1.3.

If not stated otherwise, in the rest of this chapter we suppose every virtual machine
to contain just a single active program—as discussed previously, this enables precise re-
source requirements to be specified for every AP. Thus, in the following sections, let us
omit the fact, that the AP is running in a VM, and let us assume both that the AP itself is
able to request (and get) some amount of available resources and that the AP is directly
able to be run on some Processing Unit.

Regarding the resource requirements, for simplicity reasons we focus just on the basic
ones—the CPU (expressed, e.g., in cycles/s), amount of memory (e.g., in MB), amount of
disk space (e.g., in MB), and requested link bandwidth (e.g., in Mbps). The DSP being
aware of all the other resources (as mentioned in the Section 3.2.4) could be easily defined
as an extension of the presented solution (especially, by adding necessary constraints
similar to the ones defined in the Formulas 8.1—8.12).

8.1.1 DiProNN Session

Let us denote the set of all the DiProNN Sessions as S. Every DiProNN Session can be
represented by the graph s ∈ S, s = (A,D,C), consisting of nodes (A) and edges (D,C).
Each node a ∈ A then denotes a single AP, which requires several resources for its proper
execution, such as CPU, RAM, and HDD (Processing Unit’s and/or additional), repre-
sented by the values CPUa, RAMa, HDDa, and AHDDa respectively. As mentioned
before, every (non-parallelizable) AP is executed in one dedicated virtual machine, while
the parallelizable APs are executed in several virtual machines2, all of them having the
same resource requirements.

Each graph’s edge d ∈ (D ∪ C) denotes one communication channel between two
active programs. There are two types of edges —D and C—representing data and con-

1Note, that (at least some of) the AP(s) receiving the stream from outside (the “first” AP(s) in the particular
DiProNN Session) have to be running on the node asked for the session establishment—if the node is not
able to satisfy at least a part of the session requested, the user is redirected to a different node, as described
in the Section 7.3. Thus, the node does not perform packets forwarding to other DiProNN nodes only, which
would result in unnecessary performance overhead.

2The number of virtual machines is equal to the instances_count variable set in DiProNN Program,
or set dynamically by the Control Unit.
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trol communication channels respectively. Every d ∈ D also holds requested bandwidth
BANDd, representing the minimal amount of bandwidth necessary for the proper inter-
node communication. The communication channels are further denoted as the logical data
edges (the data channels—the setD) and logical control edges (the control channels—the set
C) as well.

For example, the DiProNN Session example depicted in the Figure 8.1 could be de-
scribed by the graph

sex = ({a1, a2, a3, a4, a5, a6, a7, a8, a9},
{d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14}, {c1, c2, c3})

8.1.2 DiProNN node

Let us consider a couple (G,H), where the set G represents all the DiProNN nodes avail-
able in the network, and the set H denotes all the connection links (external intercon-
nections) among them. Each h ∈ H denotes a single physical connection link, providing
limited bandwidth BANDh, which denotes the maximum bandwidth available on this
link. We kindly suppose, that each DiProNN node is directly accessible by all the others
(e.g., the interconnection among the nodes is provided by the Internet).

Every DiProNN node g ∈ G can be represented by the graph g = (U,E, F ). The
graph’s nodes represent the DiProNN units, where each unit u ∈ U is either the Distribu-
tion Unit, the Aggregation Unit, the Control Unit, the Storage Unit, the Processing Unit,
or the data/control interconnect switch. Let’s define R as a set of all the Processing Units
available in the particular DiProNN node g, such that R ⊂ U . Then, each r ∈ R denotes
a single Processing Unit (physical machine) having the following resources: CPU, RAM,
and HDD, denoted as CPUr, RAMr and HDDr. Moreover, the Storage Unit t ∈ U could
provides additional storage space, denoted as AHDDt.

Since the DiProNN node assumes two types of interconnections—the data one and the
control one—the graph assumes two types of connecting edges as well. First, each edge
e ∈ E denotes a single physical data interconnection link between two DiProNN Units,
providing limited bandwidth BANDe. Second, each edge f ∈ F denotes a (low-latency)
control interconnection link between two units. In this case, however, the communication
bandwidth is not considered for any f ∈ F , since the control interconnection is used
just for low-amount of small control messages only—it is supposed, that the available
bandwidth will be always sufficient.

For example, regarding the DiProNN node depicted in the Figure 8.2, the set U in-
cludes eight DiProNN units (including the switches), while the set R contains just two
of them (the Processing Units only). Regarding the interconnection links, since all of
them—besides the Processing Unit’s local ones provided by the VMM3—are supposed
to be full-duplex, thus providing defined bandwidth independently in both directions,
each link produces two graph edges (one for each direction) in the DiProNN node graph.
Thus, the DiProNN depicted in the mentioned figure produces 12 data links in the set E
and 14 control links in the set F .

3Although the virtual interconnection provided by the VMM appears to be full-duplex, its available band-
width is usually influenced by its usage in both directions. These local interconnections are thus represented
as single edges.
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8.1.3 Constraints

In this section, we define several constraints that every scheduling technique must follow
to build a valid DSP solution.

At first, let us assume an active program a ∈ A. The AP must be run (in a virtual
machine) on a Processing Unit r ∈ R. The following constraints ensure, that all the
resources requested by amust be available at r as well as additional storage requirements
must be available at the Storage Unit t:

CPUa ≤ CPUr (8.1)
RAMa ≤ RAMr (8.2)
HDDa ≤ HDDr (8.3)

AHDDa ≤ AHDDt (8.4)

Moreover, if more APs are running on the same Processing Unit r, then the total requested
resources must be less or equal to the capacity of r. Formally, if k APs (a1, .., ak) are
running on r, then

k∑
i=1

CPUai ≤ CPUr (8.5)

k∑
i=1

RAMai ≤ RAMr (8.6)

k∑
i=1

HDDai ≤ HDDr (8.7)

Similarly, if more APs share the disk space AHDDt provided by the Storage Unit, the
total requested additional storage resources must be less or equal to the capacity of t.
Formally, if k APs (ga1 , .., gak

) are running on the particular DiProNN node g ∈ G, then

k∑
i=1

AHDDgai
≤ AHDDt (8.8)

Figure 8.2: DiProNN node graph.
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If a parallelizable AP requires k instances, the scheduler handles each of them as an
independent AP, which allows to use the previously defined constraints. Still, one more
constraint is necessary for the parallelizable APs: all k instances of a single parallelizable AP
must be mapped on the same DiProNN node (e.g., to allow their fast communication via the
control interconnection, and/or to allow simpler management of the number of instances
in the case of dynamic adaptations to processing conditions, etc.).

Similar rules apply concerning the communication bandwidth. First, let us assume the
simplest scenarios: if two APs (or a single AP with the Storage Unit) communicate over
a logical data edge d ∈ D using a single physical data interconnection link e ∈ (E ∪H),
then

BANDd ≤ BANDe (8.9)

Again, if a single physical interconnection link e is shared by k logical data edges (d1, .., dk),
the overall requested bandwidth must be less or equal to the bandwidth available on the
link, i.e.,

k∑
i=1

BANDdi
≤ BANDe (8.10)

However, in real situations, the active programs (AP1, AP2), which communicate over
a logical data edge d, are usually placed in different DiProNN Processing Units or in
different DiProNN nodes. Then, the logical data edge d will be mapped onto several
physical interconnection links, which will create a path from AP1 to AP2. Let us assume
that d will be mapped onto l different physical interconnection links (e1, ..., el ∈ (E ∪H))
providing different bandwidths (BANDe1 , ..., BANDel

). Then, the requested bandwidth
must be less or equal to the minimal bandwidth available on the path:

BANDd ≤ min
1≤i≤l

BANDei (8.11)

Also, each of the l physical interconnection links might be simultaneously used by dif-
ferent APs, so that the BANDei has to be shared by multiple logical data edges. Let us
assume, that for given i the physical interconnection link ei is going to be used by k logical
data edges (d1,i, ..., dk,i). Then, the following constraint has to apply for every i = (1, ..., l)
and corresponding k:

k∑
j=1

BANDdj,i
≤ BANDei (8.12)

Moreover, all the APs, that communicate with each other via the control interconnec-
tion, must be placed within the same DiProNN node. However, on the other hand, two APs,
that communicate over the data interconnection only, can be placed in different DiProNN
nodes, if the previously defined constraints are satisfied.

Finally, there are two another constraints, that have to be satisfied. First, the sched-
uler has to ensure, that there are no redundant schedules generated (to avoid redundant
mappings of an active program on several Processing Units). And second, the scheduler
has to guarantee that every DiProNN Session will be mapped as a whole—either all the
active programs belonging to it are mapped, or none of them.
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Let there be k DiProNN Sessions in S and l DiProNN nodes in G. Let xra = 1 if the
AP a was successfully mapped on the Processing Unit r, and xra = 0 otherwise.

A =
⋃k

s=1As

R =
⋃l

g=1Rg

∀a ∈ A :
∑

r∈R xra ≤ 1 (8.13)
∀s ∈ S :

∑
a∈As

∑
r∈R xra = 0 ∨

∑
a∈As

∑
r∈R xra = |As| (8.14)

The Formula 8.13 then provides a new constraint guaranteeing that any AP a from any
DiProNN Session s ∈ S will be mapped on at most one Processing Unit r of all the
available DiProNN nodes (defined by the set G). The latter Formula 8.14 further ensures,
that either all or none the APs a ∈ As, which belong to a session s, must be mapped on
some Processing Unit r ∈ R (note, that the set R contains all the Processing Units of all
the DiProNN nodes in the network).

8.2 DSP Complexity Analysis

In the previous section, the formal description of the considered scheduling problem,
which involves mapping of the DiProNN Sessions on the DiProNN node(s), was pre-
sented. All the important parameters required for the proper scheduling were described,
including all the related constraints that have to be satisfied. The scheduler takes a Di-
ProNN Session description (the DiProNN Program or the DiProNN Session Graph) spec-
ified by the user and tries to map it on the available DiProNN node(s) (in fact, it maps
session’s APs to available nodes’ Processing Units), with respect to presented constraints.

In this section, we discuss the complexity of such a solution technique. At first, we de-
fine an objective function, which helps us to measure the quality of a particular schedul-
ing solution found, and which enables us to compare all the solutions so that we are able
to choose the best one. Later, we study the complexity of the DSP problem by transform-
ing a well-known problem, whose complexity is widely-known and already proved, to
it.

8.2.1 Applied Objective Function

Before proceeding to an analysis of the DiProNN Scheduling Problem complexity, we de-
fine an objective function helping us to find the optimal scheduling solution. The objec-
tive function adopted represents a real-life-based function heading towards maximizing
the utilization of the DiProNN nodes in the network.

The objective function assumes a set G of available DiProNN nodes, each node g ∈ G
having lg Processing Units. Further, a set S of DiProNN Sessions has to be given, each
session s ∈ S having ks active programs. The function also considers the active programs’
profit values pa, pa = 1, ...,MAX for every active program a. For most real-life purposes,
the profits will be equal to the APs’ particular resource requirements (e.g., CPU time—
thus measuring the CPU utilization of all the DiProNN nodes) or a value representing
a combination of all the requested resources. However, the profits might also cover an
additional information—for example, it can be a function of the resource requirements
together with the particular session’s estimated running time and/or session’s owner
priority.
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The resulting objective function is then defined as

F =
∑
g∈G

lg∑
rg=1

∑
s∈S

ks∑
as=1

pasxrgas (8.15)

xrgas ∈ {0, 1}

where xrgas = 1 if the active program a belonging to the DiProNN Session s was success-
fully mapped on the Processing Unit r of the DiProNN node g, and xrgas = 0 otherwise.

Clearly, the function F returns a weighted sum of successfully mapped DiProNN Ses-
sions satisfying all the constraints mentioned in the Section 8.1.3. The goal of the DSP
scheduler is to find a mapping which provides the maximal F .

8.2.2 The Proof of the DSP Complexity

To prove the DSP complexity let us consider a relaxed DSP problem involving just a single
DiProNN node (including several Processing Units) and simplified DiProNN Sessions,
consisting of just a single active program.

During the proof, we use the Reduction technique [96, 103]—a transformation of one
problem (A) into another problem (B) in the way, that solutions to B exist and give solu-
tions to A whenever A has solutions. In other words, if A reduces to B (A ≤T B, where
T is a type of the transformation) means, that the problem A is no harder than B, and B
is no easier than A. Depending on the transformation used, this technique can be used to
define complexity classes on a set of problems.

Thus, using the simplified DSP problem we reduce4 a special case of the well-known
0-1 Multiple Knapsack Problem (MKP) [183, 218], which is known to be NP-hard [183], on
the relaxed DSP problem, thus showing that the complexity of the relaxed DSP is NP-
hard. Finally, because any instance of the relaxed DSP can be reduced to an instance of
the original DSP, we show that the original DSP is NP-hard as well.

0-1 Multiple Knapsack Problem
The 0-1 MKP—one of the knapsack problems, that belong to most widely studied prob-

lems in the Combinatorial Optimization—describes the following problem: there are k
items that should be packed into l knapsacks of distinct capacities ci, i = 1, ..., l. Each
item j has an associated profit pj and weight wj , and the problem is to select l disjointed
subsets of items, such that each subset i fits into the capacity ci and the total profit of all
the selected items is maximized. Thus, the 0-1 MKP can be formally defined as [183]

maximize
l∑

i=1

k∑
j=1

pjxij (8.16)

subject to
k∑

j=1

wjxij ≤ ci, i = 1, ..., l, (8.17)

l∑
i=1

xij ≤ 1, j = 1, ..., k, (8.18)

xij ∈ {0, 1}, i = 1, ..., l, j = 1, ..., k,

4During the proof we use the Linear-time reduction [96].
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where xij = 1 if the item j is assigned to the knapsack i, and xij = 0 otherwise. Usually,
the coefficients pj , wj and ci are assumed to be positive integers, and to avoid trivial cases
it is demanded that

max
j=1,...,k

wj ≤ max
i=1,...,l

ci min
i=1,...,l

ci ≥ min
j=1,...,k

wj

k∑
j=1

wj > max
i=1,...,l

ci. (8.19)

The first assumption ensures that each item j is able to be fitted into at least one knap-
sack, otherwise it should be removed from the problem. Second inequality ensures that
none knapsack is smaller than the smallest item. Finally the last inequality avoids trivial
solution where all the items fit into the largest knapsack. This 0-1 MKP is known to be
NP-hard [183].

However, in the DiProNN, the profits have to be related to the weights (in fact, re-
source requirements)—thus, by maximizing the profits we maximize the utilization of
the nodes, which is the desired scheduler’s behavior. Nevertheless, the special case of
the 0-1 MKP, where the profits and weights are somehow related (in our case identical5),
still remains too hard, and thus belongs to the class of NP-hard problems as well [183].

In the rest of this section, our goal is to show that the special case of the 0-1 MKP can
be represented as the relaxed DSP, which will prove that the relaxed DSP is NP-hard as
well (remember, MKP ≤T DSPrel means that the MKP is not harder than the relaxed
DSP).

Relaxed DSP
Let us assume the relaxed DSP with a single DiProNN node containing l Processing

Units r, r = 1, ..., l having different CPUr values. Further, let there be k DiProNN Ses-
sions to be scheduled—each session is being composed of just a single AP (it repre-
sents the simplest version of the DiProNN Sessions). Thus, we have k active programs
a, a = 1, ..., k to be scheduled on the node’s Processing Units.

Further, let us assume that every DiProNN Session (in fact, the active program) has its
profit equal to the amount of computational resources requested (as defined in the objec-
tive function), specified by the CPUa parameter. Other constraints, such as the RAMa,
HDDa, and the AHDDa as well as the requested communication bandwidth will be ig-
nored6.

As mentioned previously, the relaxed DSP’s objective is to maximize a single DiProNN
node’s utilization by mapping given DiProNN Sessions (active programs) on the node’s
Processing Units, with respect to AP’s profits (once again, equal to their CPU require-

5This modified problem is also very similar to the Multiple Subset Sum Problem (MSSP) [53], which how-
ever differs in an assumption, that all the knapsacks’ capacities are identical (thus, the MSSP can be consid-
ered as a special case of the modified 0-1 MKP). Similarly to the 0-1 MKP and modified 0-1 MKP problems,
the MSSP is NP-hard as well [53].

6This is equivalent to setting RAMa = 0, HDDa = 0, AHDDa = 0, and BANDd = 0 for all the
requested data connections d ∈ D. Then, all the relevant constraints hold trivially—any solution of the
original problem will be also a valid solution of the relaxed DSP.



CHAPTER 8. DISTRIBUTED SESSIONS’ PROCESSING 101

ments). Therefore the relaxed DSP can be formulated as:

maximize
l∑

r=1

k∑
a=1

CPUaxra (8.20)

subject to
k∑

a=1

CPUaxra ≤ CPUr, r = 1, ..., l, (8.21)

l∑
r=1

xra ≤ 1, a = 1, ..., k, (8.22)

xra ∈ {0, 1}, i = 1, ..., l, j = 1, ..., k,

where xra = 1 if the active program a is assigned on a Processing Unit r, and xra = 0
otherwise.

