
Quality of Service Oriented Active Routers Design
Tomá̌s Rebok∗, Petr Holub‡, and Eva Hladḱa∗

∗Faculty of Informatics and‡Institute of Computer Science
Masaryk University

Botanicḱa 68a, 602 00 Brno
E-mail: xrebok@fi.muni.cz, hopet@ics.muni.cz, eva@fi.muni.cz

Abstract— The active network approach allows an individual
user to inject customized programs into the active nodes in the
network, usually called programmable/active routers, and thus
process data in the network as it passes through. When a pro-
grammable router is used in a multi-user network environment,
quality of service (QoS) for each passing stream needs to be
ensured. QoS approaches in common networks enforce certain
parameters (e.g., queuing strategy, priority) on the network flows.
However, this is not sufficient in active routers where users’
programs run on the routers and thus other parameters (e.g.
processor time, amount of memory) have to be guaranteed as
well. In this paper, we propose a QoS-enabled active router
architecture that supports extended understanding of QoS. We
also propose a virtual machine based router implementation for
strict isolation of user processes.

I. I NTRODUCTION

Contemporary computer networks behave as a passive trans-
port medium which delivers—or in case of best-effort service
tries to deliver—data sent from the sender to the receiver. The
whole transmission is done without any modification of the
passing user data by the internal network elements1. These
“dumb and fast” networks became mature product where only
speed is ever increased and there is no ambition except for
simple forwarding of the data. We believe that the future-
generation networks may be extended beyond that paradigm
and behave as an active transport medium, which processes
passing data based on data owners or data users requests.
Multimedia application processing (e.g., video transcoding)
and security services (data encryption over distrusted links,
etc.) are a few of possible services which could be provided.
The principle called “Active Networks” or “Programmable
Networks” is an attempt how to build such intelligent and
flexible network using current “dumb and fast” networks as
an overlay network.

We can consider a computer network as a system whose end
nodes provide computations up to the application level, while
inner elements (routers, switches, etc.) provide computations
up to the network level, and all nodes are connected via
passive links. While the elements may be programmable to
some extent, the control is always in the hands of network
administrators. The major difference in the active network is
that the elements inside the network are directly programmable
by users. Also, the nodes inside the active network can provide
computations up to the application level. These inner elements

1Not including firewalls, proxies, and similar elements, where an interven-
tion is on the one hand usually limited and on the other not user controllable.

are called active nodes, active routers, or programmable
routers (all three with rather identical meaning). Users and
applications have the possibility of running their own programs
inside the network using these active nodes as processing
elements.

An application of software programmable routers in multi-
user environment pose new challenges in the design of router
operating systems and especially in the design of resource
management system. Since more resources are shared among
the users of the active router—router CPU cycles, state storage
capacity, data storage together with traditional networking
components like packet queues on network interfaces. To
enable sharing of all these resources within the active node
by its users in a secure and effective manner, much more
complex Quality of Service (QoS) architecture needs to be
deployed, including sophisticated resource accounting and
resource scheduling algorithms that respects characteristics of
individual resources.

The main goal of this paper is to propose a QoS-enabled
active router (AR) architecture that supports complex QoS
guaranties as described above. In order to achieve reasonable
isolation among the users of the AR, the architecture is
designed to facilitate implementation based on virtual ma-
chines (VM) approach [1]. The paper is organized as follows:
Section II briefs previous work on a generic AR architecture,
regardless of QoS, and Section III describes modified VM-
based architecture suitable for QoS implementation. Proposed
QoS implementation is analyzed in Section IV. Related work
is summarized in Section V and concluding remarks and
proposals for future work are in Section VI.

II. GENERIC AN ARCHITECTURE

When considering the architecture of the active networks,
one possible classification criterion is the way active code is
delivered to the active routers [2]:

• Active nodes– The code of an active program is injected
into the active nodes separately from the data packets.
The code can be implemented either as built-in functions
or during the initial phase (the opening) of the data
transfer. The advantage of this architecture is that the
code is injected only once and thus its size is not limited
and not critical. A disadvantage lies in the necessity to
inject the code before data transmission which means
larger startup latency and lower flexibility as it is hard
to change the code during the actual data transmission.



• Active packets– Each data packet contains the program
code which is extracted on an active node and executed
on the data part of this packet. This approach is flexible
since individual data packets in one transmission can
be processed by different programs. The node needs
“only” to be able to extract the code and execute it. The
disadvantage is that even the limited extent of the code
tends to result in a large overhead for transmitted data.

• Active packets and active nodes– This combination of
both previous architectures allows the use of more com-
plex programs while remaining flexible enough. Usually a
program is transferred before the actual data transmission
occurs, but individual data packets contain some kind of
parameters or specific program commands. This supports
individualized packet processing without the limitations
of the active packet approach. However, the substantial
initial delay (latency) is not eliminated.

For our work we use a model of active node with loadable
functionality published in [3]. The proposed active network
architecture uses an “active node” approach to active network-
ing and the concept of “sessions” similar to connections in
connection-oriented networks or sessions in RSVP protocol.

The structure of an active node (router) plays a key role
in this model. The router is a network element which is able
to accept user-supplied programs and to execute them. The
processing of user code consists of two separate but com-
municating processes. The first process controls the session
establishment and management. It has the role of a control
plane in active router processing and includes a process of
loading user functions into the routers along the path between
the source and the destination. The functions may be either
pre-loaded (before or during the connection set up) or they
may be loaded on demand during the data transmission (if
a new requirement arises). Bookkeeping functions are also
provided by the control process. The second process performs
the data packet processing which includes executing the user
code.

AN model described in [3] has never been fully imple-
mented, but main ideas from this work were successfully used
for a model and implementation of user empowered UDP
packet reflectors to create virtual multicasting environment as
an overlay on top of current unicast networks [4]. It also
served as a basis for protocol research and development,
e.g., “Active Node Authentication Protocol (ANAP)” [5] and
“Active Router Transport Protocol (ARTP)” [6].

III. VM- READY AN ARCHITECTURE

Because of generic AR modular architecture, we have
extended the generic AR architecture to support the complex
QoS and also slightly modified the scheme in order to facilitate
implementation based on virtual machines. This approach en-
ables users not only to upload the active programs, which run
inside some virtual machine, but they are allowed to upload
the whole virtual machines with its operating system and let
their passing data being processed by their own operating
system running inside uploaded VM. VM approach ensures

strict separation of different virtual machines and also allows
efficient scheduling of resources to individual VMs, e.g., CPU,
memory, and storage subsystem access.

The architecture of our VM-ready active router is shown
in Figure 1. The bottom part is the VM-host layer where
the core of the proposed VM-ready router is located. The
core includes packet classifier, shared buffer pool, and packet
scheduler modules. The modules relevant to resource manage-
ment (resource management module and VM/AP scheduler
module) are described in more detail in Section IV. Packet
classifier module classifies all the incoming packets whether
they belong to any active session running on the router and
thus must be very efficient. It also extracts packets destined
to the session management module and sends them directly to
that module. The shared buffer pool module operates as the
buffer space where all the incoming packets are stored before
further processing and also all the outgoing packets before the
packet scheduler module sends them onto the network.

VM host 

kr
o

wte
n

sec
afret

ni

packet classifier

queue manager
packet scheduler

API

VM/AP scheduler

AR/VM host 
management 

M
V 

g
nit

u
or ciss

alc

1 
M

V res
u

n 
M

V res
u

resource mgmt

session mgmt

router mgmt

security &
accounting

communication
modules

shared buffer pool

control data

Fig. 1. VM-ready active router architecture

The VM-host management system is located in user space.
Besides the other functions it has to manage the whole router
functionality including uploading, starting and destroying of
the virtual machines, security functions, session accounting
and management. The virtual machines managed by the ses-
sion management module could be either fixed, providing
functionality given by system administrator, or user-loadable.
The example of the fixed virtual machine could be a virtual
machine providing classical routing as shown in Figure 1—it is
an example of optional module, as the AR can run without the
classical routing if only “active” traffic passes through the AR,
e.g., if it works in a dedicated overlay network. Besides that,
the one other fixed virtual machine could be started as an active
program execution environment where the active programs



uploaded by users are executed. This virtual machine serves
especially for backward compatibility with original generic
AR and this approach does not force users to upload the whole
virtual machine in the case where active program uploading
is sufficient.