As obvious, the Formula 8.20 is adopted from the objective function (Formula 8.15),
where the set G contains just a single DiProNN node, each DiProNN Session contains
just a single active program, and each active program’s profit is equal to the amount of
CPU resources it requires. Then, the Formula 8.21 covers both the constraints 8.1 and 8.5,
while the Formula 8.22 is equal to the constraint 8.13. The constraint 8.14 holds trivially,
since every session contains just a single AP.

Further, we can assume that the coefficients CPUa and CPUr are positive integers,
and to avoid trivial cases we demand that

max
a=1,...,k

CPUa ≤ max
r=1,...,l

CPUr min
r=1,...,l

CPUr ≥ min
a=1,...,k

CPUa (8.23)

k∑
a=1

CPUa > max
r=1,...,l

CPUr (8.24)

Analysis Discussion
The analysis shows, that we can formulate the NP-hard 0-1 MKP problem as the re-

laxed DSP problem. The applied transformation is linear involving just variables renam-
ing. Moreover, for any instance of the relaxed DSP there is a simple linear reduction,
which generates an original DSP instance (∀a ∈ {1, ..., k} : RAMa = 0, HDDa = 0,
AHDDa = 0, ∀d ∈ D : BANDd = 0). Thus, any algorithm solving the original DSP
would also solve such newly generated instance and the resulting solution would be also
the valid solution for the relaxed DSP. Therefore, finding the optimal solution with re-
spect to the applied objective function for the original DSP is also the NP-hard problem.

In fact, the original DSP is much more complicated than the relaxed DSP due to addi-
tional constraints such as RAMa, HDDa, AHDDa, and/or BANDd. Also, the DiProNN
Sessions are usually composed of several APs communicating with each other, and could
be generally spread over several DiProNN nodes, where they are mapped on particular
Processing Units. This involves additional constraints that have to be satisfied, as shown
in the Section 8.1.3.
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8.3 DSP Scheduler Discussion

The fact, that the DSP belongs to the set of NP-hard problems implies that as long as it
is not proven that P = NP7, one cannot expect to have a polynomial-time algorithm for
solving it. Since an algorithm solving the DSP needs to provide sufficiently high perfor-
mance to be useful in practice—DiProNN Sessions’ configurations should be constructed
in the real-time during the establishment time or migration decisions—its complexity
should be addressed by some approximation techniques.

In the literature, there are several works addressing similar placement techniques for
component-based distributed applications processing data streams. Basically, these tech-
niques could be divided into two categories—the dynamic components’ selection and
deployment techniques, and the deployment techniques only, which are more suitable
for the DSP scheduling. Thus, instead of proposing a new scheduling technique we show
and discuss some existing ones, which the DSP scheduler could be based on.

8.3.1 Components’ Dynamic Selection & Deployment Scheduling Techniques

The dynamic component selection and deployment techniques allow distributed appli-
cations to flexibly and dynamically adapt the processing workflows to situations in both
current resource utilizations and clients’ demands. For example, once an available net-
work bandwidth lowers, the planning algorithm in cooperation with a particular frame-
work might decide to change the processing workflow in the way that all the transmis-
sions will be compressed. This can lower the bandwidth required by the data streams
without any undesirable impacts on the application itself (obviously, if an increase of the
end-to-end latency does not matter).

Such planning techniques are studied by many authors. For example, in [151, 152] the
authors propose a general model and discuss techniques usable for such an application
configuration problem, and present an AI planning-based [67] algorithm (called Sekitei)
for solving it. The Pegasus [31] is another planner employing AI techniques to generate
grid workflows (application configurations) to achieve a user objective. The planning of
single-input and single-output components could be further performed using the Conduc-
tor framework [286], which allows composable and transparent applications’ adaptations
to unfavorable network characteristics, while multiple-inputs and multiple-outputs com-
ponents could be planned by the Ninja planning module [106]. And there are many other
works [38, 89, 93, 132, 229] focusing on similar objectives.

However, these scheduling algorithms are not straightforwardly usable in the Di-
ProNN, since besides considering current resources’ state for placing the components
they also focus on flexible workflow assembling to suit both network environment con-
ditions and users’ needs. Nevertheless, the second category—represented by pure de-
ployment scheduling techniques—is more suitable for the DSP scheduler and thus is dis-
cussed in more detail in the following section.

8.3.2 Components’ Deployment Scheduling Techniques

The pure deployment scheduling techniques assume that there is given a particular pro-
cessing workflow, which consists of several components, and the goal is just to place the

7The relationship between the complexity classes P and NP is an unsolved question in the theoretical
computer science [246]. It is considered to be the most important problem in the field, since the determination
of the status of this question would have dramatic consequences for the potential speed of solving many
difficult and important problems.
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components on an existing network infrastructure to meet their resource requirements
(without any workflow’s modifications to adapt it to current network conditions). In
spite of the fact, that there have been proposed many techniques, which focus on com-
mon distributed component-based applications’ scheduling, most of them are not usable
for the DSP scheduler since they do not fit the stream-processing applications’ fundamen-
tal characteristics—the continuous data processing and unknown components’ duration
time. Thus, just a few of them are discussed here.

An example of a suitable scheduler for the component-based stream-processing ap-
plications is the Streamline [4] scheduling heuristic, which is designed over an existing
grid framework using the Globus Toolkit [87]. The Streamline uses the Simulated An-
nealing technique [164] as an approximation for an optimal schedule, which is infeasible
to implement except for very small applications. It supposes the streaming application to
be represented by a directed acyclic dataflow graph (DAG) consisting of nodes (contin-
uously running applications) and edges (data links between applications). The Stream-
line considers the static information about available resources (e.g., machine architecture,
CPU speed, amount of memory, and hardware configuration), the dynamic information
of available resources and communication capabilities in the target environment (such
as an estimate of available processing cycles or the end-to-end network bandwidth), and
different applications’ and resources’ specific policies.

The MediaNet project [119] proposes a two-level scheduling service for the component-
based processing applications—in addition to using a local scheduling only (scheduling on
an individual node), the MediaNet also employs a global scheduling service to divide tasks
and flows among network components. Similarly to the Streamline, the applications are
also supposed to be represented as DAGs and the target network infrastructure as a graph
with nodes (computing elements) and edges (data links). As depicted, the scheduling ser-
vice assumes an existence of a global scheduler, which computes a session subgraph for
each node and sends it to the local scheduler running on each node. The local schedulers
implement the sessions’ subgraphs and periodically report the local resources’ usage to
the global scheduler, which can periodically recompute and redistribute its schedules as
well. Similarly to the works belonging to the first category, the MediaNet scheduling
service allows adaptations to current network conditions as well. However, these adap-
tations are not determined by the system, but by the end-users—each user contributes
with a list of alternative specifications and associates a utility value with each of them.
The primary goal of the MediaNet’s schedulers is to maximize each user’s utility.

In [262], the authors propose two resource allocation heuristic algorithms for process-
ing streams on computational grids. Both algorithms are based on the market mecha-
nisms [66]; one uses a centralized market (the Single Market Resource Reservation System
algorithm) and the other decentralized markets (the Multiple Market Distributed Resource
Reservation System algorithm). The former one uses a variation of the first-fit-decreasing-
value heuristic to assign tasks to machines—the tasks are sorted in a decreasing order
of utility and assigned using the best-fit-decreasing-value heuristic to target machines,
where local optimizations further take place. Against it, the latter one assumes multiple
independent markets (one for each machine resource)—initially, the stream applications
are assigned randomly to balance the number of streams per machine. Once the appli-
cations are assigned, a central agent pairs up a below-average priced machine with an
above-average priced machine and the paired machines move streams from one to an-
other to increase the sum of their utilities.

Unfortunately, the described approaches do not take into account the density of an
communication among the components, which is highly beneficial for the DSP sched-
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uler. Since the components with a dense interaction should be placed on the same nodes,
the presented algorithms should be complemented by the technique presented in [289],
where the authors propose a general solution to the interaction aspect of the compo-
nent placement problem. The basic idea behind such a technique, which considers both
interaction and non-interaction properties of the system, is that there is an interaction
model of the system created (modelled using the Component-interaction automata lan-
guage [41]) and a set of candidate component placements is computed using an existing,
non-interaction algorithm (to enable the integration with the existing solutions solving
the non-interaction aspect of the component placement problem). Once finished, the can-
didate placements are evaluated depending on the frequency of inter-component com-
munication and the most optimal component placement is selected.

8.3.3 DSP Scheduler Conclusions

Even thought the DiProNN Sessions are represented as directed graphs as well, one could
notice, that they cannot be directly used as the inputs for the scheduling algorithms dis-
cussed in the previous section. The reasons are, that the DSP scheduler has to cope with
two kinds of the communication channels (the data and control ones) between the com-
ponents (i.e., APs in the case of the DiProNN Sessions) and that the DiProNN Sessions
might contain parallelizable APs, which the discussed algorithms do not support. Thus,
the DiProNN Sessions have to be transformed in a way, which makes them applicable
for the algorithms’ inputs, but which does not affect the scheduling decisions performed
by the algorithms (in other words, the scheduling decisions for both the original and the
transformed sessions must be the same). This can make the existing scheduling solutions
suitable for solving the DSP.

Regarding the parallelizable APs, these could be—together with their input and out-
put communication channels—easily substituted by their simple multiplication in the
amount requested (if known) or in a defined initial amount. The bandwidth require-
ments are divided among all the instances, while the other resources’ requirements are
applied for every parallel instance in the amount requested by the AP.

Regarding the problem of the two communication channels’ kinds, there are two trans-
formations, that come into the mind at first. The first one is to declare both kinds of the
communication channels as a single one for the algorithms—i.e., to consider both the data
and control channels as a single kind—and to let them compute a suitable placement(s)
for such a transformed session. However, such a computation does not need to be always
feasible, since this transformation can easily break the single presumption the algorithms
have—that is the acyclic form of the sessions’ graphs.

The second possible transformation is to omit the control communication channels at
all. At first note, that such a transformation cannot affect the DSP’s scheduling decisions
in any way: as depicted in the beginning of this chapter, there are no resource constraints
defined for the control interconnections—they provide an “unlimited” bandwidth for all
the control messages. Thus, the scheduler does not have to take available control links’
bandwidths into account and can place the particular APs on an appropriate Processing
Unit(s) just according to their resource requirements.

Omitting the control communication channels can ensure the acyclic form of the ses-
sions’ graphs8, but cannot ensure the other requirement—that every two active pro-
grams communicating via a particular control communication channel will be placed
on the same DiProNN node. As stated in the beginning of this chapter, placing the APs,

8We assume that the data paths of the DiProNN Sessions will not contain cycles.
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which communicate via a (low-latency) control interconnect, on different DiProNN nodes
breaks the main purposes of such an interconnection, since it is intended to provide abil-
ities for as fast as possible communication and synchronization of the APs.

However, to make such a DSP scheduler able to generate placements satisfying this
requirement, the “omitting control channels” transformation has to be extended by a def-
inition of some application scheduling policies applied for the schedulers (e.g., as the
ones used in the cases of the Streamline and MediaNet schedulers discussed before).
These policies can ensure, that every two components communicating via a particular
control communication channel as well as that all the instances of a parallelizable AP will
be placed on the same DiProNN node (see the constraints in the Section 8.1.3).



Chapter 9

Further DiProNN’s Features

9.1 Quality of Service Support

The ability of a network (in fact, its network nodes) to provide a different priority to dif-
ferent applications, users, or data flows, or to guarantee a certain level of performance to
a data flow is called Quality of Service (QoS). For example, a required bit rate, delay, jit-
ter, and/or packet dropping probability may be guaranteed in common network nodes.
The QoS guarantees are primarily requested by real-time streaming (multimedia) appli-
cations, since these are often delay sensitive and require the network to provide specific
performance parameters. Such guarantees are important especially in situations, when
the network capacity is insufficient—in the absence of network congestion, QoS mecha-
nisms are not (usually) necessary.

The QoS approaches, that are used in common computer networks, enforce certain
parameters (e.g., a queueing strategy, a priority), which are not sufficient for the Ac-
tive/Programmable networks. The reason is, that such networks enable the users to run
programs on the inner network nodes and thus other computing parameters (e.g., pro-
cessor time, amount of free memory) have to be guaranteed as well.

In the previous chapters, there has been supposed a resource management system—
the DiProNN Resource Management module cooperating with the Resource Manage-
ment modules of the relevant units—which is able to reserve intended resources for par-
ticular VMs and communication channels. However, such a standalone system is not
sufficient for providing the QoS guarantees, since the resource delegations must be sup-
ported by accurate and powerful resource schedulers (provided by the particular virtu-
alization system), so that the node might become able to guarantee requested resources
to the sessions. However, since the DiProNN does not rely on a specific virtualization
system, the rest of this section describes and defines general requirements, that the em-
ployed resource schedulers have to satisfy.

9.1.1 Schedulers

As apparent, the scheduling algorithms are very important part of the RMS and its ability
to provide QoS guarantees, because they affect both an overall performance and keep all
the required resources in desired limits. Since resource characteristics vary, the schedul-
ing algorithms must be designed in a resource specific manner. For example, CPU context
switching is more expensive compared to switching between flows in the case of network
scheduling [100]. Therefore, the efficiency of the CPU scheduling improves, if virtual ma-
chines can receive a minimum CPU quantum before being preempted. Disk scheduling,
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unlike both the CPU and network scheduling, must consider request locations to limit
seek times and rotational latency overheads1, memory schedulers, in order to match ac-
tual memory use, must estimate the current working set of active programs. Therefore,
all the schedulers must examine relevant resource states (e.g., disk state, whether it is
spinning or parked) in addition to the QoS specifications.

Furthermore, the resource requirements are often related to each other. For example,
when requesting high network bandwidth while having only a small amount of the CPU
time, it is not possible to reach required bandwidth, because there is an insufficient CPU
time to send all the packets. Thus, the scheduling algorithm’s design must be sophisti-
cated enough to take such inter-dependencies into account.

Except mentioned, all the resource schedulers have to satisfy the following five re-
quirements2:

• Admission criteria—the admission of a new virtual machine should not infringe the
resource guarantees given to the virtual machines already running. In the case of
a conflict possibility, necessary steps need to be taken like re-mapping process or
rejecting the relevant DiProNN session to avoid VMs’ affections.

• Real-time guarantees—the design of the scheduling algorithms must satisfy real-time
constraints in terms of ensuring guaranteed scheduling for each virtual machine
within their jitter bounds, if any.

• Fairness criteria—it should be possible to schedule both types of virtual machines
competing for a shared resource—the ones without any resource requirements as
well as the ones requiring some resource guarantees. If a non-reserved part of the
particular resource exists, the lower priority non-guaranteed VMs should not be
completely starved out of the resource by higher priority tasks corresponding to
the guaranteed services.

• Maintenance and policing criteria—the policing criteria requires to ensure that the
resource-consuming VMs do not infringe the resource guarantees of other VMs
competing for the resource. The maintenance criteria imply setting up re-mapping
process or dropping further requests in the case of a resource overload condition.

• Throughput criteria—the scheduling policy of the particular scheduler should be able
to schedule as many virtual machines as possible.

9.2 Hardware Support

As already mentioned in the motivation chapter, besides the benefits already mentioned,
the virtual machines also bring some drawbacks once being employed in the network
nodes. These drawbacks are mainly related to a performance overhead necessary for
VMs’ management, which is visible especially for I/O operations (see the tests presented
in the Section 12.2.3)—every I/O must be intervened by the Service Domain of the par-
ticular virtualization system [179]. Since the DiProNN is performing lots of network I/O

1This fact is not entirely true for the Solid state disks (SSD), whose seek times are extremely low and more
or less constant, and which do have zero rotational latency.

2Since the DiProNN’s QoS assurance is closely related to multimedia applications, the requirements laid
on the scheduling algorithms are very similar as the requirements in multimedia operating systems, that are
defined in [100].
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operations (it has to receive data, that should be processed, and send them out of the node
after the processing), this overhead can significantly influence its overall performance.

Thus, in cooperation with the Liberouter project3 of the Cesnet association4, we have
sketched a FPGA-based programmable hardware network card accelerating both the Di-
ProNN’s forwarding mechanism and the whole network stack, with which could be fur-
ther each VM provided. Before we present the sketched card’s architecture and its bene-
fits, we describe the NetCOPE platform that the card is based on.

9.2.1 NetCOPE Platform

The NetCOPE [184], which has been designed by the Liberouter research group, is in-
tended as a computing platform accelerating analyses of high-speed network traffics per-
formed on the commodity hardware. The NetCOPE enables a computing task, that is
required to be performed on the incoming data, to be split between the NetCOPE and the
system processor(s)—while the NetCOPE performs data preprocessing in hardware (e.g.,
headers’ parsing, packet payloads’ analyses, etc.), the system processor(s) computes just
highly-specific user-level functions. Such a processing combination accelerates the whole
computing a lot, since all the data need not to be transmitted through the system buses
to the system processor(s), where they should be computed, and sent outside the node
throught the buses as well (if necessary). This also saves the cycles of the system proces-
sor(s), making such a system being able to process amounts of data, whose processing
would be otherwise infeasible on the same system without the NetCOPE.
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Figure 9.1: The NetCOPE hardware architecture [184].

The platform, which is depicted in the Figure 9.1, consists of the I/O blocks used for
receiving and transmitting the incoming data via the Ethernet protocol, the DMA buffers

3http://www.liberouter.org/
4http://www.cesnet.cz
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for fast data transfers between the adapter and the host RAM, the DMA controllers, and
an interconnection system providing the communication between components placed in
the FPGA and a system bus (PCI, PCI-X or PCI Express) [184]. A data packet, that arrives
at a network interface, is passed through the I/O blocks to the User processing blocks,
where the user-defined (pre)processing takes place. The results of the user processing are
then stored into DMA buffers and further transferred to a software part of the processing
application. Similarly, once processed in the software, the data are passed directly to the
I/O blocks and through the network interfaces sent away from the node.

9.2.2 DiProNN HW-accelerated Network Card

As already mentioned, the DiProNN HW-accelerated network card is based on the Net-
COPE platform, where a single User processing block provides the packets’ forwarding
among the APs running on the particular unit. The card architecture is depicted in the
Figure 9.2—it consists of the RX (receive) and TX (transmit) I/O buffers, the process-
ing block performing Netfilter-like packet headers modifications (the forwarding mech-
anism), and the Host interface (the Interconnection System, the PCI Bridge and the PCI
Interface).

Figure 9.2: Schema of the DiProNN HW-accelerated Network Card Architecture.

In the Service Domain’s kernel space, there is a driver controlling the card behavior
and providing two basic functionalities. First, it sets the forwarding rules in the process-
ing block based on the information from the Control module of the particular Processing
Unit5—the forwarding rules then define the packets’ forwarding performed by the card.
And second, the driver ensures the forwarding of the packets, that come from and are
destined to the virtual machines, which are located on the same unit—this does not re-
quire the packets to pass through the system buses in cases, when both the sending and
receiving APs are located on the same unit.

5Even thought primarily designed to the Processing Units, these acceleration card could be naturally used
in the Distribution and Aggregation Units as well. However, since these units perform just a simple packet
forwarding and do not run a virtualization system, the performance improvement will not be so significant
as in the case of employing it in the Processing Units.
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The Processing Units, that should run multiple virtual machines, could benefit from
yet another feature, that the card offers. Since the card’s driver is able to emulate multiple
network interfaces, the unit’s Service Domain can dedicate each of them to a particular
virtual machine. This enables the incoming/outcoming packets to bypass the Service
Domain without any modifications of the VMM6 or the guest VMs. Thus, the Service
Domain need not intervene every VMs’ network I/O operation, while the forwarding
capability, that is necessary for ensuring proper data flows among the APs, remains un-
affected (except being accelerated in hardware).

Even thought the card is primarily considered for accelerating the data packets’ ma-
nipulations only, the acceleration of control packets’ manipulations could be also per-
formed in a similar way. Nevertheless, in such a case, the control interconnect has to
be realized using Gigabit or 10 Gigabit Ethernet interconnect, since the NetCOPE is cur-
rently unable to make use of a highly-specialized interconnects (like the Myrinet or the
Infiniband).

6Except the ones related to the card driver, since this is supposed to support the card.
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Applications

In this chapter, we present several possible applications of the proposed node. There is
a variety of useful network services that can benefit from a data processing at interme-
diate network nodes, enabling the end hosts to deliver a high performance (from users’
point of view) on common PC systems—the data could be (pre)computed on the inner
network nodes, while the end host(s) can focus just on a (visual) presentation of the com-
puted data without wasting their performance on the computations. In cases of more data
senders/receivers, the data (pre)computations performed inside the network can further
utilize the network links’ capacities in a more efficient way by gathering/scattering the
data on a strategic network points closer to data senders/receivers. Again, from users’
point of view, all these services can lead to better end-to-end performance delivered by
the networking system.

The list of possible applications, that is presented in this chapter, is not exhaustive—
since the node supports uploading of user applications, it might be used for almost every
data processing1 one can imagine. It is “only” necessary to compose such a process-
ing application and an appropriate DiProNN Program, and upload it into the DiProNN.
Thus, just a few examples of applications, which the proposed node could be used for,
are mentioned in the following sections.

10.1 High-quality Video Presentations, Demos, and Lectures

Remote presentations, demos, and lectures delivered using video streams are an efficient
way of delivering pieces of information to many people throughout the world. Scientists
are able to share their knowledge, experiences, and ideas with large and wide variety of
people without any needs to meet on a single place in a specified and restricted time,
which would have further resulted in loosing the time of all the parties by travelling. The
remote collaboration enables unique technologies, materials, inventions, things, working
procedures, surgeries, etc. to be shared and provided to many people in the real-time, and
thus the general knowledge in the particular area can be increased. However, usually a
very high-quality video is necessary to provide sufficient details of the content delivered
(at least to some critical end hosts).

An example of such a high-quality video can be an uncompressed HD video stream,
which takes approximately 1,5 Gbps of the network bandwidth, or so-called 4K video
stream consisting of four independent uncompressed HD streams (and thus taking ap-
proximately 6 Gbps of the network bandwidth). Besides delivering these streams to ac-

1However, not only passing data processing, as depicted in the Section 10.7.
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cordingly equipped end host(s), it might be desired to distribute them to multiple clients,
even the ones not having sufficient network connectivity. Thus, to make the streams ac-
cessible also for clients with lower bandwidth connectivity, a video down-sampling be-
comes necessary. For example, in the case of distant surgeries, the real-time video has to
be provided to a remote surgeon in the highest quality possible, while a down-sampled
real-time video could be provided to medical students in lecture rooms, even if they do
not offer sufficient connectivity to present the original, high-quality video.

Such multicast-like stream distribution and down-sampling can be provided using the
DiProNN nodes inside the network—see the very similar application example described
in the Section 13.1. If a client is able to specify its transcoding requirements, the down-
sampling can be further performed on a per-client basis, depending on the user’s real
network link capacity.

Figure 10.1: A High Performance Computing lecture taught at the Louisiana State Uni-
versity in Baton Rouge (USA), which has been delivered to the Masaryk University in
Brno using an uncompressed HD video stream and displayed on the SAGE tiled dis-
plays [203].

10.2 High-quality Videoconferences and Multimedia Stream
Compositions

The high-quality videoconferencing is an efficient tool for an interactive scientific collabo-
ration in the research community, especially for researchers separated by a wide distance.
In addition to a visual communication with remote collaborators, the participants of such
a conference can exchange complex high resolution images, e.g., satellite images, com-
puter simulations, microscope views, and complex medical images.

As opposed to the previous section, which focuses on a content delivery from a single
point of interest to multiple clients/auditors (so-called 1:N communication model), dur-
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ing videoconferences the content is delivered from multiple senders to multiple clients
simultaneously2 (the M:N communication model).

Even though a videoconference participant could be able to send the video in a high-
quality, he or she need not be able to receive the streams from the other ones—for ex-
ample, when he or she is connected behind network lines providing a sufficient band-
width for just a single video stream, but which are unable to deliver the amount of data
required by the streams from multiple senders simultaneously. There are two basic possi-
bilities, how to cope with such a situation: first, all the streams might be transcoded into
lower quality, which would, however, result in wiping all the advantages of the high-
quality videoconferences. Thus, the second approach might be more desirable—the cur-
rent speaker could be determined from a set of active participants, whose video stream
could be let as is (or transcoded into a bit lower quality), while the video from the others
could be transcoded into a very low quality. All the streams could be further composed
into a single video stream (see the example in the Section 6.3), which is delivered to the
receivers. This approach reduces the network bandwidth necessary for delivering all the
video streams, while still provides the features of the high-quality conferences. Further-
more, this capability might be also useful when a computing power to decode and play
many simultaneous high-quality streams in the real-time is not available at receivers’
sites.

Figure 10.2: A screenshot of a multipoint H.323 [224] videoconference, where an MCU
unit [280] performs the video transcodings and composition.

For both mentioned situations (in fact, for the video transcoding in general), the pos-
sibilities of the parallel processing, which are provided by the DiProNN, could be very
useful. Inside the node, the received streams could be forwarded to several parallel in-
stances of a single transcoding AP (e.g., on a per client basis), where the down-sampling
takes place. If the data packets contain an information, how they should be processed
(e.g., as defined by a previous AP), the transcoding might be easily performed depending
on client’s wishes. After the transcoding, all the transcoded streams might be forwarded
to another AP(s), where the synchronization and/or final composition might occur.

2Note, that not all the videoconference participants have to necessarily send and receive the video content
at a particular time—some of them may just receive the video streams from all the other participants, and
both send and receive the audio content only.
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Even further, once a DiProNN Program, that provides a composed high-quality video
stream, is created, it might be simply concatenated with the DiProNN Program, that pro-
vides both the high-quality video stream and a down-sampled video stream(s) (as speci-
fied in the previous section). Thus, one can easily choose between the provided streams
depending on the (network) situation, that occurs.

10.3 Multimedia Stream Synchronization

Real-time high-quality multimedia transfers are becoming one of the most important ap-
plications for current high-speed computer networks. Most of the videos are captured in
2D only, meaning that the reality, which has three dimensions (3D), is reduced to a 2D
picture with inevitable loss of some information connected with the depth of the space.
To simulate a 3D environment by a stereoscopic image, two streams must be captured
(and later displayed in a special way), one for each eye. To provide a natural perception,
the quality of the individual streams must be rather high and thus a high-resolution im-
age with a low compression needs to be deployed, which however results in a high data
rate. To remove any unwanted effects on the human observer, both streams have to be
synchronized when displayed.

When transmitting such a stereoscopic video over the IP networks [78], which are
not able to ensure a precise synchronization of the streams, the synchronization must
be enforced externally. One possibility is to synchronize and multiplex both the video
streams at the source and send them in one data (packet) stream. However, processing of
both streams on a single machine might not be feasible depending on a video format used
for the transmission—in the cases of an uncompressed HD video or an uncompressed 4K
video mentioned before, a non-trivial computing power must be available on the machine
to perform such a synchronization.

The second possible approach assumes the synchronization of otherwise indepen-
dently generated and transmitted video streams at some point in the network, which
is close to the display nodes and where a sufficient computing power is available. Such
a synchronizing node could be the DiProNN node running two active programs, which
communicate with each other via the low-latency control interconnection to ensure the
proper streams’ synchronization3. These APs could be further parallelized, if a higher
computing power is necessary (e.g., because of some processing required to be performed
on the streams).

10.4 Real-time Computations for Haptic Interactions

The real-time interaction between humans and computers has become an interesting and
highly challenging area of research during past years. In particular, the connection be-
tween human-computer interaction and computer simulation of biological, chemical, and
physical phenomena is focused by many researchers. The goal is to employ the virtual
reality to perform operations, which are dangerous or impossible in real world. Besides
the visual perception, the haptic (touch) sense is successfully employed nowadays to en-
able the user to touch the virtual objects and scenes in order to get additional information
about the simulated objects and processes (such as forces, torques, etc.).

3However, to enable the synchronization, the video data must be transferred using an application-level
transport protocol, that provides a time-stamping information (for example, the RTP [236]). The synchro-
nization could be then performed in a similar way as described in [78].
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Figure 10.3: An example of a linearly polarized stereoscopic front projection located in
the Laboratory of Advanced Networking Technologies (Faculty of Informatics, Masaryk
University). The bottom picture shows the Paralax setting device (by Apec) and the cam-
eras, which the stereoscopic image is captured with.

A good example is given by a virtual-reality based surgical simulators, which are used
for medical training and operation planning. Here, the user interacts with a virtual model
of an real object via haptic devices with force feed-back, so he or she can directly touch
the virtual object and perform various operations as deforming, tearing, or cutting it. It
is clear that the behavior of the simulated object must be realistic, i.e., the behavior of
the model must be based on physical laws (e.g., the theory of elasticity). The main issue
of an implementation of such a simulator is given by huge computational cost of such a
physically-based object simulation and the stable real-time haptic interaction, when the
response forces must be updated on a high frequency (over 1 kHz).
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Recently, a technique for user interactions with a virtual model of a soft tissue via
a haptic device has been proposed in [83, 210]. The approach is based on distributed
computations and comprises two main procedures running concurrently. The first one
performs massive computations of deformations and forces on a distributed environment
composed of independent servers (e.g., clusters or grids), while the second one delivers
the computed data to a computer running the real-time haptic and visual loops, where the
data are interpolated to obtain the deformations and forces corresponding to the actual
position of the haptic device.

There is quite extensive communication performed within the distributed environ-
ment: the client distributes the work among the servers, whose computations are driven
by the actual position of the haptic device. And vice versa, the servers send the calculated
data to the client, which computes the interpolation. Moreover, the servers could com-
municate among themselves, e.g., to interchange the computed results that can be used
as initial estimation for further computations.

The DiProNN could serve as the computational infrastructure for such an applica-
tion, which prepares the computations of deformations and forces to the clients. Besides
the parallel processing, which is highly beneficial for performing such massive computa-
tions, the Processing Units could further provide some additional functionality for these
applications (so-called solvers), like the ability to perform some processing on the GPU
accelerators [258]. Last, but not least, the DiProNN’s component-based processing can
improve the control over the data flow going towards the client; especially, if large mod-
els containing a lot of data are computed, then the data can be combined and/or filtered
on-the-fly by controlling the proper components (APs) of a particular DiProNN Session.

Figure 10.4: Haptic interactions with a deformable model of soft tissue (human liver)
using SensAble’s PHANToM device with force feedback.
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10.5 Data Encryption/Decryption

A communication among network users, which usually passes through a non-reliable
networking environment, must often be kept confidential and protected from “prying
eyes”—emails, documents, medical records are only a few examples of information that
could be required to be secured. However, not only these examples of a non-realtime
communication requires securing, but also a real-time information, like video/image
data streams during distant medical surgeries, have to be secured as well.

The cryptography [250] is a science of scrambling an original message into a code un-
intelligible to an attacker trying to theft the information4. The cryptography is usually
based on the use of algorithms [190] to encrypt an original message into a ciphered code
as well as to decrypt it on the receiver’s side.

Such encryption/decryption functions, that increase the security of passing (real-time)
data through a non-trusted network environment, belong to another possible applica-
tions of the proposed node. Especially, in cases, when there is a necessity to encrypt/de-
crypt high-bandwidth data in the real-time (like the mentioned high-resolution medical
videos/images)—since most encryption algorithms are fairly complex, an on-the-fly data
encryption/decryption requires great computational power, that need not be available on
the end hosts. Thus, it could be impossible to do such an encryption/decryption using
current commodity PCs in the real-time without additional hardware support.

Even if such a computing power is not available on the end hosts, it might be available
on the specialized processing network nodes, like the DiProNN is. Once the computing
power, which is provided by a single Processing Unit, becomes not sufficient to cope
with an encryption/decryption of such a high-bandwidth data stream in the real-time,
the user is able to let the encrypting/decrypting APs to be processed in parallel, which
can significantly improve the overall performance.

Nevertheless, since the unsecured information, which passes the links between the
sender(s) and the encrypting node as well as between the decrypting node and the re-
ceiver(s), is vulnerable to the thefts, the nodes have to be located as close as possible to
the sender(s)/receiver(s) (to be accessible via a reliable network) or these links have to be
secured in a different way.

10.6 Novel Network Services

As already mentioned before, in current computer networks, the development and de-
ployment of new services is too slow due to best practice and standardization [94]. Thus,
to enable faster and more flexible services’ deployment, the active/programmable net-
works have been proposed—the networks, which enable third-parties (end users, op-
erators, service providers, etc.) to inject application-specific services into the network.
This allows applications to utilize these services to obtain a required network support—
for example, the applications for a multimedia multi-party communication (like reliable
multicast) can be deployed and utilized.

4In fact, the cryptography not only protects the data from a theft or alteration, but it can also be used
for users’ authentication, privacy/confidentiality, integrity, and/or non-repudiation [150]. However, these
features are not so important for the example described, and thus are not taken into account.
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The key challenges for providing such an efficient and scalable reliable multicast ser-
vice5 [170] over a wide-area network include: managing bandwidth utilization of bot-
tleneck links, not overloading the sender with retransmission requests, and keeping the
latencies of retransmissions as low as possible. At the implementation level, these chal-
lenges translate into finding mechanisms for preventing NACK (Negative ACKnowledg-
ment) implosion, distributing responsibility for sending transmissions, and limiting the
delivery scope of retransmitted packets.

The reliable multicast protocols can take advantages of active/programmable nodes
capabilities to combine a reliable multicast processing with the multicast data distribu-
tion tree itself. Such nodes may, e.g., check and eliminate duplicate NACKs to prevent
overloading of the source, cache limited amount of multicast data to reduce the band-
width usage and the latency of retransmissions, and/or detect missing data packets and
generate retransmission requests to reduce the latency of retransmissions as well (lost
packets are detected earlier than the receiver may notice it).