The VM-ready AR architecture uses a connection-oriented
approach similar to the one used in active router proposed
in [3]. In terms of our active architecture, the connection is
also called“(active) session”, but each active session consists
of one or more active programs/virtual machines, one or
more network flows and potential QoS requirements. The
association of more VMs/active programs and network flows
into one session is very useful especially when creating active
programs working with more than one network streams (e.g.,
synchronization of two RTP streams when transmitting audio
and video streams separately).

Besides the other information, the session initiation request
encapsulated in an active packet contains minimal resource
requirements for given active session and the active router
decides, whether the requirements could be satisfied. If the
request could be satisfied, the session is established and all the
required resources are allocated and reserved to it. Otherwise
the request is refused.

Once the session is established with the required resources,
the data flow through the router could be briefly described
in the following way: when a packet arrives to a network
interface, the packet classifier module decides, whether the
incoming active packet belongs to the given AR or not, based
on information from the security and accounting module. If
the packet is accepted, depending on resource allocations and
actual scheduling algorithm, the classifier module forwards
packet to the proper VM running on the AR or the new
session establishment takes place. Depending on resource
management, the active packet is processed in the VM and
sent into the network through the shared buffer pool.

IV. QOS SUPPORT FORVM- READY ACTIVE ROUTER

As obvious from VM-enabled AR architecture described
above, there are the two main modules concerned with re-
source management: (1) resource management module and (2)
VM/active program scheduler. Indirectly, the session manage-
ment module also participates on this process.

Resource management module.This module implements
the crucial resource management scheme with the following
functionality:

• Possessing all the information about the resources in the
AR.

• Providing necessary information to the session manage-
ment module.

• Monitoring and adjusting the resources used by each
active session and sending notifications to the active ses-
sions through the session management module to inform
them about the actual resource status of the AR (e.g.,
how many resources are available and can be used or
how many resources are needed).

VM/active program scheduler module. This module
schedules the execution of the applications and the transmis-
sion of the packets to the next node. It implements scheduling
algorithms for different classes of resources to enforce the
active sessions allocations of the AR resources—for the addi-
tional information on scheduling algorithms, see Section IV-
B). Besides that, the accounting and resource limit checking
functions are also the part of this module:

• It checks whether the active sessions are permitted
to request given resources (e.g., when restricting the
amount of given resources from allocating by specified
users/sessions).

• It logs active sessions requests and replies from resource
management system about allocating given resources
(useful e.g., when active node resource utilization is paid).

A. Resource management system

Due to the structure of active sessions where each session
consists of one or more virtual machines (simply active
programs) and one or more network streams, the fine-grained
hierarchical design of resource allocations is very desirable.
I.e., when the session possesses allocated resources, it is
possible to split these resources held by the session in a way
the user of the given active session wants (Figure 2).

For resource allocation and scheduling purposes, asession
element(or just an element for short) denotes active stream
(“active” network flow), virtual machine, or active program.
When providing hierarchical resource management, all the
schedulers must know about required resources of each ele-
ment for a given active session. As said before, when creating a
new active session it must request overall amount of resources
wanted. If all the resources requested are available, the active
session is established and all the resources are allocated.
Since the active session holds an unique identifier of allocated
resources, the assigned identifier must be provided when
the session wants to work with a specific shared resource.
This identifier is also used when the active session wants
the resource management module to redistribute the allocated
resources to its element(s). In this case, the (master) identifier
is extended with element sub-identifier. When an element
of the active session wants to use a shared resource, the
master identifier or the extended identifier has to be provided
depending on whether the element wants to utilize the overall
amount of given resources available to the session or just the
amount of resources previously redistributed inside the active
session.

The resource management module thus provides mainly the
following functions:

• Create/Delete– Create allows creating a resource al-
location with given requirements and returns a key, a
unique identifier of given allocation.Deletetakes the key
as an input parameter and removes the corresponding
allocation. The allocation’s resource share is then returned
to the system.

• Bind/Unbind – Bind allows an active session to specify
the resource requirements of elements of the active ses-



Fig. 2. Hierarchical resource assignment.

sion. Then, the session (master) key is extended to be
able to unambiguously determine the active session and
its element, and returned.Unbind deletes such binding
inside the session.

• Modify – allows user to reconfigure a resource allocation
with a given key.

• Info – provides the information about allocated and free
resources in the system.