Another example of such novel network services, that could be implemented using
the active/programmable nodes, is caching. In traditional networks, there is a need for
caches located close to the clients to reduce the network traffic as well as time necessary
for information retrieving. Usually, the caches are located near the edge of the network
and/or at strategic points in the network. Using active/programmable networks, the
caching sites can be decided on-the-fly depending on an actual network traffic. The cache
nodes thus can be implemented closer to the clients and can focus on the information re-
quired by the clients at a particular time. The network traffic as well as the information’s
retrieving time thus further decreases.

However, there is one restriction, which slightly limits DiProNN’s usage for deploying
novel network services in comparison with common active/programmable nodes. That
is its unavailability to let the users to use arbitrary pure transport protocols for their
applications—as we discuss in the Section 12.1, the node does not include any service
information into the packets, so that it has to distinguish among the particular flows
according to the information provided by the transport protocols. The users’ applications
are thus required to use just that pure transport protocols6, which the node supports.

10.7 Powerful Computing Platform and Distributed Testbeds

Even thought the DiProNN is primarily intended as a data streams’ processing platform,
it could be also used as a computing and/or testbed platform like the Grids, Clouds, or
PlanetLab are. Thus, the users may use provided virtual computers for computing their
scientific or technical problems, that require a higher processing power than their per-
sonal computer is able to provide. However, in addition to these projects, the DiProNN
can further enable the users to upload arbitrary execution environments (e.g., an OS),
inside which the computing is performed.

Such a DiProNN Session can consist of one or more virtual machines (possibly without
data/control interconnections among them), where each of them contains an application
performing the computing. Once the computing finishes, either just the computed results
or the whole VM(s) can be automatically/on-demand returned to the user.

5Multicast protocols provide a point-to-group communication facility; a multicast protocol is reliable, if
it continues to try to deliver an information until it is received by all members of the group.

6The application-level transport protocols making use of a supported pure transport protocol are not
obviously limited.
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Even further, if the session’s VM(s) have their DiProNN input port(s) defined and
connected to an SSH7 or a VNC8 service running inside, the user is enabled to log into
the particular virtual machine and control the computing by hand. Thus, a variety of
new applications associated with the online computing arises (e.g., distributed testbeds
for novel network services).

7http://www.openssh.com/
8http://www.tightvnc.com/
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DiProNN in Various Virtualization
Systems

So far, we have intentionally omitted any mentions about a concrete virtualization system
suitable for the DiProNN’s implementation. The reason is, that its architecture is general
enough in the sense, that it does not rely on a concrete virtualization system. Even further,
it does not rely on a specific type of the virtualization systems (the platform-level vs.
OS-level vs. process-level VMs, as presented in the Section 2.2)—one thus may choose
the proper virtualization system, which mostly fits all the requirements requested from
the particular implementation. The DiProNN requires just a few basic principles, which
must the employed virtualization system provide—all of them are summarized in the
following section.

Nevertheless, even though the DiProNN does not rely on a specific VMs’ type, it does
not mean, that all its functionalities remain unaffected, once being implemented using
any of them—since each type of the virtualization technique can enrich or reduce its
functionality, the benefits and drawbacks of employing all the three basic virtualization’s
approaches are presented in the Sections 11.2, 11.3, and 11.4.

As already mentioned, not all the node’s units have to use the virtualization—the Dis-
tribution Unit, the Aggregation Unit, and the Control Unit could be implemented using
native, non-virtualized systems without any impacts on the DiProNN’s functionalities
and/or features. The only units, that require to be implemented using a virtualization
system, are the Processing Units, and thus the rest of this chapter focuses just on them.

Finally, let us point out, that all the DiProNN nodes1 in the network do not necessarily
have to be implemented using the same virtualization system. Although different nodes
will not be able to directly cooperate in such a situation (e.g., to perform inter-node VMs’
migrations), this can further enhance the programming flexibility from the user’s point
of view—since the users’ sessions consist of multiple cooperating virtual machines, each
of them could be designed for (and thus require) a different virtualization system. Thus,
the users might be enabled to employ VMs for multiple virtualization systems within a
single session.

1Even further, not all the Processing Units of a single DiProNN node have to be implemented using the
same virtualization system.
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11.1 Required Principles

The Section 2.2 has depicted the general virtualization’s architecture consisting of three
layers—the hardware layer, the hypervisor’s layer, and the virtual machines’ layer. The
hypervisor’s layer provides all the crucial virtualization functions (platform replication,
resource management, etc.) necessary for the proper run of the VMs, which operate on
top of it. However, all the hypervisor’s functionalities as well as all the running VMs have
to be controlled somehow. For such reasons, a specialized console or one of the VMs
(both denoted as the Service Domain within this thesis) usually provide the controlling
functionality of the whole virtualized system.

The Service Domain is booted automatically once the hypervisor boots. It usually
runs a common operating system and has special management privileges—by the use of
hypervisor’s services, it is able to control all the other VMs, manage the amount of hard-
ware resources they are enabled to use, as well as has a direct access to the underlying
hardware.

In the case of DiProNN, the Service Domain is further required to run a set of mod-
ules necessary for the proper functionality of the particular Processing Unit (the VM/AP
Management module, the Control module, the Resource Management module, etc.—see
the Section 4.2). The modules make use of the Service Domain’s services, which is thus
required to provide at least the following set of features:

• VMs’ management – the VM/AP Management module, that runs inside of the Ser-
vice Domain, has to be able to manage all the VMs running on the particular Pro-
cessing Unit. For the basic functionality, it requires the Service Domain to provide
just the functions for starting and stopping the VMs. However, advanced functions,
like VMs’ suspending/resuming and/or (live) migration capabilities, are also very
beneficial.

The managed VMs should be provided in an easily distributable form—for exam-
ple, in the form of a whole “partition” image file or a directory subtree compressed
file. The VMs should be also easily duplicable, since this is required to enable the
DiProNN’s parallel processing (as described in the Section 7.4.1).

• Packets’ forwarding – the Service Domain has to be further able to “see” all the
packets outgoing the VMs (and optionally incoming as well). Such a feature is a
fundamental issue for the dynamic forwarding approach, since the Service Domain
has to be able to ensure the proper delivery of the packets passing among the VMs
(in fact, the APs running inside of them)—as described in the Section 7.3.2, all the
packets coming from a certain port of a particular VM have to be forwarded to an
appropriate port of a (generally different) VM running the subsequent AP(s), so
that the packets might be further processed. Furthermore, if the Service Domain
becomes aware of the whole network traffic within a particular Processing Unit, it
might detect the intrusion attempts of malicious VMs/APs as well.

• Resource management – the Service Domain should be able to allocate the re-
sources requested by the VMs. Moreover, once the resources are distributed among
the VMs, the particular virtualization system has to be able to ensure the proper iso-
lation among the VMs, so that they cannot influence each other during the runtime.
The set of managed resources should cover at least the basic ones—the CPU time,
the memory consumption, the network bandwidth, and the available disk capacity.
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The VMs have to be either limited from being able to consume more resources than
declared, or guaranteed that the requested resources will be always available, or
both. Regarding the resource guarantees, these should be supported by powerful
scheduling algorithms satisfying the requirements given in the Section 9.1.1.

Last, but not least, the Service Domain should be also able to monitor a real usage
of the resources. This information could be either required by sessions’ users, or
used for charging the users for real resources’ consumptions.

• DiProNN services inside of the VMs – besides the described set of the Service
Domain’s services, the particular virtualization system has to enable to run the
APM and PA services inside of the VMs, too. These services should be able to
control/communicate with all of the APs running inside of the particular VM as
well as with the modules running inside of the Service Domain of the particular
Processing Unit.

All these requirements are more or less2 crucial for an implementation of the node—
once a virtualization system does not enable its Service Domain and/or VMs to provide
them, the DiProNN cannot be fully implemented using it. In the following sections, we
sketch the ways, how these functionalities could be implemented in several existing vir-
tualization systems, that have been described in the Chapter 2.

11.2 DiProNN in Platform-level VMs

The platform-level virtualization systems, which provide an illusion of the whole real
machine (computing platform) to the virtual machines running on top of them, are the
primary virtualization systems considered for the DiProNN implementation. These sys-
tems are assumed during all the descriptions given in this thesis, since they provide the
highest flexibility without restricting its features in any way.

As already mentioned during their description, these virtualization systems enable
the node to run user-supplied virtual machines with arbitrary execution environments
running inside of them. Depending on the virtualization system used, the VMs could
be required to be designed for a specific hardware platform (in the case of system-level
virtualization systems) or almost no requirements could be requested from them (in the
case of whole-system virtualization systems, which are more or less able to emulate an
arbitrary hardware architecture).

The platform-level VMs usually implement the Service Domain as a specialized VM
(e.g., the Xen) or a service console (e.g., the VMware), both of which usually run a Linux-
based operating system3 used for controlling both the hypervisor and the guest VMs.
Thus, the DiProNN modules, which are required for the proper functionality of the Pro-
cessing Units, can be run as common Unix/Linux applications inside of it.

2The only less important requirements are the ones related to the resource management—the resource
limitations and resource guarantees. These functionalities are not strictly required for the basic DiProNN
functionality—if a resource management functionality is not available in a particular virtualization system,
the DiProNN will not “only” be able to reserve/restrict resources requested by the users’ sessions.

3The virtualization system is usually created upon an existing, previously installed OS, which further
serves as the Service Domain. However, some virtualization systems (like the VMware ESX Server) are
distributed as a whole—together with a proprietary Service Domain. In spite of this fact, their Service Do-
mains are usually based on the Unix/Linux OS as well—in the case of the VMware ESX Server a customized
version of the Red Hat 7.2 distribution has been used—and/or allow user applications to be run inside of
them.
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Regarding the APM and PA services, which have to run in every VM, these should
be provided for various execution environments (OSs) the users might/want to use—if
a user wants to use an OS/EE, for which these services are not available, he or she has
to implement them (based on the defined API/rules) on his/her own, or ask the node
administrator to implement them. Once the services are available, they must be included
in the VMs and appropriately set—to be started just after the VM boots and to be aware
of all the APs included inside of the particular VM—before being uploaded to the node.

The Service Domains are further responsible for creating a networking infrastructure
on every Processing Unit, so that the running VMs are able to communicate with each
other and/or host’s networking neighborhood. The contemporary virtualization systems
usually provide the virtual networking infrastructure based on the routing, bridging,
and/or NATing mechanisms. Even thought the DiProNN does not require a concrete
mechanism—the employed virtual networking infrastructure could be based on any of
these—several requirements must be satisfied:

1. All the Service Domains must be able to communicate (either directly or via ports’
forwarding4) with all the VMs running on the particular node (even the ones run-
ning on different Processing Units),

2. each VM has to be able to communicate with the Service Domain of the particular
Processing Unit, which it is running in,

3. if possible, the VMs cannot communicate with each other (to provide higher secu-
rity guarantees),

4. the Service Domain must be able to “see” and control all the packets being sent from
the VMs, that run on the particular Processing Unit—it has to be able to read the
source/destination information saved inside of the packets and provide a mecha-
nism to modify packets’ destinations, which is required for forwarding the pack-
ets among sessions’ APs (e.g., using the kernel iptables [15], the ebtables5 fil-
ters [237], etc.).

11.2.1 DiProNN in Xen

As already mentioned, the Xen is an open-source virtualization system for the x86 pro-
cessor architecture, whose performance benefits from its paravirtualization technology
allowing hosted virtual machines to collaborate with the hypervisor to achieve the best
performance.

Even thought the paravirtualization approach requires guest operating systems to be
ported (modified) to be able to run on the Xen, the Xen provides the ability to run an
unmodified guest OS kernels as well. This ability is enabled by the hardware CPU virtu-
alization, which is provided by the already mentioned Intel VT and AMD Pacifica tech-
nologies.

4For example, when the NAT mechanism is used, the VMs are not accessible from outside of the host
(just the Service Domain is). Thus, in the Service Domain, relevant ports and forwarding rules have to be set
during the sessions’ establishment, so that relevant data could be delivered to the APs running inside of the
host’s VMs.

5http://ebtables.sourceforge.net/
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Using the paravirtualization technology, the Xen supports just Unix-like operating sys-
tems (Suse Linux6, Fedora7, Ubuntu8, Gentoo9, etc.) and several specialized execution
environments (the Libra OS [12], the LiquidVM OS [300], the JavaGuest OS [138], the Li-
brary OS [14], the Maestro-VC [154], etc.). With the hardware assisted virtualization, the
Xen further supports unmodified versions of Microsoft Windows10 and other proprietary
operating systems.

The Xen has become the primary virtualization system, which we have used for the
DiProNN’s prototype implementation, and thus is further discussed and subjected to
several performance tests in the following chapter.

Service Domain
The first VM, called domain 0 or dom0 in the Xen’s terminology, is created automati-
cally during the system boot, and has special management privileges. It builds other
VMs/domains (called domUs) and manages their virtual devices. It also performs ad-
ministrative tasks, such as suspending, resuming, and migrating the VMs.

Within the dom0, a process called xend runs to manage the system. The xend is re-
sponsible for managing virtual machines and providing access to their consoles. Com-
mands are issued to the xend over an HTTP interface or via a command-line tool (xm).

Since the dom0 runs a Linux-like OS, all the Processing Units’ modules, that are re-
quired to be run in the Service Domain, could be simply run as common Linux applica-
tions.

VMs’ management
The primary tool for managing the Xen from the console is the xm command. It allows all
the administrative tasks required by the DiProNN, which are summarized in the follow-
ing table:

Action Command

VMs’ startup xm create <domain>

VMs’ stopping xm shutdown <domain>

VMs’ forced stopping xm destroy <domain>

VMs’ suspending xm suspend <domain>

VMs’ resuming xm resume <domain>

VMs’ cold migration xm migrate <domain> <dest_host>

VMs’ live migration xm migrate --live <domain> <dest_host>

Table 11.1: The Xen’s commands for the VMs’ management.

Xen’s domains could be represented as physical disk partitions or disk image files,
both of which contain the root filesystem of the guest operating system. Since the physical
disk partitions are not easy to manage and distribute, the domains’ image files are the best
option for the DiProNN.

6http://www.novell.com/linux/
7http://fedoraproject.org/
8http://www.ubuntu.com/
9http://www.gentoo.org/

10http://www.microsoft.com/
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All the domains are described using configuration files located in the /etc/xen/ di-
rectory, which define all the necessary domains’ parameters, like the domain name, path
to the kernel image, amount of memory and virtual CPUs, network configuration, etc.
For further details about the Xen see the users’ manual [312].

Virtual networking infrastructure and packet’s forwarding mechanism
The Xen supports all the three mentioned virtual network infrastructure mechanisms—
the bridging (which is default), the routing, and the NATing [44]. The mechanism, which
should be used, could be chosen within the main xend’s configuration, located in the file
/etc/xen/xend-config.sxp.

For a DiProNN implementation, the preferred mechanisms should be the bridging or
routing, both of which allow all the VMs (domains) to appear on the network as individ-
ual hosts11. Thus, all the VMs are directly accessible from outside of the particular unit
(especially from all the other Service Domains), while all the packets could be appropri-
ately filtered and forwarded by the iptables or ebtables rules defined in the Service
Domain [238].

Even thought the bridging and routing mechanisms are the preferred ones, there is at
least one situation, when the NATing mechanism could be more suitable—that is the case
of the minimal DiProNN’s architecture (the DiProNN node consisting just from a single
Processing Unit), when the NATing avoids interferences with the external network.

APM/PA services inside of the VMs
Both the APM and PA services should be implemented for all the OSs/EEs being able to
run in the Xen’s domains. The communication between the services and the active pro-
grams running inside of the particular VM could be performed by any form of an inter-
process communication, like (network) sockets, named pipes, message queues, etc. [105,
251]. The communication between the services and the VM/AP Management and Con-
trol modules, which they have to communicate with, could be performed using a stan-
dard network communication (the modules have to be available on a Service Domain’s
well-known port).

Resource management
The Xen’s support to resource limitations, guarantees, and monitoring is quite poor. Out-
side of the box, the Xen is able to limit the amount of memory, which a particular domain
is allowed to consume (the memory parameter in the domain’s config file or dynamically
via the xm command) and limit the amount of the CPU time the domain is enabled to con-
sume (dynamically via the xm command depending on the CPU scheduler used [61, 226]).
The VMs’ networking bandwidths could be enforced externally by the shaping function-
ality of the Traffic Control (tc) tool [42] (available under the Linux OS) in the particular
Service Domain, while a simple resource usage monitoring can be performed using the
Xen’s xentop tool.

Nevertheless, there are some attempts to enrich the Xen’s resource management sys-
tem. For example, in [109], the authors propose the design of a set of primitives address-
ing the problem of the Xen’s performance isolation—the proper accounting technique for
CPU shares considering the CPU times consumed by domain’s device drivers (running
in their isolated driver domains and thus not directly included in the domain’s resource
consumptions). The same authors further propose a novel performance monitoring tool,

11Remember, that the node operates on a private network segment, as mentioned in the Chapter 4.
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called xenmon [110], which reports a detailed resources’ usage of the VMs, and which thus
provides an additional insight into the shared resource access and resource scheduling.

11.2.2 DiProNN in VMware

Regarding the VMware products, the DiProNN could be implemented by more of them.
The most complex virtualization system, which is provided by the VMware, the VMware
ESX Server, is a part of the non-free VMware Infrastructure product, and provides fine-
grained, policy-driven resource allocation mechanisms, resource optimizations, high-
availability assurances, VMs’ migrations, etc. Even thought the VMware Infrastructure
further contains additional services besides the VMware ESX Server (e.g., the VirtualCen-
ter Server, the VMware Infrastructure Client, the VMware High Availability, etc. [308]),
the VMware ESX Server could be used independently on the others, and thus could serve
as a basis for the DiProNN implementation.

The other VMware product, the VMware Server, is a free x86 and x86-64 virtualization
product, which serves as a standalone platform for running multiple virtual machines
on the same host. Even though the VMware Server is mainly dedicated to end users
(focusing on a GUI-based interface), by using the vmrun utility it could be controlled from
the command line as well, and thus becomes usable for the DiProNN as well. However,
it does not provide as many features as the VMware ESX Server does—e.g., it is not able
to perform VMs’ live migrations in any way (although the cold ones are still available).

Similarly to the VMware Server, the VMware Workstation is another VMware’s non-
free virtualization product focusing mainly on the desktop user applications.

All the VMware products support a large variety of guest operating systems, including
both the 32-bit and 64-bit versions of: Windows Server, Windows Vista, Windows XP,
Mandriva Linux12, Red Hat Linux13, Suse Linux, Ubuntu Linux, etc. [307, 310, 311], and
most of the specialized execution environments depicted in the Xen’s section.

Service Domain/Service Console
The VMware ESX Server is currently available in two versions—the ESX Server version,
which includes a built-in Red-Hat Linux-based service console, and the ESXi Server ver-
sion, which does not. Recently, the VMware ESXi Server has been made available for free
(however, the ESX version still remains non-free).

Similarly to the ESXi Server, the VMware Server and the VMware Workstation prod-
ucts are distributed without their own service console. Thus, all of these could be in-
stalled on any Linux-based system14, which then serves as the service console, and which
is able to run all the DiProNN modules necessary.

VMs’ management
The primary tool for managing the VMware ESX Server is the vmware-cmd utility, which
performs various operations on the virtual machines, including registering a virtual ma-
chine (on the local server), setting/getting the power state of a virtual machine, etc. The
basic set of its functions, that are required by the DiProNN, is depicted in the following
table:

12http://www2.mandriva.com/
13http://www.redhat.com/
14These product could be installed on a Windows-based host as well, however, for the DiProNN, the

Linux-based host is more suitable.
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Action Command

VMs’ startup vmware-cmd <vm-cfg-path> start soft|trysoft|hard

VMs’ stopping vmware-cmd <vm-cfg-path> stop soft|trysoft

VMs’ forced stopping vmware-cmd <vm-cfg-path> stop hard

VMs’ suspending vmware-cmd <vm-cfg-path> suspend soft|trysoft|hard

VMs’ resuming vmware-cmd <vm-cfg-path> start soft|trysoft|hard

VMs’ cold migration suspend & resume
VMs’ live migration directly unavailable (by default ensured by the VirtualCenter Server—another

product belonging to the VMware Infrastructure), but available through the
VIMSH scripting [306]

Table 11.2: The VMware ESX Server’s commands for the VMs’ management.

Regarding the VMware Server and the VMware Workstation products, these are con-
trolled by the vmrun utility. The VMs’ management functions satisfying the basic Di-
ProNN requirements are summarized in the Table 11.3.

Action Command

VMs’ startup vmrun -T server -h hostnameOrIP start <vm-cfg-path> nogui

vmrun -T ws start <vm-cfg-path> nogui

VMs’ stopping vmrun -T server -h hostnameOrIP stop <vm-cfg-path> soft

vmrun -T ws stop <vm-cfg-path> soft

VMs’ forced stopping vmrun -T server -h hostnameOrIP stop <vm-cfg-path> hard

vmrun -T ws stop <vm-cfg-path> hard

VMs’ suspending vmrun -T server -h hst_IP suspend <vm-cfg-path> soft|hard

vmrun -T ws suspend <vm-cfg-path> soft|hard

VMs’ resuming common start of a previously suspended VM
VMs’ cold migration suspend & resume
VMs’ live migration not supported

Table 11.3: The VMware Server’s and VMware Workstation’s commands for the VMs’
management.

Every VMware’s domain is described by a VMX file, which contains all its configu-
ration parameters. Similarly to the Xen, all the VMware products are able to run the
domains represented as physical disk partitions or disk image files, and thus similar facts
apply as for the Xen virtualization system.

Virtual networking infrastructure and packet’s forwarding mechanism
For all the mentioned products, the VMware provides bridged, network address transla-
tion (NAT), and host-only networking options to configure the virtual networking. The
bridged and NAT networking mechanisms are more or less the same as in the case of the
Xen, while the host-only networking mechanism creates a network, that is completely
contained within the host computer—it provides just a network connection between the
virtual machine and the host computer (the service console). [307, 310, 311]

Similarly to the Xen, the best option for the DiProNN’s implementation is the bridged
virtual network, which allows all the guest VMs to be directly accessible from outside
of the particular Processing Unit. The usage of the kernel’s iptables or the ebtables
filters to ensure proper packets’ forwarding is also possible within the VMware’s service
console.
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APM/PA services inside of the VMs
The same facts apply as for the Xen virtualization system (see the previous section).

Resource management
The VMware ESX Server excels in this subject—there are many resources [302], that
could be limited, allocated, and/or monitored during the VMs’ runtime. In the VMware
ESX Server, the main tool for managing the CPU, memory, and disk resources is the
vmware-cmd utility, which—by setting defined variables [309]—allows their limitations
and/or allocations. Even thought the variables could be read as well, there is more com-
fortable tool for performing the resources’ usage monitoring, represented by the esxtop
utility.

Against the VMware ESX Server, neither the VMware Server nor the VMware Work-
station provide capabilities for the resource management. Thus, if the resources could
not be managed/monitored externally from the Service Domain (the host OS), there is no
way to provide the resource management by the products themselves.

One could notice, that we have not mentioned the network traffic management for
the VMware ESX Server. The reason is, that there is no way to manage the network
resources throught the vmware-cmd command, since there are no variables allowing to
define the allocations and/or limitations for it [309]15. However, the network resources
in the VMware ESX Server as well as in the VMware Server and the VMware Workstation
products could be managed in the same way as in the Xen virtualization system—by the
Traffic Control utility (tc) from the host OS.

11.2.3 DiProNN in QEMU

As already depicted, the QEMU operates in two modes: in the full-system mode the QEMU
emulates a full system (for example a PC) including one or more processors and various
peripherals, whilst in the user-mode emulation mode it launches just processes compiled
for one CPU architecture on another one. Even thought the node can be based on the
user-mode emulation only (see the Section 11.4 describing DiProNN’s implementation in
process-level VMs), in this section we assume just the QEMU’s full-system mode, which
allows more features and does not restrict the node’s functionalities as compared to the
user-mode.

Nevertheless, the user-mode emulation could be combined with the full-system mode
as well—in such a case, the user-mode emulation can serve for the standalone APs, whilst
the full-system mode for the whole VMs. On the one hand, this can provide lower over-
head necessary for running the standalone APs, while on the other, these APs have to
contain the APM and PA services implemented on their own, similarly as in the case of
process-level virtualization systems.

Since the QEMU is able to emulate many hardware targets (the comprehensive list can
be found in [177]), it represents a very versatile virtualization system enabling the highest
execution environments’ flexibility currently available.

Service Domain
No matter which mode the QEMU runs, each QEMU’s VM contains its own console—
called the QEMU Monitor—through which the particular VM is controlled. By default,
the monitor is accessed from within the guest OS by holding down the CTRL-ALT-2 key

15There are just variables providing statistical information about amounts of data received/transmitted,
amounts of packet received/transmitted, etc. [309]
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combination (and the CTRL-ALT-1 key combination to switch back to the guest OS). How-
ever, this approach is not suitable for the DiProNN, since the VMs have to be controlled
externally from the host OS—the monitor has to be exposed to the host.

Thus, when starting a VM, the QEMU console has to be redirected16 to a network
socket, which could be later accessed from the host’s OS by various applications, like the
telnet or the netcat Linux utilities.

Regarding the host OS, the QEMU can be installed on an existing Linux, Windows, or
MacOS X operating systems. Since the QEMU versions for the Windows and MacOS X
operating systems are just experimental, the QEMU for the Linux OS is the best choice
for a particular implementation. The host’s OS then serves as the Service Domain, which
throught the network sockets controls all the VMs, and further runs all the necessary
Processing Unit’s modules.

VMs’ management
As mentioned before, the QEMU Monitor serves as the main management and monitor-
ing tool in the QEMU. Using various commands the monitor allows to inspect a particu-
lar running guest OS, change its removable media and USB devices, take screenshots and
audio grabs, and control various aspects of the particular virtual machine. The virtual
machines are represented as image files containing the whole guest OS.

Once a virtual machine is started and its QEMU Monitor becomes accessible from the
host’s OS, it can be further controlled through the following set of commands:

Action Command

VMs’ startup qemu -monitor telnet::[port],server,nowait [disk_img]

VMs’ stopping system_powerdown command via the netcat or telnet
VMs’ forced stopping quit command via the netcat or telnet

or kill -9 <QEMU_VM_pid command from the host OS
VMs’ suspending stop command via the netcat or telnet
VMs’ resuming cont command via the netcat or telnet
VMs’ cold migration suspend the VM

migrate file://<file_location> command via the netcat or telnet
qemu -incoming file://<file_location> on the destionation
resume the VM

VMs’ live migration same as the cold one, but without suspending and resuming the VM

Table 11.4: The QEMU’s commands for the VMs’ management.

Note, that for starting the VM, the qemu command serves just for the PC guests.
For non-PC guests, the QEMU has to be started using different commands, like the
qemu-system-ppc command for the PowerPC architecture, the qemu-system-sparc
command for the Sparc32 system architecture, the qemu-system-arm command to sim-
ulate the ARM machine, etc.—see [177].

Furthermore, the QEMU does not directly support the VM’s suspending. The reason
is, that if a whole VM has been suspended, it would has never been resumed, since the
suspending would stop its QEMU Monitor as well. Thus, for “suspending” a VM, the
QEMU emulation could be stopped only, and started (resumed) again later.

16The redirection could be performed by passing the -monitor telnet::[port],server,nowait
option to the QEMU when starting the VM.
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Last, but not least, the QEMU migration process assumes, that the migrated VM’s
image is accessible on both source and destination hosts (located on a shared storage, e.g.
using NFS [244], AFS [52], or DFS [252] services).

Virtual networking infrastructure and packet’s forwarding mechanism
By default, the QEMU uses a completely user-mode network stack that bridges to the
host’s network. Even thought it acts as a firewall and does not permit any incoming
traffic, the appropriate host’s ports could be redirected by the Service Domain to the
guest. However, this user mode network stack is not suitable for a particular DiProNN
implementation, since it does not support protocols other than the TCP and the UDP.

To provide full networking capabilities for a guest OS, the TAP interfaces17 must be
used. Once a TAP interface is created for each QEMU virtual machine before its startup,
the VM creates its own virtual interface and connects it to the created TAP interface (via
the -net nic -net tap,ifname=tap0 options). Then, the traffic flows from and to
the VM could be ensured and/or filtered by the host’s iptables mechanism similarly
as in the other virtualization systems (or, when the interfaces are connected to a bridge,
by the ebtables mechanism as well).

APM/PA services inside of the VMs
The same facts apply as for the Xen virtualization system (see the Section 11.2.1).

Resource management
When starting a VM, the QEMU is able to limit the amount of memory, which the VM
is able to consume (via the -m option), and which can be further checked by the info
mem command and dynamically altered by the balloon <valueMB> command, both of
them sent to the VM’s monitor during its runtime.

Since the running VMs appear as independent processes inside of the host OS, the
other resource limits/guarantees/monitoring depend on the capabilities of the particular
used OS (e.g., CPU limits via the cpulimit utility18, disk bandwidth via the ionice
utility19, etc.).

Regarding the network bandwidth limitations/guarantees, these could be provided
by the tc utility similarly as in the case of both the previously described virtualization
systems.

11.3 DiProNN in OS-level VMs

As mentioned in the Chapter 2, the OS-level virtualization systems provide just an “mul-
tiplication” of an existing system (usually a Unix/Linux-based OS). Although they do
not enable their users to run an arbitrary operating system in the VMs, they usually pro-
vide better performance than the platform-level VMs—these might become useful for a
particular node implementation not requiring arbitrary OSs to be supported.

In these virtualization systems, the Service Domain is represented by the core OS run-
ning on the host system. The host’s OS contains an OS kernel, which provides a kernel
service abstraction layer ensuring the isolation and security of resources among different
VMs (so-called Virtual Environments or Virtual Private Servers). This abstraction service

17http://vtun.sourceforge.net/
18http://cpulimit.sourceforge.net/
19http://linux.die.net/man/1/ionice
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then makes the VEs, which use a relevant part of the host’s OS kernel, to feel and behave
like standalone servers.

The usage of a single kernel for all the VEs consequences in all the benefits and draw-
backs these systems provide. Besides the lower flexibility, which results from the im-
possibility to run an arbitrary OS (both the guest and host OSs must be the same), the
usage of a single kernel further consequences in lower isolation and security capabilities,
as compared to the platform-level virtualization systems—the host OS’s kernel exposes
the same bugs and potential security holes to all the VMs, which can compromise each
other throught them. However, this drawbacks are compensated by a better performance
and a very low overhead, which enables to maximize the usage of underlying system
resources.

Moreover, the OS-level virtualization systems usually provide finer-grained resource
management capabilities than the platform-level ones. This is allowed by the fact, that
every VE is represented by a set of processes, so that the OS’s kernel (which usually
provides some resource management capabilities for the processes) is able to manage the
VEs in a similar way as the native processes.

Concerning the DiProNN’s implementation, the host OS can run all the modules,
which are required for the proper functionality of the Processing Units, as native OS’s
applications. Even though all the VEs share a single kernel, the APM and PA services
need not necessarily be the same for all of them—the VEs can run different distribu-
tions/libraries on top of the unique kernel, and thus might require a slightly different
versions of the services. However, the number of different versions, that should be pro-
vided, is much lower than in the case of the platform-level VMs.

Regarding the networking infrastructure and its features, the same requirements must
be satisfied as for the platform-level virtualization systems.

11.3.1 DiProNN in Linux-VServer

The Linux-VServer technology is a soft partitioning concept based on Security Contexts,
which allows creation of many independent Virtual Private Servers (VPS) (one VPS per
security context), that run simultaneously on a single physical server at full speed, effi-
ciently sharing host’s hardware resources. It is able to run on various HW platforms, e.g.,
the ARM, IA64, x86, x86_64, etc. [298]

The Linux-VServer is based on the Linux OS’s kernel, which is enhanced by OS-level
virtualization capabilities. As already mentioned, the virtual servers (the guests) share
the same kernel—they do not run a kernel on their own (like, e.g., the Xen’s or VMware’s
guests do), which requires them to be based on the Linux OS as well. In spite of this
fact, several Linux distributions are supported by the Linux-VServer—for example, the
CentOS, the Debian, the Fedora, the Gentoo, the Ubuntu, etc.

Service Domain
Once a Linux-based operating system is installed on a machine, the Linux-VServer is in-
stalled as a patch of an appropriate Linux vanilla kernel20 together with the util-vserver
utility dedicated to its management. The original OS thus becomes Linux-VServer’s Ser-
vice Domain—all the modules required for the proper Processing Units’ functionality can
be thus run as common Linux applications inside of it.

20The “vanilla” kernel is an unmodified version of the Linux kernel, released by Linus Torvalds. Each
distribution then takes these vanilla kernels and adds their own type of flavoring (e.g, bug fixes, functionality
enhancements, etc.)
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VMs’ management
In the Linux-VServer, the main VMs’ management tool is the util-vserver utility, which,
besides the others21, includes the vserver command. Even thought the command pro-
vides several functions, just starting and stopping the VPSs are meaningful for the Di-
ProNN (see the Table 11.5).

Action Command

VMs’ startup vserver <vserver_name> start

VMs’ stopping vserver <vserver_name> stop

VMs’ forced stopping not supported
VMs’ suspending not supported
VMs’ resuming not supported
VMs’ cold migration not supported
VMs’ live migration not supported

Table 11.5: The Linux VServer’s commands for the VMs’ management.

Each VPS (VM) is represented by a standard Linux root directory tree, which is located
in a directory of the host OS (the default location is /vservers/<vserverID>/). This
makes the guest systems easy to distribute, e.g., via a compressed file. Finally, the config-
uration files for the VServer guests are located in the /etc/vservers/<vserverID>/
directory.