B. Schedulers

Scheduling algorithms are the most important part of the
whole resource management system in our active router
because they affect both overall performance and keep all
required resources in desired limits. Since resource charac-
teristics vary, scheduling algorithms must be designed in a
resource specific manner. For example, CPU context switching
is more expensive compared to switching between flows in
network scheduling [7]. Therefore, efficiency of CPU schedul-
ing improves if active programs can receive a minimum CPU
quantum before being preempted. Disk scheduling, unlike both
CPU and network, must consider request locations to limit
seek time and rotational latency overheads. Memory sched-
ulers, in order to match actual memory use, must estimate
the current working set of active programs. All the schedulers
must therefore examine relevant resource states (e.g. disk
state, whether it is spinning or parked) in addition to QoS
specifications.

The resource requirements are often related to the others.
For example, when requesting high network bandwidth while
having only a small amount of CPU time, it is not possible to
reach required bandwidth, because there is insufficient CPU
time to send all the packets. Thus the scheduling algorithm’s
design must be sophisticated enough to take such inter-
dependencies into the account.

For sake of conciseness, we do not delve into detailed
description of scheduling algorithms here, but we describe the

most important demands on each of the active router scheduler
focusing on CPU, network, memory and disk schedulers.

Because the quality of service assurance in active routers is
closely related to multimedia applications, the requirements on
the scheduling algorithms in our active router are very similar
to the requirements in multimedia operating systems [7].

1) CPU scheduler:The CPU scheduling algorithms are the
best-developed scheduling algorithms in current information
technology. Unfortunately, majority of proposed algorithms are
QoS-unaware and thus very huge research in this area should
be made.

Thanks to the hierarchical resource management system in
our active router architecture the hierarchical CPU scheduling
algorithm is desirable. The operating system thus partitions the
CPU bandwidth among more active sessions, and each active
session, in turn, partitions its allocations among its VMs or
active programs.

The other desirable features of CPU scheduling algorithms
are as follows:

• Admission criteria– the admission of a new active session
should not infringe the QoS guarantees given to currently
established and running active sessions. If so, necessary
steps need to be taken like re-negotiation or rejecting the
new active session.

• Real-time guarantees– the design of the CPU scheduling
algorithms must satisfy real-time constraints in terms of
ensuring guaranteed scheduling for each active program
within their jitter bounds, if any.

• Fairness criteria – it should be possible to schedule
all the types of active programs that are competing
for the CPU—if there is non-reserved CPU time, the
lower priority non-guaranteed applications should not be
completely starved out of CPU by higher priority tasks
corresponding to guaranteed services.

• Maintenance and policing criteria– policing criteria
requires to ensure that the deadline violating tasks do not



infringe the QoS guarantees of other tasks competing for
CPU resources. Mechanisms like software watchdog that
suspends an active program on deadline violations, are
means of ensuring service guarantees. The maintenance
criteria imply setting up re-negotiations or dropping fur-
ther requests in case of CPU overload condition.

• Throughput criteria– the scheduling policy should be
able to schedule as many active sessions as possible.

2) Network scheduler:Current network scheduling algo-
rithms are well-developed and only their adaptation to active
networks is necessary. The typical objective network scheduler
parameters are bandwidth, latency and jitter, and the common
criteria on network schedulers are following:

• Admission criteria– the scheduler must ensure that the
requested bandwidth plus the currently allocated band-
width does not exceed a threshold of the total available
bandwidth.

• Real-time guarantees– it must also ensure that the
network interface scheduling delays are bounded and
the enough buffer provisioning is done. The scheduling
algorithm must consider that the mechanisms like retrans-
missions may not be suitable for applications requiring
hard delay bounds.

• Fairness criteria– all types of applications should get a
fair share of network bandwidth.

• Maintenance and Policing criteria– Policy criteria should
ensure that the application do not take up more than
the network bandwidth that has been guaranteed by QoS
negotiation during active session setup.

3) Memory scheduler:The memory scheduling algorithms
must manage the whole memory subsystem using virtualiza-
tion mechanism and it must guarantee the required amount of
free memory to active sessions. Because of the virtualization
mechanism the appropriate allocation of free page frames
and redistributing released frames to other sessions are the
main jobs of the memory scheduler. The following are the
requirements on the memory schedulers in order to support
QoS:

• Admission criteria– new active session can be admitted
if and only if its memory buffer requirements plus the
current buffer allocations of other sessions do not exceed
the threshold of the total available memory.