Virtual networking infrastructure and packet’s forwarding mechanism
The Linux-VServer’s networking is based on an isolation rather than virtualization, so
there is no additional overhead for the passing packets. The isolation is ensured by the
IP aliases [217] mechanism—the host creates several aliases for the particular network
interface(s), throught which the guests are connected to an external network. To ensure
the proper data flows in DiProNN, the iptables mechanism can be used within the
Linux-VServer.

However, since the IP aliases do not allow setting different MAC addresses for the
aliased interfaces, the VPSs’ IPs must be assigned statically (the dynamic address assign-
ments, like the DHCP offers, are not straightforwardly usable).

APM/PA services inside of the VMs
Similarly to the most OS-level virtualization systems, the Linux-VServer allows starting
the commands, which belong to and will run in a particular VPS, from the host OS (from
the Service Domain). Thus, one may consider the APM service useless for these systems,
since all the required APs could be started externally. However, even thought the APs
could be started in such a way, the APM service also performs another functionalities,
which cannot be ensured externally—e.g., the communication with the distribution APs
to control the number of parallel instances of an parallelizable AP. Moreover, the inde-
pendent APM service is much clearer solution than the external APs’ management.

The other requirements as well as services’ communication models are very similar to
the ones described for the platform-level virtualization systems.

21The other commands are the vserver-info command, which gives info about the Linux-VServer pro-
gram itself, the vtop command, which shows the top of all VPSs, the vpstree command, which provides
a tree ps view of processes of all VPSs, and the vps command, which shows processes of all VPSs.
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Resource management
The standard Linux kernel is able to limit various system resources per process. The
Linux-VServer has extended this per process system, so that it is able to provide resource
limits for the whole VPSs, not just single processes. Additionally, several new limits, that
are missing in the standard vanilla kernels, have been introduced.

For example, the Linux-VServer is able to limit the CPU time dedicated to a VPS, the
maximum file size and the maximum number of processes which a VPS is allowed to cre-
ate, the maximum number of opened sockets, etc.22 The resource limits and monitoring
is performed via the procfs [199] filesystem, the traffic management could be provided by
the tc tool, and the disk space limits could be performed by the vdlimit utility23.

11.3.2 DiProNN in OpenVZ

The OpenVZ is another container-based virtualization system for the Linux OS. It is able
to create multiple secure, isolated containers (similar to VPSs in the Linux-VServer) on a
single physical server enabling better server utilization and ensuring that the applications
do not conflict.

Similarly to the Linux-VServer, the OpenVZ is also a modified Linux kernel, which is
enriched by various functionalities. It could be installed on the Fedora Core 3 or 4, the
Red Hat Enterprise Linux 4, or the CentOS 3.4 or 4 distributions24, which are configured
in a certain way (creating a partition for the OpenVZ, modifying the boot loader, etc.).
The OpenVZ is able to run various Linux-based distributions inside of the containers,
e.g., the CentOS, the Debian, the Fedora, or the Ubuntu distributions.

Service Domain
Similarly to the Linux-VServer, the OpenVZ’s Service Domain is the Linux-based host OS
it is installed in.

VMs’ management
The vzctl, the vzquota, and the vzpkg are the basic utilities used for controlling the
OpenVZ. The vzctl is dedicated to perform administrative tasks on the containers (cre-
ate, destroy, start, stop, etc.), the vzquota controls the containers’ quotas, and the vzpkg
is used to work with containers’ templates. Besides these, the vzdump utility can be fur-
ther used to make consistent snapshots of running containers and the vzmigrate utility
for containers’ migrations.

Similarly to the Linux-VServer, the containers are represented by a standard Linux root
directory tree, which is located in the /vz/root/<containerID> directory by default.
The containers’ systems thus could be easily distributed in the form of compressed files
as well. For the sake of completeness, the guests configuration files are located in the
/etc/vz/conf/<containerID>.conf files.

Virtual networking infrastructure and packet’s forwarding mechanism
The OpenVZ provides two mechanisms for networking the guests—the venet (Virtual

22The detailed list of resources, which the Linux-VServer is able to control, can be found at http://
linux-vserver.org/Resource_Limits

23http://linux-vserver.org/Disk_Limits_and_Quota
24Even though the OpenVZ is supported just for the mentioned distributions, its installation on the De-

bian Etch and Lenny distributions is also possible—see http://wiki.openvz.org/Installation_on_
Debian
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Action Command

VMs’ startup vzctl start <containerID>

VMs’ stopping vzctl stop <containerID>

VMs’ forced stopping vzctl exec <containerID> kill -9 -1

VMs’ suspending vzdump --suspend <containerID>

VMs’ resuming vzdump --restore <vz_dumpfile>
<containerID>

VMs’ cold migration vzmigrate <dest_host> <containerID>

VMs’ live migration vzmigrate --online <dest_host>
<containerID>

Table 11.6: The OpenVZ’s commands for the VMs’ management.

NETwork) mechanism, which is more or less similar to the networking mechanism pro-
vided by the Linux-VServer, and a bit newer veth (Virtual eTHernet) mechanism, which
allows more features25.

The former mechanism (the venet) behaves like a point-to-point connection between a
container and the host system. It is a bit faster and more efficient than the veth mechanism,
however, just the OpenVZ host node administrator can assign the IPs to the containers.

Against it, the latter mechanism (the veth) provides Ethernet-like devices, which can
be used inside of the containers. These devices are fully virtualized—they have their own
MAC address, therefore, once the virtual devices are bridged to an external device, the
containers are able to request their IP address, e.g., via DHCP requests.

Regarding the packets’ forwarding mechanism, the venet-based networking allows the
usage of the iptables mechanism only, while for the veth-based networking one may
choose between the iptables and ebtables mechanisms.

APM/PA services inside of the VMs
The same facts apply as for the Linux-VServer (see the Section 11.3.1).

Resource management
In comparison with the other OS-level virtualization systems, the OpenVZ does a very
good job in this area—over 20 crucial resources can be set live, while the VM is running,
or optionally saved to be re-initialized to new values after a reboot [254]. The parame-
ters, which are able to influence both the containers’ limits and guarantees, could be set
globally in the OpenVZ’s main configuration file, separately for each container inside of
its own configuration file, or live from the command line using the vzctl utility. Re-
garding the network traffic management, again, the bandwidth limits could be enforced
externally by the Traffic Control (tc) tool [42] in the OpenVZ.

To monitor resources’ consumptions, the statistics (including the current usage, the
maximum usage, as well as the number of unsuccessful attempts to allocate a particular
resource) can be obtained from the /proc/user_beancounters file. Furthermore, a
number of the memory-related parameters can be monitored by the vzmemcheck utility.

25http://wiki.openvz.org/Differences_between_venet_and_veth
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11.3.3 DiProNN in FreeBSD Jails

An extension of the traditional chroot environment in the FreeBSD OS is the mechanism
of Jails. A jail enables the creation of various different virtual machines, each of them
having their own set of utilities installed and their own configuration. Thus, the processes
running inside of them are isolated and cannot interfere with each other.

Similarly to the other OS-level virtualization technologies, the FreeBSD Jails do not
achieve the true virtualization because they do not allow the virtual machines to run dif-
ferent kernel versions than that one of the base system. Thus, all the VMs are required
to run just the FreeBSD kernel-compatible OSs—in fact, the same FreeBSD OS (even
thought different libraries are possible). However, Linux-based distributions ported to
support the FreeBSD kernel are also possible (e.g., the Debian GNU/kFreeBSD26 and
Gentoo/Alt27 projects).

Service Domain
Similarly to both OS-level virtualization systems described before, the Jails’ Service Do-
main is represented by the FreeBSD host OS.

VMs’ management
Even thought the jails are also able to run a single process only, their ability to behave like
a VM is more important for the DiProNN. Such a jail is bound to a particular file system’s
root having a similar structure as the host OS’s one. Each jail is bound to a single IP
address and (in the default scenario) competes for the host’s HW resources with the host
OS and the other jails.

The jails are controlled by the jail command, which allows several functions related
to their creation and management. The functions, which are important for a DiProNN
implementation, are summarized in the following table:

Action Command

VMs’ startup jail <jailrootdir> <jailhstname> <jailIP> /bin/sh /etc/rc

VMs’ stopping jexec -U root <jailID> /etc/rc.shutdown

VMs’ forced stopping jexec -U root <jailID> kill -KILL -1

VMs’ suspending not supported
VMs’ resuming not supported
VMs’ cold migration not supported
VMs’ live migration not supported

Table 11.7: The FreeBSD Jails’ commands for the VMs’ management.

Similarly to both the previous OS-level virtualization systems, the FreeBSD Jails are
represented by the FreeBSD root directory tree located in the /usr/jail/<jailID>
or /data/jail/<jailID> directories. The jails’ configuration files are located in the
/etc/sysconfig/jail/<jailID> files.

Virtual networking infrastructure and packet’s forwarding mechanism
Similarly to the Linux-VServer, the FreeBSD Jails’ networking is based on the IP aliases.
Thus, similar facts apply as the ones described in the Section 11.3.1.

26http://www.debian.org/ports/kfreebsd-gnu/
27http://www.gentoo.org/proj/en/gentoo-alt/
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However, since the iptables mechanism is unavailable in the FreeBSD, the pack-
ets’ forwarding mechanism should be ensured, e.g., by the FreeBSD’s Network Address
Translation daemon, commonly known as the natd.

APM/PA services inside of the VMs
The same facts apply as for the Linux-VServer (see the Section 11.3.1).

Resource management
The FreeBSD Jails are able to limit the CPU time and the memory usage of the jails run-
ning on the particular system (via the sysctl system utility). The CPU time limitations
are implemented by providing each jail with a number of CPU shares and tracking the
estimated CPU usage of the tasks, that run in that jail. If the ratio of the jail’s estimated
CPU usage to the total CPU usage exceeds the ratio of the jail’s CPU usage shares to the
total CPU usage shares outstanding, the jailed processes have their priorities decreased
until the ratio of actual usage (estimated CPU) drops below permitted usage (shares). In
short, more shares a jail has, more often its processes will run. Unjailed processes do not
subject to this regime.28

Regarding the memory limitations, a kernel thread periodically traverses all the pro-
cesses in the particular jail and sums the amount of memory being consumed by them.
If a memory limitation is set and the jail’s memory exceeds the pre-set limit, the thread
asks the virtual memory system to reclaim some of the memory being used by the jail’s
processes.

11.4 DiProNN in Process-level VMs

The process-level VMs, which provide virtual environments just for particular processes,
do not belong to the primary virtualization systems suitable for DiProNN’s implementa-
tions. They limit most of the presented features, although on the other hand, they slightly
beat the other virtualization systems with the ease of their application. Nevertheless, the
possibility of implementing the node using these systems is mentioned especially because
of interestingness purposes (as a proof for a complete independence on the virtualization
systems) rather than because of its importance.

For the proper functionality, these systems require a single host operating system,
above which all the virtual machines (each of them consisting of a virtual environment
and a single active program) run as common OS’s applications. Since most of the process-
level virtualization systems are implemented for several common OSs, no specialized OS
is necessary. This makes their application a bit easier—once a suitable OS is installed, the
virtualization system is installed into it as a common application without any needs to
modify the OS’s kernel.

The OS then behaves as the “Service Domain”, even though it is not the Service Do-
main in the right sense. In both the virtualization systems’ types described before, the
Service Domain is a part of the virtualization system, both of which run all the time the
node is started. Against it, the process-level virtualization systems do not have their own
Service Domain at all—they are externally controlled (started/stopped) together with a
particular process, which they provide a virtual environment to, from the OS. Thus, no
virtualization system is started, if there is no active program running.

28http://wiki.freebsd.org/JailResourceLimits
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As already depicted before, these virtualization systems provide the lowest flexibil-
ity from the ones mentioned, since they enable the users to upload just standalone active
programs into the DiProNN. These active programs are, as sketched in the previous para-
graph, further provided by their own and complete virtual environment. From the OS’s
view, all the virtual environments (together with the APs running inside of them) then
behave as native OS’s applications.

The security and isolation capabilities are also slightly limited, even though still higher
than in the case of native OS’s applications. The reason is, that all the virtual environ-
ments share the same OS’s kernel, through which a malicious application can compro-
mise the other ones. However, these attacks have to be performed through the virtual-
ization system, which could detect and deny them.

Similarly to the OS-level virtualization systems, one may also consider the APM ser-
vice useless for the process-level virtualization systems—the virtual environments con-
tain just a single active program, which is started and further controlled by the host OS,
and thus the APM has nothing to control. However, similarly to the OS-level VMs, the
contrary is the case—even thought the APM is useless for common APs, it is essential
for the distribution active programs. Nevertheless, the implementation of both the VMs’
services (APM and PA) differs from the previous cases—since the virtual environments
are able to run just a single AP, both the APM service and the PA service thus have to be
implemented as AP’s functions/procedures, which communicate with the appropriate
module(s) running in the Service Domain (the host OS).

Since the process-level VMs behave as common processes from the host OS’s point of
view, they are not provided by their own network stack. Rather, they use the host OS’s
network stack and can be distinguished just by the network ports they use. Thus, the
forwarding mechanism among the VMs is performed by forwarding the packets to the
Service Domain’s IP address and to the relevant VM’s port, that a particular communication
interface is associated with.

Last, but not least, the resource management system of the node based on a process-
level virtualization system depends on the host OS’s capabilities. Since these virtualiza-
tion systems could be usually run upon many OSs, one may use a highly specialized
OS/kernel providing complex resource management functions, e.g., the Rialto OS [136],
the Nemesis OS [172], the QLinux OS [253], the RT-MACH OS [263], the Maruti OS [174],
etc. Thus, fairly complex resource limitations/guarantees could be provided.

Since the implementations based on different process-level virtualization systems dif-
fer just in the execution environments they provide, we do not describe them indepen-
dently as in the cases of platform-level and OS-level ones.

Service Domain
The Service Domain is obviously represented by the host OS, that the VMs run in. Thus,
all the necessary Processing Unit’s modules can be run as native applications inside of it.

VMs’ management
Since the process-level VMs behave as native host OS’s applications, the VMs’ manage-
ment capabilities depend on the capabilities of the particular host OS. Besides the com-
mon functions, like starting and stopping the applications, these could include more ad-
vanced functions, like suspending, resuming, and/or migrating the applications as well
(either as native OS functions or performed by third-party utilities).
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For example, in the Linux OS, which is more or less the preferred host OS for the
DiProNN, the Java programs are started via the java <application> command, the
.NET programs via the ilrun <application> command, etc. Stopping the programs
could be performed by the SIGTERM signal sent to the application (kill -SIGTERM
<ProcessID>), while a forced stopping can be achieved by the SIGKILL signal (kill
-SIGKILL <ProcessID>) [35].

Suspending and resuming the processes could be performed by the SIGSTOP (pause)
and SIGCONT (resume) signals. Such a suspend, however, does not keep the suspended
process’s state between system restarts, and thus much safer suspends could be per-
formed by third-party checkpointing utilities29 (for example, by the CryoPID30 or the
Dynamite checkpointer31), which are able to suspend the process’s state to a file. Such
utilities can further perform process migrations between physical hosts as well.

Virtual networking infrastructure and packet’s forwarding mechanism
There is no need to perform a virtual networking infrastructure for the VMs, since they
behave as native host OS’s applications. Thus, just the host OS’s network stack, which is
later used by all the VMs, has to be set properly.

Regarding the forwarding mechanism, this depends on the capabilities of the par-
ticular host OS as well—for example, in the Linux OS, the mentioned iptables or
ebtables mechanisms could be used.

APM/PA services inside of the VMs
Both the services have to be implemented by the APs themselves—they could be pro-
vided as functions, procedures, or whole classes performing required functionality.

Resource management
As already mentioned in the preamble of this section, the resource management and mon-
itoring features depend on the host OS’s capabilities. Thus, since the VMs behave as na-
tive applications from the host OS’s point of view, the resource management/monitoring
can be provided for individual processes (APs) in a common way.

29http://www.checkpointing.org/
30http://cryopid.berlios.de/
31http://www.science.uva.nl/research/scs/Software/ckpt/



Chapter 12

Evaluation

In general, there are two methods, that could be used for an evaluation of research con-
tributions such as those presented within this thesis—the qualitative and quantitative
evaluation. Since the presented contributions cover mainly the architectural design of
the proposed architecture, the main focus of the evaluation, which is depicted in this
chapter, lies in the qualitative aspects.

Nevertheless, the initial goal of our work is to illustrate the benefits of employing the
virtualization in the active/programmable networks area. Besides evaluating all the ben-
efits, let us also illustrate a single drawback the virtualization yields—the performance
overhead. Thus, to evaluate it together with the performance overhead introduced by the
key forwarding mechanism required by the DiProNN, the quantitative evaluation of the
Xen virtualization system follows in the latter section as well.

12.1 Qualitative Evaluation

This section presents the qualitative evaluation of the proposed programmable node ar-
chitecture. We evaluate the objectives, that we have identified in the beginning of this
thesis and discuss all the contributions the architecture provides.