• Real-time guarantees– during the run of given active
session some time-critical applications need the memory
access time to be minimal. With virtual memory, it
is important to have paging mechanisms that have an
acceptable upper bound on access latency.

• Fairness criteria– the memory scheduler must ensure the
minimal availability of memory buffers for all the active
sessions and their elements.

• Maintenance and Policing criteria– maintenance criteria
require setting up re-negotiations or dropping further
requests in case of a buffer shortage. Policy criteria may
require that the offending active session should be notified
for the re-negotiations or in the extreme case terminated.

4) Disk (I/O) scheduler:While a secondary data storage
is not a traditional router resource, it is very important for
the active router with QoS support. The disk scheduler may
support either the transfer bandwidth of given disk or the
amount of free disk space only or both. The requirements on
suitable disk scheduling algorithms could be summarized into
the following criteria:

• Admission criteria– the effective disk transfer bandwidth
is reduced due to seeking and latency overheads, which
are a function of the disk scheduling algorithm and the
disk request size. The admission criterion ensures that the
sum of the data rates of all the active sessions, including
the new one, do not exceed the effective disk transfer
bandwidth.

• Real-time guarantees– the scheduler must be able to
schedule the disk accesses for all admitted streams so as
to meet their data rate guarantees and the response time
for all the streams must be acceptable.

• Fairness criteria– provisioning may be done to ensure
that all types of active sessions get a fair share of disk
transfer bandwidth.

• Maintenance criteria– the scheduling algorithm has to
monitor the data rates being provided to real-time streams
with respect to the guarantees provided before; the QoS
re-negotiations must be provided in cases of shortfalls.

• Resource reservation– except the reservations of disk
bandwidth each active session requires at a minimum a
buffer for the consuming virtual machine (resp. active
program) and a buffer for the producing virtual machine
(active program). Thus, this amount of memory needs to
be reserved for each admitted stream.

V. RELATED WORK

In this section we brief the results of our work in the
context of related projects in the resource management and
QoS assurance in active networks research. We also notice
relevant projects whose ideas may be implemented in our AR
architecture.

An active node architecture with resource management [8]
is an attempt how to introduce the architecture with explicit
resource management system, which also provides an adapta-
tion among different applications. The node operating system
is based on the Janos project [9] developed at the university
of Utah. The Janos project is in comparison with our work
oriented to the execution of untrusted Java byte-code only and
thus has limited flexibility. As a part of this project the method
for the description of resource requirements from applications
using the resource vectors and resource vectors space were
introduced. We will explore the resource vector method in
more detail and assess its possible application to our router
architecture.

The CROSS project [10] is another attempt of introducing
the resource management system in software-programmable
router operating systems. This project was proposed by
David K. Y. Yau and Xiangjing Chen in 2001 and it uses
virtual machines as the active programs providing thus fixed



router functionality only, but higher security and efficiency,
because the CROSS system communicates directly with the
hardware layer.

Friendly virtual machines [11] devises techniques that en-
able multiple virtual machines to share underlying resources
on the same host both fairly and effectively. Instead of deploy-
ing complex resource management techniques in the hosting
infrastructure, an alternative approach of self-adaptation in the
virtual machines themselves was introduced based on feed-
back about resource usage and availability. Thus, the virtual
machines that adjust their demands for system resources, so
they are both efficiently and fairly allocated to competing
virtual machines, are very important idea for the resource
management subsystem in our router, where the principle of
Friendly virtual machines could be used for the “competing”
virtual machines with no explicit resource requirements.

QoS specification languages for distributed multimedia ap-
plications could be used for the description and negotiation
of QoS requirements of active sessions in our architecture.
Such languages were studied by Jingwen Jin and Klara Nahrst-
edt in [12]. They studied lots of languages including script
languages and XML-based markup languages. The languages
for the hierarchical resource requirements description probably
suitable for our router architecture were also studied.

VI. CONCLUSIONSAND FUTURE WORK

In this paper, we have proposed a virtual machine oriented
active router architecture and studied the resource require-
ments and QoS implementation. The typical scenario of hierar-
chical resource management system has been explored and the
requirements on the schedulers for such QoS-enabled active
router, concerning the CPU scheduler, network scheduler,
memory scheduler, and disk scheduler were also discussed.

The main feature of our router architecture is that it provides
a predictable and assured access for active sessions to system
resources. These resources can be subsequently redistributed
to multiple virtual machines, giving flexible choice and the
ability for services to seamlessly evolve.

Concerning the future challenges, the proposed router ar-
chitecture will be implemented based on Xen virtual machine
monitor [13]. Further we want to explore extending current ar-
chitecture into a distributed environment to be able to deal with
high-speed networks. In this case, all the resource schedulers,
the whole router, and session management systems must be
modified. For the efficiency purposes, another interesting topic
for our future work is the implementation of some parts of the
router architecture (especially the packet classifier module) in
hardware, e.g., based on FPGA-based programmable hardware
cards [14].

ACKNOWLEDGMENTS

This project has been supported by a research intent “Op-
tical Network of National Research and Its New Applica-
tions” (MŠM 6383917201), “Parallel and Distributed Sys-
tems” (MŠM 0021622419), and “Integrated Approach to Edu-
cation of PhD Students in the Area of Parallel and Distributed
Systems” (No. 102/05/H050).

REFERENCES

[1] J. E. Smith and R. Nair,Virtual Machines: Versatile Platforms for
Systems and Processes. Elsevier Inc., 2005.

[2] K. Psounis, “Active networks: Applications, security, safety and archi-
tectures,”IEEE Communication Surveys, 1999.

[3] E. Hladḱa and Z. Salvet, “An active network architecture: Distributed
computer or transport medium,” inNetworking – ICN 2001: First
International Conference Colmar, France, July 9-13, 2001, Proceedings,
Part II, ser. Lecture Notes in Computer Science, P. Lorenz, Ed., vol.
2094. Heidelberg: Springer-Verlag, Jan. 2001, pp. 612–619.

[4] E. Hladḱa, P. Holub, and J. Denemark, “An active network architecture:
Distributed computer or transport medium,” in3rd International Con-
ference on Networking (ICN’04), Gosier, Guadeloupe, Mar. 2004, pp.
338–343.

[5] J. Denemark, “Autentizace v aktivnı́ch śıtı́ch (authentication in active
networks),” Master’s thesis, Faculty of Informatics, Masaryk University
in Brno, Apr. 2003, czech only.

[6] T. Rebok, “Active router communication layer,” CESNET, Tech.
Rep. 11/2004, 2004. [Online]. Available: http://www.cesnet.cz/doc/
techzpravy/2004/artp-protocol/

[7] B. Ghose, V. Jain, and V. Gopal, “Characterizing qos-awareness in
multimedia operating systems,” 1999, http://computing.breinestorm.net/
qos+cpu+scheduling+criteria+admission/%.

[8] Y. Li and L. Wolf, “An active network node system with adaptive
resource management,” inInternational Conference on Telecommuni-
cations, June 2002.

[9] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A java-oriented os for
active network nodes,” 2001. [Online]. Available: citeseer.ist.psu.edu/
652534.html

[10] D. K. Y. Yau and X. Chen, “Resource management in software
programmable router operating systems,”IEEE Journal on Selected
Areas in Communications, vol. 19, no. 3, Mar. 2001. [Online].
Available: http://citeseer.ist.psu.edu/324757.html

[11] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West,
“Friendly virtual machines - leveraging a feedback-control model for
application adaptation.” [Online]. Available: citeseer.ist.psu.edu/article/
zhang04friendly.html

[12] J. Jin and K. Nahrstedt, “Qos specification languages for distributed
multimedia applications: A survey and taxonomy,”IEEE MultiMedia,
vol. 11, no. 3, pp. 74–87, 2004.

[13] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. B. m, and R. Neugebauer, “Xen and the Art of Virtualization,” in
Proceedings of the ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, USA, Oct. 2003.

[14] J. Novotńy, O. Fǔćık, and D. Antǒs, “Project of IPv6 Router with FPGA
Hardware Accelerator,” inField-Programmable Logic and Applications,
13th International Conference FPL 2003, P. Y. Cheung, G. A. Constan-
tinides, and J. T. de Sousa, Eds., vol. 2778. Springer Verlag, September
2003, pp. 964–967.