VM-aware Execution Environment Architecture
This objective aims to improve the EEs’ flexibility and security of such a programmable
node. As already depicted, the employed virtualization makes the DiProNN able to run
the processing applications (active programs) encapsulated in whole virtual machines,
either provided and uploaded by users or provided by the node itself (the built-in VMs).
The users are thus enabled to develop their applications for arbitrary1 execution environ-
ments, while remain able to upload just standalone applications in cases, when these can
make use of the provided built-in EEs.

The security improvements accrue from the node’s ability to encapsulate the appli-
cations inside the VMs. First, the users are allowed to upload their applications encap-
sulated inside the VMs, which provide secure and reliable EEs they trust to—on the as-
sumption, that the VMM behaves correctly, these EEs can be neither accessed by another
users’ applications nor by the node itself in other way than throught the network, which
makes the running applications and/or data inside the EE better secured and less vul-
nerable. And even further, the node provides mechanisms to monitor and forbid the

1As obvious from the previous chapter, the EEs’ flexibility depends on the virtualization system used by
the particular DiProNN implementation.
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undesirable communication among the running VMs, which makes the EEs vulnerable
just throught the defined external interfaces (the DiProNN inputs), not by the co-running
DiProNN applications.

Second, in the case of standalone applications making use of the built-in EEs, these
are always provided with a fresh copy of the particular EE. On the one hand, this makes
them able to obtain administrative privileges in the particular EE, while on the other
they are ensured, that the particular EE has not been altered and/or compromised by a
(malicious) application running there before. Moreover, if the particular implementation
allows more applications to run inside a single VM, every EE is simultaneously shared
just by the applications belonging to the same session2. Thus, the applications are still
able to require administrative privileges in the particular EE, while they remain ensured,
that another user’s application, that has obtained the administrative privileges as well,
cannot easily affect/compromise them.

The third security improvement must be considered from the node’s point of view.
Since the node’s control plane, which runs inside a privileged VM (the Service Domain),
is isolated from the users’ applications as well, it cannot be affected/compromised by
malicious users’ applications, even thought these have received administrative privileges
inside their EEs.

Even thought the common active/programmable nodes attempt to provide similar
features, these are usually achieved as a trade-off between the programming flexibility
and the architecture complexity. Against it, the VM-based systems have, in general, a
significant security advantage over such traditional systems—the VMMs can be made
simple3, which can make them easier to verify and debug, and subsequently, less error-
prone [134, 181] than conventional general-purpose operating systems, which the com-
mon active/programmable nodes usually rely on.

Nevertheless, as discussed in the motivation chapter, the employed virtualization also
introduces a performance overhead, which is apparent especially on the I/O communi-
cation (see the tests presented in the following section). Thus, to cope with these issues
we have sketched a design of a HW-accelerated network card suitable for its application
in the DiProNN, which can reduce the network I/O overhead as low as possible. Un-
fortunately, the card has neither been designed in detail nor implemented yet, since the
Liberouter project, with whom we have cooperated on the card’s design, currently copes
with higher-priority challenges (especially with finishing the NetCOPE platform, which
the card relies on).

Component-based programming
The proposed programming model, which has been presented in the Chapter 6, assumes
the applications consisting of several APs and data flows among them defined. As re-
sults from the previous paragraphs, the APs might be developed for any supported plat-
form/EE and uploaded into the node either encapsulated inside a VM or not.

2Because of performance reasons, the particular implementation might decide to run applications from
different sessions in the same EE. However, in this case, the particular EE has to monitor the proper applica-
tions’ behavior, so that they cannot affect/compromise each other.

3The VMMs are relatively simple programs (for example, the Disco VMM has only 13 thousand lines of
code [43], while, e.g., the Windows Server 2003 OS has about 50 million [182], the Fedora Core 3 OS about
70 million [13], and the Debian Etch OS even about 283 million [13] lines of code) with narrow, stable, and
well-defined interfaces to the software running above it. Unlike traditional OSs, which have to support
filesystems, network stacks, etc., the VMM “only” needs to present relatively simple abstractions, such as
a virtual CPU and memory [97]. However, since many modern VMMs are much larger and more complex
than it is required, they suffer from security vulnerabilities as well—see studies published in [81, 206].
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The data flows among the APs are ensured using common network services—using
standard network communication, which does not require the APs to support proprietary
communication solutions/interfaces, and which further allows them to be distributed
across several virtual machines and/or physical nodes/units. As soon as the APs’ inter-
faces, which they want to communicate with, are associated with relevant network ports
(see the static and dynamic ways of interfaces’ association described in the Section 7.3.2),
the data flows among them could be also ensured in two discussed ways—again, the
static one and the dynamic one.

The DiProNN employs the dynamic flows’ forwarding mechanism (all the APs send
the data to a specific inter-mediator, which forwards the data to subsequent APs/receivers
according to the defined communication channels), which allows the users to dynam-
ically change the processing applications without any needs to restart them as well as
which enables the inter-node VMs’ migrations to perform high-level resource manage-
ment. Even thought the interventions to the passing data streams are necessary, these do
not introduce any overhead, as illustrated in the Section 12.2.4.

Possibilities of Parallel/Distributed Processing
As depicted within the motivation chapter, this objective aims to propose such a pro-
grammable node architecture, which allows to distribute both the processing and net-
work load, so that it becomes able to process higher amounts of data in real-time. In
DiProNN, such a load distribution is supported by both the parallel and distributed pro-
cessing.

In terms of DiProNN, the parallel processing means a simultaneous processing of an
intended active program onto several Processing Units. Once such a processing is re-
quired, the virtual machine, inside which the intended AP runs, is multiplied and de-
ployed across specified number4 of Processing Units. The distribution active program,
which must precede every parallelizable AP, then distributes the incoming data over
these parallel instances, which process them. From the user’s point of view, there is no
need to adapt the APs to support such a parallel processing; the only need is the nature
of the data being processed, which have to be separable into independent data blocks, so
that they can be spread over the parallel instances and processed independently on each
other.

The parallel processing (and in general, any control communication among the APs)
is further supported by possibilities of low-latency communication among the instances,
which makes them able to synchronize and/or signalize any events. Again, the APs need
not be adapted to utilize the low-latency interconnection in any way—once they register a
particular communication channel as a control one, they are able to send the low-latency
messages in the same way, as they do for the data ones.

The distributed processing in terms of DiProNN then means splitting of the intended
application (the DiProNN Session), which consists of several APs, into multiple subses-
sions, which are independently processed on the relevant nodes in the network. Such a
distribution can (along with the component-based applications’ design) either allow the
resource-demanding sessions to reach an additional computing power, which a single
DiProNN would have been unable to provide, or ensure a more effective usage of the
underlying network (see the “Fine-grained Resource Management System” subsection).
However, the sessions cannot be splitted arbitrarily—as specified in the Section 8.1.3, the

4The number of parallel instances could be either fixed (specified by the user) or varying in time—the
DiProNN is able to adjust the number of parallel instances depending on the actual amount of data, that are
requested to be processed (see the Section 7.4.1.
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scheduler, which decides about the distributed processing, must consider several con-
straints that have to be satisfied.

Fine-grained Resource Management System
The DiProNN’s resource management system consists of a set of Resource Management
modules, which run on the particular units, and which provide relevant information
about the intended resources to the DiProNN Resource Management module, that man-
ages the information about the resources throughout the node. As depicted in the pre-
vious chapter, the managed resources depend on the particular virtualization system,
which is used for DiProNN’s implementation.

The proposed node does not provide the resources to individual APs, as the common
active/programmable nodes do. Rather, the resources are provided to individual VMs
only—as described in the Section 3.1, this allows all the AP’s and EE’s processes, that
belong to a particular user and/or imply from actions performed by his/her APs, to en-
capsulate into a single VM. From the VMM’s point of view, such a VM then behaves as a
single entity, which makes use of defined interfaces, through which it uses the provided
resources. This makes the resource management and monitoring significantly easier and
more precise [109] in comparison with traditional computing systems—as already de-
picted, the VMM provides significantly less interfaces and is considerably smaller and
simpler than general-purpose OSs [58].

Nevertheless, if a fine-grained RMS—fine-grained in the sense, that the resources
could be reserved for individual APs—is desired, one is still able to encapsulate each
AP inside its own VM, which is further provided by the resources requested by that AP.

The encapsulation further allows the node to perform VMs’ migrations—moving a
VM from one physical host to another. Such migrations are an essential feature for a
high-level resource scheduling—a VM could be migrated to a different DiProNN’s unit
because, e.g., a less used unit is available, or because there is a need to gather the less-
demanding VMs, so that a resource-consuming one(s) could be deployed. Besides such
intra-node migrations, the DiProNN supports the inter-node migrations as well—moving
a VM from one node to another. These migrations, which are enabled by the employed
dynamic data forwarding mechanism, could be beneficial either from similar reasons, as
the intra-nodes migrations are, or because of better and/or more effective usage of the
network (e.g., the session distributes the incoming data and most receivers are located
nearer a different node). In both cases, the principle called live migrations [64] could be
used—a VM is migrated without any needs to pause it, so that the end-user applications
need not notice them (except situations when the user wants to be informed about such
events).

Besides the resource reservations, the employed virtualization allows the DiProNN
to support VM-based resource guarantees as well. However, these require the partic-
ular virtualization system to provide powerful scheduling algorithms satisfying several
assumptions, which have been discussed in the Section 9.1.1. Moreover, in the case of dis-
tributed sessions’ processing, the DiProNN’s resource guarantees have to be supported
by appropriate services, which are able to guarantee common networking parameters on
the public networking infrastructure.

Flexible Data Transmission Protocol Architecture
As already discussed in the Section 3.2.5, the common active/programmable nodes usu-
ally operate just on top of the Network layer of the ISO/OSI Network model and include
all the necessary service information, which (among others) serves for distinguishing
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among the sessions and their flows, just behind the packets’ IP header. This makes them
able to support arbitrary pure transport protocols.

As opposed to it, the DiProNN does not insert any service information into the pack-
ets. On the one hand, this does not introduce any overhead related to wasting the band-
width on the service information, but on the other, this requires the DiProNN to rely on
an information provided by the transport protocols used—in particular, on their multi-
plexing feature discussed in the Section 5.1. Otherwise, the node would have been able
neither to distinguish among the sessions’ data flows nor to ensure proper communica-
tion channels among the APs.

This requires the transport protocols, that the DiProNN users want to use for their
applications, to be supported by the node. Nevertheless, this restriction relates just to the
pure ones, since the application-level ones, which make use of an underlying supported
pure transport protocol, are not obviously limited.

12.2 Quantitative Evaluation

As the Chapter 10 depicts, there are many applications, that might be performed on the
active/programmable nodes like the DiProNN is. In general, these applications could be
divided into the CPU intensive applications (the ones, that require/produce a negligible
amount of input/output data, above which they perform huge computations), the CPU
and I/O intensive applications (the ones, that besides the computations require/produce
a reasonable amount of input/output network data or that perform a reasonable number
of disk operations), and the I/O intensive applications (the ones, that require/produce
huge amount of input/output network data or that perform many disk operations).

To illustrate the real virtualization’s performance overheads for each mentioned kind,
we have performed several tests that are presented in the following sections. Moreover,
the overhead introduced by the forwarding mechanism, which the DiProNN relies on, is
analyzed in the Section 12.2.4 as well.

12.2.1 Experimental Setup

In order to perform the evaluation, we have set up a testbed consisting of two physi-
cal machines directly interconnected with 10 Gigabit Ethernet link. The hardware and
software configuration of the machine, that has run the Xen virtualization system, is de-
scribed in the Table 12.1 and 12.2 respectively. The machine has been set in the dual-boot
mode—one system has run the Xen5 virtualization system (version 3.4.0), whilst the other
has run native Linux OS (for the purposes of better expressiveness, with the same kernel
version as the Xen system has run).

The hardware and software configuration of the other machine, that has been used for
network measurements as a data generator and analyzer, is described in the Table 12.3.

12.2.2 CPU and disk I/O Performance Overhead Tests

12.2.2.1 Test’s methodology

As already depicted, the goal of this test is to check, whether the virtualization introduces
an overhead for the CPU and/or disk I/O intensive applications. For the tests, we have

5http://www.xen.org/
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Configuration

Motherboard SuperMicro X7DBR-i Rev: 1.01
Processor 2× Dual-Core Intel Xeon 3.0 GHz
Memory 4 GB (Kingston 2RX4 PC2-5300F)
10GE NIC Myricom Myri-10G, type 10G-PCIE-8A

firmware 1.5.0, jumbo frames enabled

Table 12.1: Hardware configuration of the VM host node.

Native Linux Xen (version 3.4.0)
dom0 domUs

Operating system Ubuntu 7.04 Ubuntu 7.04 Ubuntu 7.04
(Feisty Fawn) (Feisty Fawn) (Feisty Fawn)

Kernel version 2.6.18 SMP 2.6.18 SMP 2.6.18 SMP
CPUs 4 2 1
Memory 4 GB 2 GB 512 MB

Table 12.2: Software configuration of the VM host node.

used two applications with different proportion of the CPU and disk I/O-intensive be-
havior (namely, the POV-Ray6 and the Gaussian7 [92]) and measured the time necessary
for computing the results under various conditions.

In order to evaluate the overhead, we have run the applications in the native Linux
OS at first. After that, the same tests have been run in a Xen’s VM, where—besides the
time necessary for computing the results—we have also measured8 the CPU load of the
Service Domain (so-called dom0) to observe, how much does the VM’s CPU load affect
the dom0.

6http://www.povray.org/
7http://www.gaussian.com/
8For the CPU’s load measurements, the xentop tool, which is a standard Xen’s replacement of the top

command, has been used.

Configuration

Motherboard TYAN Thunder n6650W (S2915)
Processor 2× Dual-Core AMD Opteron 2.6 GHz
Memory 4 GB (Kingston KVR667D2S4P5/1G)
10GE NIC Myricom Myri-10G, type 10G-PCIE-8A

firmware 1.5.0, jumbo frames enabled
Operating system Ubuntu 7.10 (Gutsy Gibbon)

kernel 2.6.24 SMP

Table 12.3: Hardware and software configuration of the generator/analyzer machine.
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During the tests, the Xen’s primary Credit scheduler9 has been used—the weight and
cap values for both the dom0 and the VM have been set to default values (256, resp. 0).
All the tests have been performed three times—the results, that are summarized in the
Table 12.4, then represent the average values measured.

POV-Ray
The POV-Ray (Persistence of Vision Raytracer) is a software tool originally dedicated for
creating three-dimensional graphics. Nevertheless, it is often used for CPU benchmark-
ing as well, since it performs negligible number of I/O operations, but performs huge
computations—there is a standard scene (benchmark.pov) explicitly intended for such
a benchmarking.

For the tests, we have used the version 3.5 of the intended benchmark and using the
benchmark.ini file we have instructed the POV-Ray to compute the scene of the size
640x480 pixels. The version of the POV-Ray, that has been used, was 3.6.1.

Gaussian
The Gaussian is a package of programs based on basics of quantum mechanics. It origi-
nally serves to predict the energies, molecular structures, and vibrational frequencies of
molecular systems, along with numerous molecular properties derived from these basic
computation types. Similarly to the POV-Ray, it is also often used for the benchmarking.

The presented tests have been performed using the Gaussian version G03.E01. We
have used two supplied test files—the test497, which computes NMR chemical shifts
of a small molecule, and the test540, which computes forces affecting the nuclei as well
as vibration frequencies. Whilst the test540 is mainly CPU-intensive performing a low
number of I/O operations (it produces about 68 MB of temporary data during the test),
the test497 creates lots of temporary files and thus behaves both CPU & I/O-intensive
(about 1.4 GB of temporary data is saved and further read during the test).

native Linux Xen
runtime runtime dom0 CPU load

[sec] [sec] [%]

POV-Ray 1575 1576 0.84

Gaussian
test497 356 423 9.94
test540 1087 1108 1.67

Table 12.4: The comparison of tested applications’ runtimes within virtualized and non-
virtualized environments.

12.2.2.2 Results discussion

The results, which are summarized in the Table 12.4, indicate, that in the case of pure
CPU-intensive applications, the virtualization (Xen) introduces a negligible overhead as
compared to the native OS. Nevertheless, once the number of I/O operations increases,
the overhead is more perceptible—it is evident on both the Gaussian’s increased runtimes

9http://wiki.xensource.com/xenwiki/CreditScheduler
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as well as on the increased Service Domain’s CPU load10, which has to intervene every
I/O operation. In the case of I/O intensive applications, this overhead significantly in-
fluences the applications’ performance (for more details, see the tests published in [60]).

12.2.3 Network Performance Overhead Tests

12.2.3.1 Test’s methodology

This test aims to illustrate the overhead introduced by processing the network flows in
the Xen VMM. Even thought there have been many Xen’s network performance-related
studies already published (e.g., [18, 19, 60, 191, 281]), as far as we know, no one has
performed the measurements using the 10 Gigabit Ethernet network with jumbo frames11

enabled yet. Thus, since such an interconnection is the advisable one for the DiProNN’s
internal data interconnection, we have performed a set of tests illustrating the achievable
network throughputs in such an environment.

The overhead has been measured both for the flows passing throught the user do-
main12 as well as for the one-way ones (again, both in the native Linux OS and the Xen
VMM). The measurements cover the pure network throughputs without any additional
computations performed. For the measurements covering the network performance com-
bined with intensive CPU computations under various conditions (different schedulers,
different proportions of CPU times assigned to the domains), let us refer you to our com-
prehensive measurements published in [226] or to the measurements published in [61].

To measure the throughput, latency, and jitter, the tool called generator7 has been used.
The generator7 is a UDP packet generator and receiver based on our previous implemen-
tation of the RTPgen/RTPsink toolset [120]—the generator7 uses RTP-like time-stamps and
sequence numbers to measure the bandwidth, packet loss, latency, and jitter of the com-
munication (the jitter is measured according to the methods described in [236]). Similarly
to the previous measurements, the dom0’s CPU load has been monitored in one-second
intervals using the xentop tool. For each measured packet size13 we have been exploring
the maximal throughput, that could be achieved without any losses in the data stream.
All the tests have lasted 60 seconds and have been performed three times—again, the
presented results represent the average values measured.

During the measurements, the Xen has been set in the routed network mode, the Credit
scheduler with default weight and cap values for both the running domains (dom0 and
measured VM) has been used, and the network buffers have been set to 16 MB. As sug-
gested14 by Myricom, to achieve better performance the 10 GE NIC’s interrupt coalescing
value has been further increased15 to 200µs (the default is 75µs).

10Note, that the dom0’s CPU load measurements have been influenced by the load monitoring itself, which
has been performed within the Service Domain.

11For the measurements, we have set the MTU to 9000 B and measured the throughputs for the packets up
to 8800 B of size (not including the IP and Ethernet headers).

12In the case of passing throughput measurements, the data flows have been returned to the sending
machine by a simple application-level tool, that we have created.

13In the range from 100 B to 1500 B, the measurements have been performed in 100 B intervals, while in the
range from 1500 B to 8800 B in 200 B intervals.

14http://www.myri.com/serve/cache/570.html
15Command: ethtool -C <device> rx-usec <value>
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Figure 12.1: The comparison of network performance in the native and virtualized sys-
tems (throughput and delay).

12.2.3.2 Results discussion

The graphs in the Figures 12.1 and 12.2 show the maximal throughputs and correspond-
ing RTT delays and jitters achieved during the measurement. In the case of one-way
flows, the graphs show just the average values of the results, that have been measured
for both directions, and because of desynchronized clocks on both the machines, the RTT
delay and jitter values are presented just for the bi-directional flows.
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Figure 12.2: The comparison of network performance in the native and virtualized sys-
tems (jitter).

The results indicate the significant loss in throughput and corresponding increase of
the end-to-end latency in the case of the virtualized system’s test. Moreover, the virtual-
ization’s overhead can be further observed in the high utilization of the dom0, which has
to handle all the packets within the VMM (see the Figure 12.4).

As we have already depicted, even thought the overhead is rather high, we have de-
cided not to restrict the DiProNN’s design to current issues in the virtualization sys-
tems, since we believe, that they will be solved in close future. Moreover, if one re-
quires higher network performance, another virtualization system could be used for its
implementation—for example, an OS level one which on the other hand, however, leads
to lowering the node’s EEs flexibility.

12.2.4 DiProNN Forwarding Mechanism’s Tests

12.2.4.1 Test’s methodology

In this case, the performance overhead of the DiProNN’s forwarding mechanism per-
formed by the kernel Netfilter16 (also known as iptables [15]) has been studied. The
tests have been performed in exactly the same scenario as the ones being described in the
previous section, however, the flows outgoing the VM(s) have been directed to the dom0,
where they have been forwarded to the receiver according to the defined iptables
rules17.

16http://www.netfilter.org/
17Nevertheless, in the case of one-way tests performed in the direction from the sender/analyzer machine

to the VM, the flows have been obviously forwarded in the opposite direction.
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Figure 12.3: The comparison of network performance in the case of direct access and
iptables forwarding (throughput and delay).

12.2.4.2 Results discussion

The Figures 12.3 and 12.4 clearly indicate, that there is no appreciable performance over-
head introduced by the use of the Netfilter—neither the bandwidth measurements, nor
the timing ones indicate any degradation of the flows’ processing (in fact, except of a
bit smoother behavior). The achieved results conform to more comprehensive Netfilter
studies [124, 219] performed on native Linux OSs.
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Figure 12.4: The comparison of network performance in the case of direct access and
iptables forwarding (jitter and dom0’s CPU load).

The CPU load of the dom0, which performs the forwarding itself, has been monitored
as well. Nevertheless, neither this measurement indicates any affects on the dom0’s load
(anyway, if there are some, these are hidden in the fluctuations related to the computa-
tions, that are required by handling the VM’s network flows).
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Usage Example

To illustrate the possibilities of DiProNN’s usage, we have built a processing infrastruc-
ture consisting of four nodes located in Brno, Liberec, Pilsen, and Prague (see the Fig-
ure 13.1). The nodes, which have been set using the DiProNN’s minimal architecture
possible, and whose configuration is depicted in the Table 13.1, have been interconnected
with 1 GE network links provided by the public networking infrastructure.

Figure 13.1: The DiProNN nodes used for the processing infrastructure (red dots).

The infrastructure is intended to provide a multimedia stream distribution and pro-
cessing platform for applications required by the “Multimedia transmissions and col-
laborative environment” research group of the Cesnet association. However, since the
service utilities, which serve for nodes’ configuration and sessions’ establishments (up-
loading, starting, setting, and destroying the APs/VMs), have not been implemented yet,
the whole configuration has been performed manually.

151
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Configuration
Brand Supermicro
Model X7DBR-i Rev: 1.01
Processor 2× Dual-Core Intel Xeon 3.0 GHz
Memory 4 GB DIMM DDR2
GE NIC 2× Intel PRO/1000 Network Adapter
Operating system Linux Ubuntu 7.04 (Feisty Fawn)

Xen version 3.4.0
kernel 2.6.18-xen SMP

Table 13.1: Configuration of the DiProNN nodes, which the processing infrastructure is
built from.

13.1 Sample Scenario

Situation: To demonstrate a potential usage, we have simulated a presentation taking
place in Brno, which had to be also available for the auditors not being able to attend
it personally. For the clients with a high-bandwidth network connection, the presenta-
tion had to be available in a high-quality HDV stream (generated in Brno using an HDV
camera1), while for the clients located behind low-bandwidth network lines, it had to be
transcoded into a lower quality in the real-time. Both the high-quality and low-quality
streams had to be saved for later purposes as well.

Since the video transcoding takes some time, at least a synchronization of the audio2

and transcoded video streams must be performed. Nevertheless, to prevent network
fluctuations and thus their possible desynchronization, the synchronization of the origi-
nal audio and video streams is also very desirable.

However, it is important to point out, that the synchronization of the original audio
and video streams has to be performed because of one another reason: the HDV stream
outgoing the HD camera has been delayed by approximately 1 second by the camera it-
self, while the audio stream has been captured by a standalone audio grabber device with
the latency in order of tens of ms. Thus, both these streams have had to be synchronized,
even if the network itself had not desynchronized them.

For the described situation, we have established a session, whose DiProNN Session
Graph and relevant DiProNN Program are depicted in the Figures 13.2 and 13.3. Both
the audio and video streams have been sent to the node located in Brno (the V_in in-
put for the video stream and the A_in input for the audio stream), where they have
been duplicated (the Dup_A AP for the audio stream’s duplication and the Dup_V AP
for the video stream’s duplication). One twinstream (audio and video) has been sent to
the Prague node (the high-quality one), while the second one has been forwarded to the
second VM running on the Brno node for the transcoding (the TranscodeAP), and after-
wards sent to the Liberec node. Subsequently, both twinstreams have been synchronized
(the Sync_high and Sync_low APs) and duplicated once again (the Dup_high and
Dup_low APs). These latter twinstreams have been sent to the Pilsen node and saved

1For our experiments, we have used the Sony HVR-Z1R camera.
2As results from the composed DiProNN Session, the audio stream was not transcoded during the exper-

iment, since it does not require as high network bandwidth as the video stream does.
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for later purposes (the Saver_high and Saver_low APs), and to the reflector appli-
cations [121], which have served as content providers for the clients (both of them have
provided a single DiProNN input port for registering the clients and two DiProNN out-
put ports for sending the data).

Figure 13.2: The DiProNN Session Graph describing the example scenario.

The original video stream has been transferred in the HDV format [101], which has
taken about 25 Mbps of the network bandwidth. It has been captured, played as well as
transcoded by the VLC media player3—regarding the transcoding itself, the input HDV
stream has been transcoded into the MP2V format with a variable bitrate (set to 256 Kbps)
and scaled down to 25 % of its original size. The audio has been captured and played by
the RAT application4, which has been set to the Linear-16 codec and the 16 KHz stereo
mode (thus taking 512 Kbps of the network bandwidth). Both streams have been syn-
chronized using our application presented in [78], and saved in a simple packet form by
a saving application5, which we have created during our previous experiments.

The overall client’s setup (located in Brno) is captured in the Figure 13.4, while a detail
of client’s screen is captured in the Figure 13.5. The client has been connected to both the
high-quality and low-quality content providers, and thus the figure further shows the
high-quality stream’s bandwidth (which has taken about 30 Mbps including the pack-
ets’ headers), the low-quality stream’s bandwidth (about 820 Kbps including the packets’
headers), and the latency introduced by the transcoding itself (visible on the streamed
clocks—roughly about 1 second). The sizes of the saved files containing 20 minutes of
the streams, have been 3,2 GB for the high-quality video stream, 103 MB for the trans-
coded video stream, and 79 MB for the both the high-quality and “low-quality” audio
streams (as depicted before, the audio stream has not been transcoded).

3http://www.videolan.org/vlc
4http://mediatools.cs.ucl.ac.uk/nets/mmedia
5The application saves the whole UDP packet’s content together with a timestamp information into a file.

We have also created a player capable of reading such a file content and sending it to the network like it
would have been sent in the real-time.



CHAPTER 13. USAGE EXAMPLE 154

# some session’s parameters
{ AP name="Dup_V" ref="DiProNNservice.duplicator";

inputs = V_in(DIPRONN_INPUT(10000));
# requested DiProNN video input port is 10000

outputs = output1(Sync_high.in1), output2(Transcode.in);
}
{ AP name="Dup_A" ref="DiProNNservice.duplicator";

inputs = A_in(DIPRONN_INPUT(10002));
# requested DiProNN audio input port is 10002

outputs = output1(Sync_high.in2), output2(Sync_low.in2);
}
{ AP name="Transcode" ref="DiProNNservice.transcoder";

inputs = in;
outputs = out(Sync_low.in1);
output_format = "mp4v";
bitrate = "variable(256)";
scale = "0.25"

}
{ AP name="Sync_high" ref="DiProNNservice.syncer";

inputs = in1, in2;
outputs = out1(Dup_high.in1),out2(Dup_high.in2);
precision = 0.001; # 1ms

}
{ AP name="Sync_low" ref="DiProNNservice.syncer";

inputs = in1, in2;
outputs = out1(Dup_low.in1),out2(Dup_low.in2);
precision = 0.001; # 1ms

}
# Dup_high and Dup_low defined similarly as Dup_V and Dup_A
...
{ AP name="Saver_high" ref="DiProNNservice.saver";

inputs = in1, in2;
output_file = "stream_high.dump";

}
{ AP name="Saver_low" ref="DiProNNservice.saver";

inputs = in1, in2;
output_file = "stream_low.dump";

}
{ VM ref="my_VM.img";

{ AP name="Reflector_high" ref="reflector";
inputs = in_V, in_A, reg_in(DIPRONN_INPUT(12345));
outputs = video_out(DIPRONN_OUTPUT(PASSTHRU)),

audio_out(DIPRONN_OUTPUT(PASSTHRU));
}

}
{ VM ref="my_VM.img";

{ AP name="Reflector_low" ref="reflector";
inputs = in_V, in_A, reg_in(DIPRONN_INPUT(12354));
outputs = video_out(DIPRONN_OUTPUT(PASSTHRU)),

audio_out(DIPRONN_OUTPUT(PASSTHRU));
}

}

Figure 13.3: The DiProNN Program describing the example scenario.
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Figure 13.4: Client side setup.

Figure 13.5: Client side’s screenshot. The clocks’ difference shows the latency introduced
by the transcoding itself (roughly about 1 second).
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Conclusions

Even thought the primary idea behind the active/programmable networks was to enable
a fast deployment and customization of novel network services, throughout the years,
they have also emerged into a suitable mechanism for intra-network stream processing
services—for the services, that require some (usually real-time) computations to be per-
formed over passing data streams, which cannot be achieved and/or are not efficient on
the end-hosts. Nevertheless, in the recent years, the active/programmable networks are
slightly losing momentum—many research teams have moved their focus into another
areas, more or less related to the processings in the network. This fact is not implied
by a lose of interest for the intra-network stream processing—the needs for an available
stream processing power, which is accessible within the network for the end-users, still
remain [1, 99, 249, 304]—but, as we assume, especially by their insufficient flexibility in
terms of execution environments, that the proposed nodes are able to provide (the users
are forced to create their active applications only for defined, usually highly specialized
EEs), and weak security guarantees (as we have mentioned previously, the security guar-
antees are, if any, usually achieved to the prejudice of the programming flexibility).

In this thesis, we have adduced the possibilities of improving these weaknesses. We
claim, that the use of virtualization can not only enrich the flexibility of the active/pro-
grammable nodes’ EEs, but can further provide another useful features, like strong isola-
tion among the running applications and simpler attainability of robust security guaran-
tees (both from the users’ and nodes’ point of view). Moreover, since the users are strictly
isolated within the EEs running in the VMs, they could be provided with administrative
privileges without any degradation of nodes’ security.

The presented benefits have been illustrated on a novel VM-aware programmable net-
work node, named DiProNN, which combines the use of virtualization with another use-
ful concepts—namely, with the component-based programming and the parallel/distri-
buted processing. The proposed node, whose architecture is presented in the Chapter 4,
thus provides a powerful processing infrastructure, which allows its users to develop the
active programs for arbitrary execution environments and comfortably compose them
into complex processing applications. The data flows among the components (APs) are
ensured using standard network communication, which (among others) allows the users
to make use of legacy applications without any needs to perform essential changes into
them. Such applications’ separation into multiple individual components combined with
the standard networking communication model further allows the DiProNN to provide
a significant processing power, since it is able to distribute the processing load of a sin-
gle application onto multiple nodes in the network and/or multiple processing elements
within a single node, as described in the Chapter 8.

156



CHAPTER 14. CONCLUSIONS 157

Besides the benefits, the performance overhead introduced by the virtualization has
been studied as well. We have performed several tests, which aim to illustrate the real
overheads of the characteristics, which we consider to be the most important for the
active/programmable nodes—the computing overhead, the overhead of processing the
applications with different proportion of the CPU and I/O-intensive behavior, and the
overhead of processing the network flows. The achieved results confirm the expected
behavior—whilst the overhead of processing pure CPU-intensive applications is negligi-
ble, as soon as the amount of I/O operations increase, the overhead increases as well.

Such an increased I/O overhead also pertains to the processing of network flows,
which are obviously the main factor of the active processing. Even thought the intro-
duced overhead is not serious to make the virtualization entirely unusable for the ac-
tive/programmable network nodes and even thought more powerful virtualization sys-
tems could be used for the implementation (especially the OS-level ones, which how-
ever, slightly limit DiProNN’s features), we have also sketched the architecture of an
FPGA-based programmable hardware network card (the Section 9.2), which accelerates
both the employed forwarding mechanism and the whole network stack, and which thus
can be assumed to have a potency to lower the network processing overhead as low
as possible. Nevertheless, there are also many other projects trying to analyze and im-
prove the software parts of the virtualized network stacks (especially, within the Xen
VMM [19, 191, 281]).

Concerning the future challenges, besides the ongoing efforts to complete the Di-
ProNN’s prototype implementation (especially in the sense of automated processing of
sessions’ establishments, so that the node becomes usable without any needs for manual
configurations), our further work will focus on establishing the infrastructure depicted in
the previous chapter in order to provide a fully automated, flexible, and powerful com-
puting service in the network. Such a service is aimed to serve for various projects related
to the Cesnet’s “Multimedia transmissions and collaborative environment” activity—
for example, the HD and/or 4K video streams’ processing (e.g., real-time transcodings,
stereoscopic synchronizations, and/or DXT compressions [269]) and distribution.
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AP Active Program

API Application Programming Interface
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GPU Graphics Processing Unit

HD High-Definition
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JSDL Job Submission Description Language

KVM Kernel-based Virtual Machines
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MS Microsoft
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TCP Transmission Control Protocol
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UML User-Mode Linux
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99, Olomouc, Czech Republic, 2007. CESNET, z. s. p. o. and Palacký University.

[13] Tomáš Rebok. Protokoly transportní vrstvy a jejich kategorizace, transportní pro-
tokol ARTP. In Proceedings of Širokopásmové sítě a jejich aplikace 2007, pages 153–161,
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